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Students of computer chess aim at an operational theory of
Master skill—operational in the sense that it can be run on
the machine. In one form of the aspiration Masters must be
defeated across the board under full tournament conditions,
so far achieved only for ‘blitz’ chess but not for play under
standard time control (see SIGART Newsletter No. 62, 1977).
Another form of the ‘Master skill’ aspiration aims at correct
play for defined subsets of chess. It is not known whéther
‘strong mastery’ in this sense is attainable for the complete
game or whether chess is ‘hard’ in the sense of Knuth (1976).
We can, however, start with elementary endings such as King
and Queen versus King (denoted KQK), KRK, KBBK,
KBNK and KPK, and seek to extend mastery backwards
a step at a time into the game’s increasingly complex hinter-
land.

Work at Edinburgh follows the second approach, seen as a
means for studying forms of knowledge representation®’in
relation to three desiderata: (a) forms more powerful than
present programming languages for specifying strategies,
(b) forms more suitable for proofs of correctness of strategies
and (c) forms more convenient for automatic optimisation
of strategies (‘machine learning’).

None of the above listed end-games contains anything prob-
lematical from a Master’s point of view and computer programs
embodying correct strategies have been written for all of
them. In reviewing this work Bramer (1977) remarks that the
task, not of playing such end-games correctly, but of expressing
in program form the knowledge required for correct play,
has turned out to be surprisingly and disproportionately hard.
For his own implementations of KRK and KPK Bramer uses
pattern-based models of a general kind now accepted as
indispensable to the extension of machine mastery into more
complex chess subdomains. Such exercises as KRK and KPK
can be done (with some difficulty) without special programming
tools; but it needs only a small step in the direction of greater
complexity to bring us into territory where the use of such
tools become critical. . T e e

In this paper we describe pattern descriptional -aids to
strategy building in two areas more complex than KRK,
KPK, KQK and the rest; namely (¢) pawns-only positions and
(b) the defence of king and knight against king and rook.

Describing pawn structures

Tan (1977) has developed a program which breaks down any
K + P ending into a basic description of its components.
Using a vocabulary which is defined in Kmoch’s (1959)
Pawn Power, the pawn formations are broken down into

Fronts, i.e. islands containing opposing pawns, and further.

subdivided into Groups (same colour only). The rdle of each
pawn in terms of its relationships to other pawns is then
defined, as shown in the upper part of Fig. 2 which uses terms
explained by Tan as follows:

‘An enemy pawn ahead on the same file is a counterpawn,
and a sentry when it is on a neighbouring file . . . Counter-
pawns and mutual sentries of distance 1 are called rams
and levers respectively. Friendly relations give rise to a
duo when the pawns are abreast on two neighbouring
files, and a twin (doublepawn) when they are on the same
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Fig. 1 From Basic Chess Endings (R. Fine)

file. A backward neighbour is a protector (distance 1)
or a potential protector (distance > 1).

Some of these relations may be very useful if developed further.
For example, if a pawn is ‘overloaded’, in that it is petforming
several rdles at once, its removal may lead us to a winning
strategy. An example in practice is shown by the problem
position in Fig. 1 taken from Fine’s (1964) .Basic Chess
Endings. Its solution becomes clearer when we consider the
number of rdles performed by the pawn on square 33 (square
= 9 x file + rank). '

Thus,

33 [1, 31}, i.e. pawn on 33 is a Counterpawn to pawn on 31,
33 [2, 32}, i.e. pawn on 33 is a Ram to pawn on 32,

33 [3, 21], i.e. pawn on 33 is a Sentry to pawn on 21,

33 [8, 33], i.e. pawn on 33 is a Potential Protector to pawn
: on 22,

Rather than queening the passed RP immediately, which would
result in a quick draw due to stalemate, the solution lies in
White’s capture of that pawn on 33.

A graph representation of the same position is given in the
lower part of Fig. 2, using Tan’s notation with the addition of A
to denote a passed pawn.

