
Teaching Formal Methods in Software Engineering

Gavriel Yarmish, Brooklyn College
Danny Kopec, Brooklyn College

Jim Aman, Xavier University

Innovations in Engineering Education I
Abstract

Today we live in a world where computers and software are ubiquitous. In effect
they run our lives -- with applications in industry, business, education, finance
and a lot more. In the short history of computers and software there have been
several known near catastrophes including the Three Mile Island Nuclear Power
Station, the North American Air Defense System (NORAD), Air Traffic Control
and airplane accidents, The London Ambulance System just to name a few.

Many methods within the framework of Software Engineering have been
developed to facilitate both the programming and management of these systems.
Some are general rules of thumb while others are more formal and rigorous.

In general Software Engineering courses have focused less on formal methods
and more on general concepts. We describe a course that incorporates more
formal methods without excluding the more typical general concepts. These will
be highlighted by presentation of case studies illustrating human errors and
general good design and maintenance methods to follow. A significant focus of
the course, though, will be formal methods.

The course will include three major components:
1) The continued deep study and documentation of complex systems failures,
particularly those which involve computer software.
2) The study of software development methods and tools which have been (or
may be) used to design and develop complex systems (e.g. CMM, Jelinski-
Miranda, McCabe Complexity Measure) and
3) A group project involving the construction of a software system using the tools
studied (above) for the purpose of design, diagnosis, security and prevention of
failures in complex systems, e.g. in medical information systems, transportation
systems, etc.

Introduction

With the new millennium upon us, it is clear that the world is dedicated to technological
advancement. There is no turning back to the relatively slower life of yesteryear. It is often
heard that the number and impact of technological advances in a recent decade (for example the
1990's) exceeds the total number of technological advances in the previous century. Nonetheless,

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 1

the fundamental question which perpetually confronts us is:

"Despite the tremendous and rapid technological advances of the past century, do we live in
a safer world?"

Traditional measures of safety would suggest that we do indeed live in a safer world. For
example, if average life-span is a measure of safety then we can rest assured that the world is
safer than a century ago. If safety is measured in terms of, for example, the likely success of
surgical or medical procedures, or the safety of travel via car or plane, then certainly we would
conclude that life is safer today. We can travel more miles, faster, over a longer period of time
today, without an accident than in anytime before in history. Jerome Lederer (1982) suggests
that safety be measured in terms of fatalities per 100,000 hours of exposure, and with this
measure concedes that highway travel would be the safest mode of travel.

Software has become ubiquitous. It affects nearly every aspect of our lives, yet nowhere is there
a control agency which can regulate every conceivable application of software. There are too
many possible applications and permutations of software -- especially when one considers
embedded systems as well. Software complexity today is immense. Software systems employed
to control and fly a plane, a satellite, a space-orbiting vehicle, or a nuclear power station, are
very difficult to evaluate in terms of safety.

In computer science it is known that there is a crossover point where an Algorithm's utility
versus its theoretical complexity will be bounded. That is, although the algorithm may in theory
grow more quickly (e.g. an algorithm whose growth rate is sublinear is known to eventually
grow more quickly than an algorithm whose growth rate is logarithmic) the domain space of the
algorithm (i.e. the range of values where the most abundant data will occur) will never (or rarely)
occur in practice. This illustrates a concept known as "The Practicality Window" (Rawlins, 1992).
Referring to the case of sublinear algorithms, where N (the number of data items) is more than
one million then the algorithm with sublinear growth rate will grow more quickly, both in theory
and in practice However, in practice, cases whereby N equals or exceeds one million may occur
only relatively infrequently. This depends on the application area of the algorithm. Hence given
that within the Practicality Window the sublinear algorithm will indeed grow more slowly than
the logarithmic growth algorithm, the sublinear growth algorithm may be preferred.

Significance: If we view a piece of software as a type of algorithm to achieve some task in a
given application domain, the implications may be similar: there will be problem spaces in the
task domain where the software system's performance cannot be tested. Yet, with the increasing
reliance of society on software such "unknown and untested" spaces will continue to increase.
This demands careful, continuous, investigation.

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 2

Course Design

Most courses in Software Engineering today concentrate on the various standard topics such as
requirements, specification, design, and numerous methods for developing software systems as
distinct from smaller programs which students may write to develop their programming skills.
We believe that it is time that theory should be joined more intrinsically with practice. In this
way a software engineering course would address recent trends suggesting the need to effectively
measure software. Our course would be a nice blend of practical case studies, tools to develop
software, as well as practical and theoretical methods for software development.

