THE ROLE OF connectivity IN CHESS

By D. Kopec, E. Northam*, D. Podber** and Y. Fouda**

Introduction

Primary improvements in the performance of computer chess programs during the
past 14 years have been attributed to more efficient brute force tree searching using the
alpha-beta algorithm (Thompson, 1982; Hsu, 1987, Rivest, 1988). It is true, as per the
arguments of Donskoy and Schaeffer (1989, presented here), that research in computer
chess needs to regain credibility within the artificial intelligence community by focusing
on techniques, tools, algorithms and methods of representing chess knowledge. We
believe that the ideas expressed in this paper are an example of research directed towards
the above goals.

We attempt to define a2 measure of connectivity of forces or simply connectvity,
and substantiate it as an important term which should be included in the evaluation func-
tion of every strong computer chess program.

It has been accepted since the work of Slater (1950) that there is a strong correlation
between the general mobility of chess pieces and the outcome of chess games played at
the master level and above. Consequently, mobility has always played an important role
in the evaluation function of computer chess programs. This belief gained further sub-
stance from the analysis of mobility in 862 grandmaster games by Hartmann (1987a).
Analysis of chess play at all levels has led the authors to the belief that success in strong
(master and above) play is also directly correlated to having well protected forces. It has
long been accepted that material is the single, overriding, most important factor in the
evaluation function of strong computer chess programs (Botvinnik, 1969; Slate and
Atkin, 1977). The research reported here describes efforts to quantify the measure of
connectivity and its statistical significance as correlated to strong chess play as distinct
from novice play both by humans and machines.

Well established notions of "positional play"” in chess refer to an awareness of piece
configurations (clusters) and how well the pieces in a given configuration can coordinate
together. Such terms as "strategy” and "planning" in chess are usually associated with
positional play. The quantification of good positional play has thus far proven a great
stumbling block for computer chess programmers.

Notions of “tactical play” relate to the active deployment of forces, which can be
derived to some degree from the measurement of mobility. For example, a "tactical
combination” involves interaction between opposing forces involving the exploitation of
cither 1) one side’s superior mobility or 2) the insufficient defense of the weaker side’s
King, pieces, or pawns and/or the vital squares affected by these forces. The result of a

* Deperunent of Computer Science, University of Mainc.

** Work done while graduate student at Department of Mathematical Sciences, San Diego State University.



< -

tactical combination is usually a clear gain of material, significant increase in mobility or
a decisive attack on the opposing King. In short, all chess moves can, by some form of
evaluation, be classified as either tactical or positional in nature.

Moreover, it has been argued quite convincingly by leading researchers in computer
chess (Thompson, 1982) that if we could calculate far enough ahead, all chess play would
ultimately be reduced to tactics. The design and approach of most computer chess pro-
grams in recent years, with few exceptions, gives credence to this supposition. At the
other end of the pendulum lies the point of view of the authors, who, while recognizing
the importance of the ability to calculate deeply and precisely, refuse to underrate the role
of knowledge in chess programming (Berliner,1986; Kopec, Newborn, & Yu,1986;
Schaeffer 1986). We argue that knowledge, when represented by rules, patterns and
heuristics enables the quantification of chess moves. This can resuilt in a tremendous
reduction in the number of nodes requiring evaluation. Thus it could be said, “a little
knowledge can go a long way."”

Over 35 years of experience ir chess programming has demonstrated that mobility
is one such easily quantifiable concept which lends itself to speedy evaluation. Connec-
tivity can also be defined in a way so as to facilitate rapid evaluation. Study of the rela-
tionship between connectivity and mobility suggests ways in which the two factors can
be incorporated into a chess program’s evaluation function in a meaningful way

(Fouda,1987).

The Study Design

We have selected two hundred chess games in four categories whose distributions
are as follows: Games 1-100 are computer vs. computer; Games 101-120 are computer
vs. human; Games 121-145 are the games of the second Kasparov vs. Karpov World
Championship Match in 1985; and Games 146-200 are human vs. human. Games (other
than Kasparov vs. Karpov) are selected randomly according to their ability to meet
specificatons (in terms of frequency) as a representative sample of chess games played
within and between the following four rating categories:

Category Name Ratings
I Novice 1000-1599
I Intermediate 1600-1999
I Strong 2000-2199

v Very Strong >=2200

A program in Pascal was written to accept any legal chess game in algebraic nota-
tion as input. This program employs a pointer-based representation to maintain lists of
squares attacked and defended by each side’s pieces during the course of a chess game.
Connectivity was measured for cach side’s forces as an inverse relation based on the pro-
duct of the sum of the number of defenders of each piece in a posidon. After a number of
iterations and refinements, the function used on our data sample is:
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connectivity= [V * (0.5)] * [P/50 +0.8)(P5/50 +0.8)...(Px/50+ 0.8)]

Where P; is the i’th protector of a piece, for i=1..n and protector values are: pawn = I,
knight = 3, bishop = 4, rook = 5, king = 6, and queen = 9; V is the value of a pro-
tected piece with pawn = 10, knight = 30, bishop = 35, rook = 50; n is the number of
unpinned protectors (queen & king excluded).

This computation takes into account the value of forces credited as defenders and
leads to smaller connectivity values as the number of defenders of a piece increases.
Originally we had coined this computation as entropy, a term taken from physics, which
measures the tendency of matter to increase in its level of disorder. A low entropy score
is therefore indicative of a high degree of protection and order amongst a side’s forces.
However, we are dealing in the realm of computer chess, where most evaluation func-
tions tend to accrue positive scores as a measure of the strength of their current material
or positional situation.