Another concept put forward by Tan is the ADD (Attack
Defence Diagram, see Fig. 3). Some of the relations proposed
for an ADD are as follows: (a) relations within fronts; (b)
defences to threats arising from (a); (c) possible attacks of
kings against pawns; (d) defences to (c); (e) support possibili-
ties; (f) joint attacks. Tan also breaks down the relationships
that go into the ADD into Backus-Naur Form. As yet there is
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Fig. 2 Graphical representation for chess position shown in Fig. 1

no working program for the ADD. As a step towards imple-
mentation, we have tested how the evaluations would work
on some simple K + P endings. It seems that at least three
concepts must be added: (a) opposition, (b) triangulation,
(c) outside passed pawns. These features are important and
occur frequently.

AL] ‘advice taker’ system

In a related use of pattern-based rcprcscntatxons of chess
knowledge we have developed a linguistic vehicle for applying
McCarthy’s (1959) *advice taker’ concept. In Advice Language
1 (Michie, 1976) knowledge is conveyed to the system in the
form of one or more advice tables, each specifying a number of
rules. A rule is applied to a posmon {in & manner familiar to
commercial users of decision tables, and to academic users of
production systems) if and-only if ‘the position matches the
rule’s ‘condition pattern’. Associated with each rule is a list
of pieces of advice. Each piece of advice is specified in terms of
Huberman-type (Huberman,' 1968) better-goals and holding-
goals, together with move-constraints to control the branching

of the search and a depth limit to terminate it when no way -

has been found of achieving the given better-goals.

AL1 has been implemented in the POP-2 programming
language as a package consisting of four comparatively
independent modules (core-occupancy of compiled code on
the PDP-10 is shown in parentheses):

1. A problem-solver performs tree search in whatever problem
space is specified to it by the legal move generator, using
the domain specific knowledge contained in the currently
loaded Advice Tables (2K).

2. An Advice Table editor acts as a link between the system
and the user, enabling him to create, extend and modify
the system’s Table held knowledge interactively (4K).

3. A playing module executes a strategy generated by the
problem-solver in the form of a Huberman-type forcing
tree (6K).

4. Chess-relevant but subdomain independent POP-2 predicates
act as the building blocks from which the table writer
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assembles relevant patterns and pieces of advice from which
to construct his rules (13K).

In addition subdomain specific predicates are normally
required for each new Advice Table. The POP-2 system itself
occupies 19K 36 bit words of store.

Modules 1 and 2 are chess independent and can be used for
solving other combinatorial problems. The domain specific
knowledge directs the action of module 1 in the following
way: a rule is invoked by a pattern-match with the current
situation, .(chess position) and the corresponding picces of
advice are then tried one by .one until module 1 can find a
‘forcing tree’ that guarantees the achievement of better-goals
while preserving holding-goals.

Considered as an ultra-high level programming language,
AL]1 seems to provide a natural means of describing heuristics
in combinatorial algorithms. In one experiment (Michie,
1976) the King + Rook v. King ending (KRK), regarded by
Zuidema (1974) as a laborious programming task, was ex-
pressed as an Advice Table and a strategy checked out at a
cost of only two man-days. More recently (Bratko, 1978)
the whole mating procedure known from the chess books was
compressed into a Table of only one rule, comprising 5 pieces
of advice expressible as follows:

1. Look for a way to mate opponent’s king in two moves.

2. If the above is not possible, then look for a way to further
constrain the area on the chessboard to which the opponent’s
king is confined by our rook.

3. If the above is not possible, then look for a way to move our
king closer to opponent’s king.

4. If none of the above pieces of advice 1, 2, 3, works, then
look for a way of maintaining the present achievements
in the sense of 2 and 3 (i.e. make a waiting move).

5. If none of 1, 2, 3, or 4 is attainable then look for a way of
obtaining a position in which our rook divides the two kings
either vertically or horizontally.

The ‘and-or’ tree search, carried out by module 1 of the ALl
system when generating a forcing tree satisfying a corresponding
piece of advice, is limited to a depth of 2 ply for pieces 2, 3 and 4,
and to 3 ply for pieces 1 and 5. Quality of play was respectable
by the standards of the chess books, never needing more than
25 moves to force the mate. The worst case minimax-optimal
path length is known to be 16 moves (Clarke, 1977).