Our course would include three major components:

1) The continued deep study and documentation of complex systems failures, particularly those

which involve computer software.

2) The study of software development methods and tools which have been (or may be) used to

prevent complex systems failures and

3) A group project involving the construction of a software system using the tools studied

(above) for the purpose of design, diagnosis, security and prevention of failures in complex
systems. Examples include medical information systems, transportation systems amongst
others.

Component 1) Kopec has been investigating the general area of complex systems failures for a
number of years (Kopec & Michie, 1982), (Kopec, 1983), and (Kopec, 1990). Some of the
systems which have been studied in recent years in addition to the earlier mentioned TMI,
NORAD, Air Traffic Control, and Royal Dutch Steel (Hoogovens) cases, include: The Case of
KAL Flight 007 (1983), The Bhopal Chemical Plant Disaster (1984), The Space Shuttle Disaster
(1986), The Chernobyl Nuclear Power Station (1986), The Therac-25 Radiation Therapy
Machine (1986-87), The Estonian Ferry Disaster (1994), The London Ambulance Service (1994),
TWA FL-800, SWISSAIR FL-111, The Y2K Problem. I hope to continue to my investigation
and documentation of these accidents particularly as they relate to software and systems failures
in general with my research assistant(s). It is hoped that the net result of these investigations
would be a theory (or theories) which would help in understanding when and how complex
systems fail (particularly those involving software), in addition to the theories of Leveson (1995)
Perrow (1999).

Component 2) During recent years a number of expert system shells and systems modeling tools
have been developed. Some examples are diagnostic systems like MYCIN, INTERNIST,
INTERPRET, SOPHIE, which have been applied to such diverse domains as medicine,
mechanics, and electrical circuits (Jackson, 1999). In addition several system modeling tools
such as STELLA, UML, and RATIONAL ROSE have been developed. STELLA is a tool
developed by High Performance Systems for developing Models of Dynamic Systems. It was
developed in an attempt to resolve the so called "method wars" as users sought the perfect object

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 3

modeling language. The Unified Modeling Language (UML) is graphical language for
visualizing, specifying, constructing and documenting the artifacts of software-intensive system
(Booch, 2000). RATIONAL ROSE is one of major object modeling languages developed by the
highly successful Rational Corporation. We will investigate these in general and the latter two in
particular with respect to their facilitating the design of complex object oriented systems

Component 3) In this component students will put together the theory and experience derived
from the first two components. They will embark on the design of a safe software system for a
socially critical task. First, prototype systems will be designed. Several real application domains
under consideration are medical information systems, modeling and relief of highway traffic, and
practical development of software watermarking.

Based on these ideas we provide one possible syllabus:

Syllabus: Ubiquitous Computing

Overview of Ubiquitous Computing: Kopec & Michie: FAST Report Complex Systems Failures
• TMI-2
• Air Traffic Control (ATC)
• North American Air Defense System (NORAD)

Normal Accidents (Charles Perrow): CASES

• The ingredients of a “Normal Accident”
• TMI/nuclear power in detail
• Chernobyl, Therac-25
• Seveso, Bhopal
• The Space Shuttle; Air Traffic Control

Design for Safety: Lessons Learned

• The Role of Computers in Accidents
• Seven Software Myths

Computer-Related-Risks (Neumann)

• Software peculiarities
• Determining causality
• Realities we face

Systems Engineering and Safety: Foundations

• Systems Theory
• Systems Engineering
• Systems Analysis

More Recent Cases (systems)

• ROYAL DUTCH STEEL
• Industrial,
• Medical,

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 4

• Financial

Fundamentals of Systems Safety
• History, Basic Concepts
• Software Systems Safety
• Cost and Effectiveness
• Novel Approaches

Software Metrics: Software Measurement Techniques

• McCabe’s Complexity Measurement
• Goals, Questions, Metrics
• Capability Maturity Model

Specification Techniques
• Data Flow Diagrams
• Finite State Machines
• Petri Nets

Systems Development Methods

• Agile Development
• Object Oriented (UML)
• Dynamic Systems Modeling(STELLA)

Formal Methods

• Modularization Techniques
o Textual Design Notation (TDN)
o Graphical Design Notation (GDA)

• Verification: Testing
o Empirical
o Structural Testing (White-Box)
o Statement Coverage
o Edge Coverage
o Condition Coverage
o Black Box Testing
o Logic Specification
o Boundaries, in the Large
o Correctness Proofs

• Validation

Requirements Engineering: More UML, STELLA

Analysis Modeling: Course Group Projects

Design Engineering: Course Group Projects

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 5

References

Booch, G, (2000) UML in Action. CACM. Vol. 42, No. 10, October, 1999, pp16-18.

