
Panel Proposal: How Should Data Structures and Algorithms be Taught?
Dr. Danny Kopec
Senior Lecturer/Associate Professor Computing,

Systems Engineering and Management
Richmond, The American International University in London

 An undergraduate course in algorithms may be taught on a separate high
pedestal, primarily to fourth year students. However, many chances of
refinement have reinforced a combined approach that emphasizes the
teaching of data structures as implemented by algorithms and some
mathematical methods using recurrence relations and their proofs. This
approach tackles traditional issues involving choice of representative data
structures (arrays, linked lists, stacks, queues), but also considers the
particular problem at hand and its unique features.

Two more extreme approaches might approach the subject from different
perspectives: 1) a problem solving perspective which would look at typical
computer science problems, develop and analyze alternative solutions to
them and then consider them from the point of view of algorithmic
complexity, practicality of implementation, and transparency for the human
programmer. 2) a mathematical perspective which would teach and develop
a recurrence relationships for a many algorithms.

Years of experience with the course have led to an approach which

combines the “discrete” almost cookbook approach of Robert Sedgewick
(Algorithms , 1988; Algorithms in C++. 1992) with the “continuous”
mathematical analysis, largely recurrence relation styled approach to the
subject by Gregory Rawlins (Compared to What, 1991). Typical topics
covered will include: elementary data structures, trees, recursion, analysis of
algorithms, implementation of algorithms (that is, the first 8 Chapters of
Sedgewick) followed by Sorting Algorithms (Sedwick, Chapters 8-13,
possibly skipping Chapter 10 (Radix Sorting) and Chapter 13 (External
Sorting). Other Topics;/Sedgewick Chapters covered will necessarily
include Elementary Searching Methods (Chapter 14), Hashing (Chapter 16),
and Graph Algorithms (Chapter 29, 31, and possibly 32). Optional topics
depending on the rhythm of the course will include string searching (Chapter
19) and cryptology (Chapter 23). Mathematical rigor and the curiosity of all
involved is enhanced with Rawlins’ proofs of the complexity of diverse
algorithms, including, for example, esoteric methods like the Jump Search.
This helps produce a course that is broad in its coverage and sufficiently
rigorous in its approach. As a final course project students are asked to
develop programs investigating algorithms of their choice or to investigate
course topics that could not be investigated in class, or to investigate certain
course topics, like crytology, NP complete algorithms, Turing machines, etc.
on their own and make class presentations as well as produce short papers.

Richard T. Close
U. S. Coast Guard Academy

Somewhere along the way in the undergraduate computer science

curriculum, "data structures and algorithms" have become "algorithm
analysis and computability". That is, the content of this course has tended to
become more theoretical as the discipline has matured and the latest
curriculum recommendations have appeared. Teaching a course with a large
theory component is always a challenge but it seems that this one is
especially daunting because it is likely to be the first time that computer
science majors come to grips with abstract mathematical concepts. This is
somewhat surprising because the assumption is that since CS majors
regularly deal with abstract concepts, they can readily understand rigorous
mathematical concepts.

Some success has been achieved by including a closed lab to provide an

experimental component in this course. The normal algorithms for selection,
searching and sorting can be programmed and analyzed experimentally. In
addition, there are quite a few animations available for almost every well-
known algorithm; now easily found on the internet. Several industrious
students have also found it feasible to design and implement their own
animations. It also is possible to include several exercises on genetic
algorithms, finite state machines and computability. The operation of a
closed lab at this level is not trivial and may be unusual but the benefits seem
to be worth the effort. Students appreciate the more concrete approach and
their depth of understanding seems to be improved.