BG1 % WK NiL

8| BK 4

WG2
WG1 NIL

Key: =——=> Threat
——>» Defence

WK White king
WG White group

BK Black king
BG Black group
NIL Null group

Fig. 3 The ADD corresponding to the position shown in Fig. 1. In
the form described by Tan (1977) the ADD would not
indicate the self-stalemate threat which the BK generates
jointly with BG1. The above diagram is based on an extended
notation which takes care of this. For a fuller accomnt Tan’s
paper should be consulted. Integers denote the minimal
number of moves required to carry out a threat
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) HOW DIFFICULT IS THE KNKR PROBLEM?

[—Chess books: Keres, KNKR, 2 pages.

From chess Fine, KRKN, 8 pages.
player’s <
point of view:
wrong (e.g. Neumann-Steinitz, 1870).

-

—Knowledge v. search:
being mated:
=~ 80 ply

From chess J ~ 48 ply

programmer’s
point of view:

10 ply
4. Advice contained in KNKR table.

4 ply

-

2. Additional advice: don’t lose knight!

Longest variation in Fine before capture of the Knight: 24 moves; longest known variation 27 moves.
—Tournament games: usually a comparatively easy draw, but thcre are cxamples where the weaker side went

1. Rules of chess: don’t get mated! Up to 24 moves before losing knight plus up to 16 moves before
3. Additionally: keep king and knight together!
Necessary, and probably sufficient, lookahead is:

To preserve draw, and conserve king-centrality:

,

Fig. 4 SnnentfeatmeaoftheKNKRend-pme.Theuiuonhetoulproblalm-fterreducﬂonbydisreglrdingsymmetrlcmu,ﬂube-
tween 3 x 105and 4 x 10°, Theboxedﬂgwsshowdledep&orsumhmry,forthepmmmsgivensmteofknowledge, to select

a draw-preserving move. Ply = half move

The KNKR game

In further experiments with the ALl system, the king + knight
v. king + rook ending (KNKR) was used as an experimental
domain that is not trivial from the human expert’s point
of view. Fig. 4 presents some data that illustrate the difficulty
of this end-game. The first two items, chess books and tourna-
ment games, give some insight into the difficulty from the
chessplayer’s point of view. The difficulty from the pro-
grammer’s point of view is illustrated by the third item which
indicates the relationship between the amount of knowledge
possessed by the program and the depth of game-tree search
required for correct play.

The KNKR ending is usually drawn, but under certain
circumstances the stronger side (the one with the-rook)-can
win. A winning procedure, when there is one, consists usually
of combining three basic principles (Fine, 1964):

I. Create mating threats.
2. Force separation of king and knight.
3. Stalemate and capture the knight.

The KNKR advice table must cope with the above threats
and thus preserve a draw for the weaker side when starting
from a theoretically drawn position (in all such, the king and
knight are not separated). The table, shown in Fig. 5, contains
enough knowledge (according to experimental tests) both to
preserve the draw in positions with king and knight sufficiently
close together and to maintain the degree of centrality of the
weaker side’s king while searching to a depth of at most 4 ply.
(half-moves). Centralisation of the king is important to the
weaker side because mating threats can occur only when the
king is on the:edge. Therefore when the king is on the edge:
the defence becomes considerably more difficult. The KNKR.
table thus actually conserves the degree of casiness of defenee:;
When the king is started on the edge and not separated from’
the knight, for those positions which are theoretically drawn,
the table preserves the draw in all cases tested. Recently
a class of specially tricky positions has been discovered by
D. Kopec, not previously known in chess literature, where the
only correct defence requires a counter-intuitive separation
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of king and kmght A correct treatment of such positions
with king and knight separated would require addmonal
knowledge.

The upper table of Fig. 5 specifies four rules (CR, R1, R2 ER)
by the ‘Yes, No, Don’t-care’ column patterns. These patterns
refer to POP-2 predicates flanking the table:

OKEDGE —our king on the edge;

OKONSEP —our king and our knight separated (dlstance
greater than 4 in king moves);

CORNCASE——corner case, a special ‘classical’ situation
(e.g. Fine, 1964) with the king in the corner,
requiring exceptional treatment.