Kemeny, John, et al. (1979) The Need for Change: The Legacy of TMI. Report of the

President's Commission on the Accident at Three Mile Island. Washington, D.C.:
Government Printing Office.

Kopec, D, Michie, (1982) Mismatch between machine representations and human concepts:

dangers and remedies. Report to the EEC under subprogram FAST (Forecasting and
Assessment in Science and Technology), Brussels, Belgium.

Kopec, D (1983) Human and Machine Representations of Knowledge, Ph.D. Thesis, University

of Edinburgh.

Kopec, D (1990) Technology Transfer Crises in the 1980's: mishaps at the man-machine

interface, (1990). In Proceedings of the 15th Annual Meeting of the Technology Transfer
Society (June 26-28) Dayton, Ohio, Technology Transfer in a Global Economy, ed. Robert
W. Harrison pp. 173-76.

Kopec, D, Jiang, Q (1992) The Societal and Technological Problems of Computers. Computers
and Artificial Intelligence Slovak Technical Institute, Bratislava, CFSR Vol. 11, No.4, pp.
409-418.

Lederer, J. (1982), Aviation Safety Perspectives: Hindsight, Insight, Foresight, New York: The

Wings Club.

Relevant Texts

Jackson, P. (1999) Introduction to Expert Systems, (3rd.), Addison Wesley Publishing Company,

Reading, MA, 542 pages.

Leveson, N. (1995) SAFEWARE, Addison Wesley Publishing Company, Reading, MA, 680

pages.

Neumann, P. (1995) COMPUTER-RELATED RISKS, ACM Press New York, 367 pages.

Perrow, C. (1999) NORMAL ACCIDENTS, (2nd ed.), Princeton University Press, Princeton, NJ,

451 pages.

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 6

Fenton, N.L,. Pfleeger, S.L. (1997) Software Metrics A Rigorous & Practical Approach, Second
Edition, PWS Publishing Company.

Fowler, M. (2004) UML distilled : a brief guide to the standard object modeling language. 3rd ed.

Addison-Wesley, 2004.

Pressman, R. (2005) Software Engineering: A Practitioner’s Approach, (6th ed) MacGraw Hill,
NY 880 pages.

Authors biography

Gavriel Yarmish currently teaches at the Department of Computer Science at Brooklyn College.
He obtained his Ph.D. from Polytechnic University in 2001. His research is in optimization and
distributed computing in addition to computer science education and programming errors.
Brooklyn College 2900 Bedford Ave Brooklyn NY 11210 email: yarmish@sci.brooklyn.cuny.edu

Danny Kopec is Associate Professor and Graduate Deputy Chair of the Department of Computer
Science at Brooklyn College in New York City. Dr. Kopec obtained his Ph.D in Machine
Intelligence from the University of Edinburgh in 1983, and his BA in Mathematics and
Psychology from Dartmouth College in 1975. His research is in software engineering, artificial
intelligence (intelligent tutoring systems and problem solving) complex systems failures, medical
errors, programmer errors and computer science education. He has over 60 published papers. He
is also an international chess master and has published 6 books in this arena.
Telephone: Office: 718-951-5578; Home: 516-867-2628; Fax: 718-951-4842
email: kopec@sci.brooklyn.cuny.edu

Jim Aman is currently an Associate Professor of Computer Science at
Saint Xavier University in Chicago and is Program Director for the
Masters of Applied Computer Science in Internet Information Systems.
His current research is in two areas: gender and other factors influencing
online education; computer security and forensics.
Saint Xavier University 3700 West 103rd St. Chicago, IL 60655 P: 773-298-3454
email: aman@sxu.edu

 Proceedings of the ASEE New England Section 2005 Annual Conference. Copyright @ 2005 7

mailto:yarmish@sci.brooklyn.cuny.edu
mailto:kopec@sci.brooklyn.cuny.edu
mailto:aman@sxu.edu

