Int. J. Human—Computer Studies (1994) 41, 457-480

Novice programmer errors: language constructs and
plan composition

ALIREZA EBRAHIMI

Department of Computer Science, State University of New York, College at Old
Westbury, Old Westbury, NY 11568, USA

(Received 15 July 1991 and accepted in revised form 23 August 1994)

Why do novice programmers have difficulties in programming, and what are the
probable causes of these errors? This study analyses the role of Language Constructs
comprehension, Plan Composition, and their relationship to each other as applied to
novice programming errors. The experiment was conducted with 80 novice program-
mers who were divided into four groups of 20. Each of the groups enrolled in one of
the following programming language courses: Pascal, C, FORTRAN, or LISP.

The results of the study indicate that the misunderstanding of Plan Composition
and semantic misinterpretation of Language Constructs are the two major causes of
errors. In addition, the study has concluded that these errors are highly correlated.

1. Introduction

Writing crror-free programs has been one of the primary goals of programmers in
the computer age. A variety of techniques have been advocated to achieve this
objective. Some of these methods include flowcharting, structure and defensive
programming, verification of the program for correctness, functional, logical, and
object-oriented programming. Despite the availability of these techniques, program-
mers still find it necessary to spend a considerable amount of time rectifying their
errors.

Several studies have been conducted on novice programmers to understand the
causes of errors and why they are committed (Weinberg, 1971, Weissman, 1974;
Anderson & Jeffries, 1985; Bonar, 1985; Johnson, 1986; Spohrer, Soloway & Pope,
1985; Soloway, 1986; Eisenberg, 1987; Yu & Robertson, 1988; Detienne & Soloway,
1990).

The study of novice programming errors c¢an lead to a better understanding of
problem-solving stratepies and will highlight the difficult aspects of programming
and programming instruction. Furthermore, it will contribute to the refinement of
programming languages, training tools and design methods.

The significant features of this study include an investigation of novice program-
mer errors by conducting two separate experiments, one in Language Constructs
and the other in Plan Composition. In addition, the relationships hetween Language
Constructs and Plan Composition errors of novice programmmers are analysed.
Another aspect of this study is the use of four programming languages—Pascal,
FORTRAN, C, and LISP—instead of only one or two languages. In conjunction
with each experiment, each novice programmer was interviewed in order to clarify
the causes of his/her errors. The study further investigates different types of errors
in each language, but does not analyse the relationship across the languages with

457

1071-5819/94/010457 + 24508.00/0 @© 1994 Academic Press Limited

458 A. EBRAHIMI

respect to the number of errors committed. This would be an interesting subject for
future investigation.

2. Language constructs comprehension

Language Constructs are important tools for programming. It is quite evident that
novice programmers have some misconceptions about Language Constructs {Bay-
man & Mayer, 1983). Some of the questions in regard to the syntax and semantics of
Language Constructs include: What are the differences among the loops? What are
the default rules of a language? How is the control variable of a *“for” loop undated?
how is a value bound to its variable? How do the nested “if” and nested loops
work? Novice programmers tend to transfer natural language expressions into a
programming language.

Different programming languages evoke different programming styles, thus
generating their own type of errors. As a result, the type and number of errors vary
from language to language (Knuth, 1971; Klerer, 1984; Ebrahimi, 1989). For
example, in languages like C and FORTRAN the resulting value of “5/9” is zero,
since 5 and 9 are both integers. Furthermore, Pascal has two division operators, one
for integer division (“‘div”’) and one for real division (*‘/”). These notations are
hindrances to cognitive comprehension and conflict with conventional mathematical
notations.

The following examples demonstrate some of the difficulties encountered because
of a particular programming language design.

2.1. PASCAL READ STATEMENT

Since input handling in Pascal is format-free, several problems will arise when the
data needs to be read in a certain manner. For instance, if the data has the form **33
M 3500.5¢7, standing for AGE, GENDER and SALARY, an extra step is needed
to read the data correctly.