The current chess position is matched against the rule patterns
from left to right. As soon as a match is found the correspond-
ing rule is applied.. For example, if the position does not
satisfy the CORNCASE condition and the king is on the edge
and the king and knight are not separated, then rule R2 matches
the position and the list of pieces of advice 1, 5, 6, 7, 8, 12 is
applied. The pieces of advice are defined by the lower table
in Fig. 5. Consider for example Advice no. 1 called
KILLROOK. The better-goal to be satisfied in them-to-move
positions specified with this piece of advice is TRDEAD
(their rook dead). As already stated, depth of search is limited
to 4 ply, and to improve search efficiency we also specify
holding-goals NOT ONLOST (not our knight lost without
compensation) and TRDEAD OR CHECK (their rook dead
or their king in check). By this the search is limited. to con-
sideration of immediate captures and checking-moves, which
amounts to looking for ways of forking their king and rook.
This tactic is indicated by the fact. that thele is no other way
to force capture of the rook. :.

When: testing the correctness of the table a variety of players,
two of National Master strength (rated over 2300 on the
international scale), have engaged.the system in play for a total
elapsed time of more than 10 hours (150 moves on each side,
starting from different positions). No absolute way exists of
proving correctness for- all possible positions short of either
(a) exhaustive checking through the total space of 3-4 million
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. KNKR Table
condition gﬁgg‘s}gp
predicates CORNCASE

lists of
pieces of
advice
Better-
goals
us-to-move
[ (%)
= E .8,
e 8 5 8 &
2 g 5 & %
o Z Z O
? { 1: KILLROOK - Y ™M Y -
¢ | 2:HOLDI - - M Y Y
¢ | 3:HOLD2 - - M Y Y
¢ | 4: HOLD3 —_ — Y 'Y Y
* | 5: HOLDEDGI — — Y Y Y
oJ 6: HOLDEDG2 — Y Y Y
fY 7: HOLDEDG3 — — Y Y Y
. | 8:HOLDEDG4 — - Y Y Y
d | 9: CORNCASE - — M ™M o™
v | 10: APPROKON Y — Y Y Y
1 11: SURVIVEL - — Y Y Y
¢ [12: SURVIVE2 —_— — Y = =

3
8

CR Rl R2  ER
— N Y -
— N N —
Y - = =
(9 1 1 10
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3 6 12 v
< 4 7
11 8
11
L 12
Holding-goals
them-to-move
3
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Fig. 5 TbeupperublekﬂleKNKRleee'I‘:bleuwﬂm'auﬂtested.TheMegerMMexareputoireofnpieeeuofldﬂce.Mem
shown in the lower table expanded in the form of calls to iadicated subsets of the 14 goal predicates listed along the top. “Y’s enclosed in
h-eekeunrehzlallyimpliedbylbeothupudhteeedededhﬂeumem Thembohlnperentheaee(m)nd(tlm)neu ‘us-to-

respectively : ,

move’ and ‘them-to-move’

positions or (b) formal proof." AL1’s tabular fomat bﬂ'ers
sxmphﬁcatnons which make the lattér an ettractlve topxc for
study.

When playing the KNKR ending on the PDP-]O computer the
present implementation of AL1 spends-on average about one
minute of computer time per move, mostly due to the com-
parative inefficiency of the forcing-tree generating routine.
The program examines about 10 nodes in the game-tree per
second. When run on comparable machines, other  chess-
playing programs, e.g. CHESS 4.5 (Slate and Atkin, 1977)
or MASTER (Birmingham and Kent, 1977) examine at least
a few hundred positions per second. A new version, AL2,
is under construction with an eye to increased run-time effici-
ency, among other improvements. But considering AL1’s
efficiency from the point of view of programmer productivity,
these experiments gave evidence of great savings. Table writing
and check-out for KNKR occupied one of us (I.B.) for less
than six weeks. We doubt whether correct play, especially if
‘centrality preservation® is to be included, could be program-
. med using standard methods in less than a substantial multiple
of this figure other than by promoting large proliferations of
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forward search. As an annotation on this last remark, we
append results, kindly supplied by D. Slate, of having the
leading US tournament program CHESS 4.5 play the KNKR
game against an expert opponent from selected “starting
positions. . - ,

