

Df.i:\P&T\cv02.doc Promotion Document D. Kopec, February 2005

Teaching Philosophy

I try to make computer science an enjoyable subject, while addressing the challenges,

methods, and underlying complexities of problem solving. I like to emphasize the major

"nuts and bolts" issues and methods which pervade a subject. I also like to present and

deal with the big picture, realizing that sometimes details must be addressed, but am

determined not to get bogged down by them unless they are necessary for understanding.

Both are important in my view.

In general, I would divide the world of educators, scholars, and researchers into

perfectionists and “productionists”. I am concerned with EDUCATING so that students

can learn, understand, solve problems, be motivated and get things done. I know and

respect the work that goes into producing perfection. I also know many perfectionists

who never finish what they set out to do. Given the choice, I would prefer to be more

productive even knowing that my work is not perfect.

My teaching philosophy has been developed from a perspective which was impressed upon

me early on by my late father: "There are no poor students, only poor teachers".

Although, I can safely say that my experience has not confirmed this point of view, it has

served as a starting point and stimulus towards always striving for real excellence.

The young mind of the typical college student is a fragile entity with potential that you can

turn on or off. I view my job as the instructor for a computer science course as the

primary perpetrator of interest and thinking at the appropriate level for the subject

matter and beyond.

For example, at the introductory level, teaching large classes, on the use of applications

and elementary programming on a personal computer, I feel that a "promotional" attitude

is essential. That is, I promote the main features of a programming language or

application; addressing the questions: "What is the language/application intended for

and what can students satisfactorily get done for their needs?" Essential, specific,

syntactic, developmental, and conceptual issues are also discussed. For introductory

Df.i:\P&T\cv02.doc Promotion Document D. Kopec, February 2005

programming courses the issues of structured programming and problem solving,

combined with those in the previous sentence are considered of critical importance.

During the past few years I have made the adjustment to a breadth-first approach to

teaching the introductory computer science course which combines topics like hardware,

software, programming languages, and algorithms.

For intermediate level courses such as data structures and algorithms, I focus on more

complex programming methodologies, problems, and issues, with consideration for time-

space efficiency tradeoffs. By this point students are expected to be more experimental

and research-oriented in their thinking. In advanced courses like artificial intelligence

(AI) the breadth and diversity of the discipline is stressed; the problems which distinguish

AI from other disciplines and other approaches in computer science are considered; the

methodologies, tools, and languages employed in AI research are also presented.

 Finally, but not at all in the least, I have become firm in the belief that two educational

approaches are excellent ways for students to develop their academic skills at all levels:

1) That students pursue individual case studies in a whatever the area of concentration for

a course. Students can study a particular topic for 4-6 weeks and then write a 5 page

double-spaced paper (in academic reference style) and make a brief class presentation.

For about two months (or longer) students are asked to develop a group project which will

generally involve some design, programming, development, and testing, a 20 page group

paper, and a class presentation of 20-30 minutes.