A “dummy” variable is required to read the existing blank space between AGE
and GENDER.

i.e. Read (AGE, BLANK, GENDER, SALARY)

An alternative solution would be to remove the blanks between the number and the
character representing AGE and GENDER.

i.e. 23M 3500.50

2.2. C EMBEDDED EXPRESSION, EQUALITY OPERATOR, AND VARIABLE NAME
(UNDERSCORE)

1

The use of embedded expressions and the substitution of the equality operator “=’
with “=="" has caused much confusion. For example, in a statement such as
while(s[il=t[i]), where “s” and “t” are strings, someone who is not very

NOVICE PROGRAMMER ERRORS 459

familiar with C will conclude that the two strings are compared in the loop. This is
not the case, however, since “=" is an assignment operator, not the equality
operator. The loop will assign every value of “t” to *s” and will terminate when the
string “s” reaches null (zero), since the last character of a string in C is always a
null.

Another example of confusion would be the use of “_" (underscore) as an
identifier. A statement such as “- - _*" is a valid statement, which decreases the
value of variable “_" by 1.

2.3, FORTRAN DEFAULT TYPE CONVERSION

In FORTRAN any variable that starts with the letter “I” through “N” is
considered an integer. Therefore, the assignment of a decimal number to an integer
variable will result in a truncation of the integer. For example, in the statement
NUM=4.5, the value 4 will be assigned to the variable NUM instead of the decimal
value 4.5.

2.4, LISP DO LOOP

In most dialects of LISP, such as Scheme and Common Lisp, there is a
misconception concerning the execution of the Do loop because of its sequential
structure,

e (do {{1 ¢ {+ 1 1)) {sum 0 {+ sum 1))} ({=7 i 10} sum))

The above program enables one to compute the sum of the first ten natural
numbers. The variables “i” and “sum” will be set to an initial value of zero. The
updates are represented before the condition of loop but wiil not be executed until
the test has been done.

3. Plan composition understanding

Plans are chunks of meaningful information {canned solutions) for reaching the
problem solution (Soloway, 1986). Psychologists and artificial intelligence re-
searchers have employed the concept of Plan in order to understand knowledge
systems, i.e. how concepts are structured and developed in the human mind, and
how they are used in understanding behavior (Schank & Abelson, 1987).

The study of human problem solving shows that template-like solutions, or Plans,
are used in solving a problem. In programming, a Plan consists of related pieces of
code representing a specific action. The Plan is implemented using Language
Constructs and can be as short as a single statement (i.e. “i++" in C) or as long as
an entire group of codes which may itself contain other plans, e.g. Sort Plan
(Ebrahimi, 1992).

In a study of novice programmers, we want to know how the Plans are
implemented and integrated with each other. Novices have difficulties managing the

460 A. EBRAHIMI

Plans and thus they produce errors. Most errors seem to arise as the novice tries to
put the “pieces” of a program together in the Plan Composition (Soloway, 1986;
Spohrer & Soloway, 19864, b).

For example, a novice may not know how to merge a Plan which checks for an
invalid data entry and a Plan which loops through the data. A Plan identifies a
particular task, such as a programming problem, which itself may consist of other
Plans. For the sake of an explanation, a Plan would be analogous to a theater play,
which itself contains other Plans such as actors and scenes.

The programming errors are related to the mismanagement of Plans and the
programming knowledge being used. Therefore, error classifications are based on
Plan differentiation, i.e. the distinctions between the Plans tha: the programmer
intended to use, or should have used, and the actual code (Johnson & Soloway,
1983). The following example illustrates the steps involved in solving an elementary
problem using the Plan approach, which is similar to a previous study known as the
“rainfall problem” (Soloway, 1986).

Example: Find the average of a data set terminated by a sentinel value 9999.
The above problem can be divided into the following subtasks:

1. Input a series of numbers.
2. Find the average.
3. Output the average.

The following plans, which are similar to Soloway’s group, are used to map each
task and to build the Average program:

1. Read the numbers (ReadAllNumber Plan).
2. Count the numbers (CountAllNumber Plan).
3. Add the numbers (SumAllNumber Plan).