Performance of CHESS 4.5 tournament program with KNKR
Tournament programs have the aim of playing reasonably
well, but not of course with guaranteed correctness, in all
phases of the game: opening, mid-game, and ending. Such
‘general’ chess programs cannot pay much attention to specific
features of different position-types. Rather these programs
embody generalised chess principles, or heuristics, hopefully
applicable to the large majority of possible positions. Lack of
position-type specific knowledge is to some extent balanced
by deep lookahead, facilitated by fast game-tree search routines,
efficient tree-pruning, efficient coding, and fast hardware.

CHESS 4.5 was required to defend the weaker side of KNKR
against a human opponent rated just over 2000 on the US
Chess Federation scale, i.e. an ‘expert’. The program ran on a
CDC 6400 machine, on which it was able to win the 1976
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A(‘M Computer Chess Championship (more recently it has

* "had Righly stccessful trials on the much faster Cyber 176).
<A 'S 4.5’s general evaluation function was used without
“allowing any adjustment or special ‘tuning’ to the KNKR
problem. Search depth was set to 7 ply. Since forced variations
are searched beyond this pre-set horizon, moves 8 ply deep
_were occasionally searched in the present case. Under these
conditions, CHESS 4.5 typically looked at a few tens of thou-
sands of nodes per move and spent up to 120 seconds per move,
typically between 30 and 60 seconds.

Three trials were made, using test positions taken from those
used in the experimental validation of the KNKR table earlier
described.

1. A ‘classical’ difficult defence (Fine, 1964; Keres, 1974) with
the weaker side’s king in the corner. CHESS 4.5 found
correctly the move considered most difficult in the books,
but then stumbled on the fourth move of the main ‘book’
variation, obtaining a lost position.

2. Another difficult position, with the weaker side’s king on the
edge (Keres, 1974). CHESS 4.5 found the only correct
defence against the main line given by Keres (i.e. 8 best
moves in a row). . ;

3. A further posmon taken from our.own tests, with the weaker
side’s king in the centre (easiest defence). CHESS 4.5
allowed its king to be driven to the edge resulting in a harder
defence. This enabled the opponent to create mating threats,
and after additional weaker moves by the program  the
king and knight got separated, leading to a lost position. . -

It is interesting to observe that the program’s opponent,

although an expert, after achieving theoretically won positions

never grasped the opportunity actually to defeat the program.

This has a bearing on the level of difficulty of this subdomain.

Conclusion: thanks to efficient tree-search, CHESS 4.5 was
able to find a correct move in many difficult positions. But the
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lack of specific-advice: “Keep king and knight together!” and
‘Preserve the centrality of the king! could not be entirely
compensated by the efficient and comparatively deep search
to 7 or 8 ply.

Discussion

It was pointed out by Shannon (1950) on general grounds, and
more recently by Berliner (1974) on the basis of authoritative
new theoretical and experimental work, that fast tree-search
and uniform heuristics will not suffice for mechanising the
highest levels of chess skill. In spite of impressive recent
progress up the human tournament scale by ‘brute force’
programs the knowledge-gap from which these programs suffer
still bars them from the higher reaches. The work here reported
shows that the weaknesses inherent in the brute force style can
be shown up even by quite a simple chess subdomain. The
same subdomain, however, yielded readily to a more
knowledge-oriented approach, for which the ALl system
provided highly effective support.

The underlying formal model of the AL! problem-solver
closely matches the basic structure of a range of combina-
torial problems. Our experience supports the idea that the
Advice Language methodology should be applicable to prob-
lems in such areas as algebraic manipulation, symbolic
integration, robot plan-formation, and a variety of optimisa-
tion-and scheduling tasks. While. detailed accounts appear
elsewhere (Bratko, 1978; Bratko and Mlchle, 1978), this brief
overview was prepared in the. hopeof arousing interest among
thosc actxvcly engaggd in one or another of such areas.
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