Hence it was decided that the entire computation should be revised in order to pro-
vide a more accurate representation of the important features in a chess position and to
facilitate their evaluation. Since table lookup is much faster than the computation of each
combination of protectors, it was decided that each unique combination of protectors
should have a predefined value (see Table 1). It was further decided that the term con-
nectivity better describes the relationship between one side’s pieces which is being
measured on the chessboard.

The values of protected pieces which might be involved in a connectivity computa-
tion, were assigned as follows: P =50, N =35, B =30, R = 10, Q = 4. This is precisely
in the inverse order of the accepted material values of these pieces, with some scaling.
This stems from the idea that the less mobile a piece is, the more protection it needs.
That is, the weaker a piece is, the more subject to attack it is and the less useful it is as an
attacking force. On the other hand, stronger pieces are more prone to attack from all
other weaker pieces. Combinations of protectors involving a single piece can never
outweigh the contribution of two protectors. The same is true when two protectors are
evaluated as compared with three. Pieces operadng in the same line of defense (e.g. a
bishop behind and on the diagonal of a pawn which is guarding another pawn),
represented in “( )" are less efficient as defenders than pieces operating from separate
directions. Finally, ordering effects for defenders inline always give preference to having
the highest valued piece (in real chess terms) ordered last.

Table 1: Combinations of Protectors
Symbols: P= pawn; B=bishop; R=rook; Q=queen; K=king

Singletons
P=8.00 B =450 N =4.00 R=13.00 K=2.50 Q=20

Two Protectors
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PP=1500 PN=11.0 PB=115 (PB)=10.0 PR=10.00 PQ=9.00 (PQ)=8.00
PK=10.00 NN=7.00 NB=7.50 NR=6.00 BR=6.50 RR=500 (RR)=4.50
NQ=5.00 BQ=5.50 (BQ=5.00 (QB)=450 RQ=400 (RQ=3.50 (QR)=3.25

NK=5.50 BK=6.00 RK=450 QK=400 (KQ)=3.50 (KR)=4.00 (KB)=5.00
Three Protectors

PPN= 18.00 PPB= 18.50 P(PB)= 17.00 PPR=17.00 PPQ=16.0
P(PQ)= 15.50 PPK=16.50 PNN=14.00 PNB= 14.50 (PB)N= 14.00
PNR= 13.00 PBR=13.50 (PB)R=13.00 PRR=12.00 P(RR)=11.00
PNQ=12.00 (PQ)N=11.00 PQB=12.50 (PB)Q=12.00 PQ)B=11.50
P(BQ)=11.00 P(QB)=10.50 (PQB)= 10.00 (PBQ)=10.50 PRQ=11.00
P(RQ)= 10.50 P(QR)= 10.25 (PQ)R=10.00 PNK=12.50 PBK=13.00
(PB)K=11.50 PRK= 11.50 PQK=10.50 (PQ)K=9.5 NNB= 10.50
NNR=9.00 NBR= 10.50 NRR=8.00 N(RR)=7.00 BRR=28.50
B(RR)=8.00 NNQ-=8.00 NBQ=10.00 N(BQ)=9.50 N(@QB)=9.00
NRQ=7.00 N(RQ)=6.50 N{QR)=6.00 BRQ=17.50 B(RQ)=7.00
B(QR)=6.50 (BQ)R=7.00 R(QB)=6.50 RRQ=6.00 (RR)Q=5.50
R(RQ)=5.50 R(QR)=5.00 (RRQ)=4.50 (RQR)=4.00 (QRR)=3.75
NNK=8.50 NBK=7.50 BRK=6.00 RRK=6.50 (RR)K=6.00
NQK=6.50 BQK=7.00 (BQ)K=6.50 (QB)K=6.00 RQK=135.5
RQ)K=5.00 (QR)K=4.75

Much of Opening play in chess is determined by a library of "book moves" and
endgame play often has its own special characteristics. Therefore we have focused our
data collection on "defined" middle games from our sample of games. A middlegame
is said to begin when a side’s rooks are connected or when a side has only one minor
piece on the back row preventing this. The endgame for our purposes, has been defined
as starting when less than 19 points of material, i.e. less than two rooks (or a queen) and
three minor pieces, are present. Thus the two sides may be in different phases of a chess
game, and the connectivity for each side may be evaluated starting (and ending) at
different points (positions) in a game.

Results

The statistical analysis of our data with our original computational scheme (entropy)
has revealed significant differences, both in connecdvity and mobility when compared
against the rating category of the winning side.

Using a simpler calculation 1o evaluate a set of nine carefully selected, high level
(grandmaster) games (with material balance and decisive outcomes, Fouda (1987)
obtained some remarkable results: for whichever side won the games at least one of the
following was true throughout the course of the games:

1) the winner’s mobility and connectivity were better (respectively higher and lower)
than the loser’s and/or
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2) the winner’'s mobility was higher than the loser’s and/or
3) the winner's connectivity was better (lower) than the loser’s.

Fouda also found that in selecting random numbers of moves from this set of games
(total 515 moves) the trends in terms of changes in connectivity and mobility (either or
both going up or down from move to move) remained inexplicably consistent.

Future Study

The revised computation for connectivity is to be tested on a control group of 100
randomly selected games. Subsequent analyses will import large numbers of master
games from a database of chess games for the evaluation of what role connectivity may
have played and its possible correlation to outcome of these games. Further analysis of
this kind and along the lines of Hartmann's (1987) studies, may help to unveil the secrets
behind chess at the grandmaster level, especially with regard to positional play.
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