
How Should Data Structures and Algorithms be
Taught

Danny Kopec
Senior Lecturer / Associate Professor
Richmond,
The American International University
London,UK

kopec@drk2500.demon.co.uk

ABSTRACT

Richard Close Jim Aman
Professor Associate Professor
US Coast Guard Academy Wilmington College
New London, CT Wilmington, OH

(860)444-8622 (937)382-6661 X51 7
RClose@cga.uscg.mil jaman @ infinet.com

Data Structures and Algorithms is clearly a very
important topic and course in the Computer Science
curriculum. It has been taught at several levels by a
number of approaches. Should the approach be
mathematical, theoretical and abstract or very
concrete and “hands on”? Whichever method is
used, the ultimate goal is the same: enhancing
student comprehension. The panelists discuss three
distinct and well-defined approaches.

Keywords

Evaluating Teaching Methods, Computer Science
Education Research, Innovative Instructional
Methods, Impact of Technology on the Curriculum.,
Closed Laboratory Experience

1. Danny Kopec, Richmond, The
American International University in
London

An undergraduate course in algorithms may be
taught on a separate high pedestal, primarily to
fourth year students. However, many chances of
refinement have reinforced a combined approach that
emphasizes the teaching of data structures as
implemented by algorithms and some mathematical
methods using recurrence relations and their proofs.
This approach tackles traditional issues involving
choice of representative data structures (arrays,
linked lists, stacks, queues), but also considers the
particular problem at hand and its unique features.
Two more extreme approaches might approach the
subject from different perspectives: 1) a problem
solving perspective which would look at typical
computer science problems, develop and analyze

Permission to make digital or hard copies of all qr part of this work fqr
Personal 01 ClaSSrOOm use is granted without fee provided that
Copies are not made or distributed for profit or commercial edvan-
tage and that copies bear this notice and the full citation on the first page
To COPY otherwise. to republish, to post on servers or tq
redistribute to lists. requires prior specific permission end/or a fee.
ITiCSE ‘99 6/99 Craco~, Poland
@ 1999 ACM l-58113-087~2/99/0005...$5.00

alternative solutions to them and then consider
them from the point of view of algorithmic
complexity, practicality of implementation, and
transparency for the human programmer. 2) a
mathematical perspective which would teach and
develop recurrence relationships for many
algorithms. Years of experience with the course
have led to an approach which combines the
“discrete” almost cookbook approach of Robert
Sedgewick (Algorithms , 1988; Algorithms in C++.
1992) with the “continuous” mathematical analysis,
largely recurrence relation styled approach to the
subject by Gregory Rawlins (Compared to What,
1991). Typical topics covered will include:
elementary data structures, trees, recursion, analysis
of algorithms, implementation of algorithms (that is,
the first 8 Chapters of Sedgewick) followed by
Sorting Algorithms (Sedgewick, Chapters 8-13,
possibly skipping Chapter 10 (Radix Sorting) and
Chapter 13 (External Sorting). Other Topics
Sedgewick chapters covered will necessarily
include Elementary Searching Methods (Chapter
14), Hashing (Chapter 16), and Graph Algorithms
(Chapter 29, 3 I, and possibly 32). Optional topics
depending on the rhythm of the course will include
string searching (Chapter 19) and cryptology
(Chapter 23). Mathematical rigor and the curiosity
of all involved is enhanced with Rawlins’ proofs of
the complexity of diverse algorithms, including, for
example, esoteric methods like the Jump Search.
This helps produce a course that is broad in its
coverage and sufficiently rigorous in its approach.
As a final course project students are asked to
develop programs investigating algorithms of their
choice or to investigate course topics that could
not be investigated in class, or to investigate
certain course topics, like cyptology, NP complete
algorithms, Turing machines, etc. on their own and
make class presentations as well as produce short
papers.

2. Richard Close, U. S. Coast Guard
Academy

Somewhere along the way in the undergraduate
computer science curriculum, “data structures and
algorithms” have become “algorithm analysis and
computability”. That is, the content of this course

175

has tended to become more theoretical as the
discipline has matured and the latest curriculum
recommendations have appeared. Teaching a course
with a large theory component is always a
challenge but it seems that this one is especially
daunting because it is likely to be the first time that
computer science majors come to grips with abstract
mathematical concepts. This is somewhat surprising
because the assumption is that since CS majors
regularly deal with abstract concepts, they can
readily understand rigorous mathematical concepts.
Some success has been achieved by including a
closed lab to provide an experimental component in
this course. The normal algorithms for selection,
searching and sorting can be programmed and
analyzed experimentally. In addition, there are quite
a few animations available for almost every well-
known algorithm; now easily found on the Internet.
Several industrious students have also found it
feasible to design and implement their own
animations. It also is possible to include several
exercises on genetic algorithms, finite state
machines and computability. The operation of a
closed lab at this level is not trivial and may be
unusual but the benefits seem to be worth the effort.
Students appreciate the more concrete approach and
their depth of understanding seems to be improved.

3. Jim Aman, Wilmington College

One semester several years ago the Data Structures
class produced an enrollment of only four students.
The instructor decided to conduct the course in a
seminar format rather than the more traditional
lecture/lab style. Since then the course has been
offered three times in the seminar format, with a
mixture of results. The design of the course requires
extensive research, analysis, and testing of the data
structure or algorithm class assigned. The

department has designated Data Structures a
“writing-intensive“ so the final report of the student
is also a major writing exercise. This report must be
distributed to the instructor and all class members
in “near-final” form at least one week prior to an
assigned presentation date. The presentation is a 2+
hour block in which the student presents the report,
explains background, methodology, and other
relevant information, and then submits to an open
question-and-answer period. The audience is
classmates, other students (both lower- and upper-
division), faculty from other departments, and
alumni. All in all, it is an intense, high-energy
period. There are several solid positives and glaring
negatives to this approach. First, the pressure of the
presentation is (by the students’ own evaluations) a
growth experience. They learn a great deal about
literature searches in a technical area. They also
learn that one pass through the writing of a
scholarly paper is not enough; the instructor’s
editing is complete and demanding. From the
presentation itself and the Q&A period following
it, they learn a lot about themselves and about the
importance of maintaining emotional balance under
pressure. There is, of course, a very significant
danger that a student might be pushed too far by the
process. Fortunately, that has never happened. But
it is always a possibility. Second, mastery of a
broad range of data structures and algorithms is not
at all assured in the seminar format. If anything
triggers a return to traditional format, it will be this
one factor. There is no question each student
becomes master of the structure(s) and/or algorithms
each studies. No such mastery can be claimed for
other structures or algorithms. Over the years
students have always been asked to evaluate the
course. Their responses have been quite uniform.
The seminar/presentation format is difficult, but it is
both a welcome relief from lectures and definitely a
growth experience.

176