4. Check division by zero (Guard Plan).

5. Compute the average {Average Plan).

6. Print the average (OQutput Plan).

7. Print error message {Error Plan).

Figure 1 shows a visual representation of the Plans using Pascal.

3.1. PUTTING THE PLANS TOGETHER (PLAN COMPOSITION)

The following three methods are used to integrate the Plans. The visual representa-
tion of the Plan integration is shown in Figure 2:

1. Appended Plans: One Plan is immediately followed by another Plan (Figure
2(a)).

2. Interleaved Plans: A Plan enters into and exits from another Plan. In Figure
2(b), after activation of some code in Plan A, Plan B will be activated;
similarly, after activation of some code in Plan B, Plan A is activated.
Interleaving Plans share some common code.

NOVICE PROGRAMMER ERRORS 461

{2) Read All Number Plan () Count All Number Plan {(c) Sum All Number Plan
read (number}; count := 0; gum : = 0;
while (number <> sentinel)do while (number < » sentinel)do while {number<>sentinel}do
begin begin begin
read { number) sum := sum +1 sum : = sum + number
end; end; end;
{d) Guard Plan (division by zero) () Average Plan (f) Output Plan
if count <> 0 then average : = pum/count; write In (Average is, avg);
bagin
end (g) Error Message Plan
else
write In (‘Error in data’)

FIGURE 1. Visual representation of Average program Plan.

(a) Appended Plans (b) Interleaved Plans (c) Branched Plans
Plan ‘ P]fn Plan A
A Plan
B Plan C
Plan Plan B
B

(d) Average Problem and Plan Integration

Sum All Plan

Count All Plan

Read All Plan

Average Plan
Output Plan

Error MSG Plan

Guard
Plan

FIGURE 2. Pictorial representation of Plan integration.

4562 A. EBRAHIMI

(a) Interleaved Plan : Read All Number (c) Branched Plan : Average Output

(e} Complete Average Problem Plan
Count & Sum All Number (RCS) Plan & Error MSG Plan {AQE)

sumr = 0:
count 1= 0: if count <> ¢ then program Fird Avg (input, cutput);
read {number) begin var number,sum,count,integer;
while({number <>sentinel) do average ; = sum/count; average 3 real;
begin write In {‘Average is’',average); begin
pum := sum + pumber; end sum: =0s
ceunt : = count + 1; elase count 1=0;
read {number) write In {‘'Error in data’) read {nunber}
onds while (number <> sentinel) do
' Legin
sum {* sum + pnumber;
gount @ = <ount + 1;
read (number)
. end;
(b) Appended Plan : Average & Output (d) Appended RCS & AOE if count <> 0 then
begin
average : = sum/count? sum: =0tcount s=03 :zz:gin:s?éczunt: oez
i . ig’ . : t'Avg s’ ,average:%:
write In{‘Average is’,average); read (number} i 9 i
uhi:!.e {numher <> sentinel) do else
begin b write In (‘Error in data’}
sum :* sum + n x;
. ? end
count 3 = count + 1y
read (number)
and;
if count <> 0 then
begin

average : = sum/count}

write In{‘Averageis’,average);
end
else write In (‘Error in data')
end

FIGURE 3. Plan code integration: average problem.

3. Branched Plans: A Plan is selected based on the results of a test condition
(Figure 2(c)).

3.2. PLAN COMPOSITION EXAMPLE: AVERAGE PROBLEM

A pictorial representation of Plan integration for the Average problem is shown in
Figure 2(d). Figure 3 illustrates the integrated Plan codes for this problem. A brief
description of the integrated Plans are as follows;

1. Interleaved Plans: ReadAllNumber, CountAllNumber, and SumAll Nuraber
Plans are interleaved (RCS) (Figure 3(a)).

2. Appended Plans: Average Plan and Output Plan are appended (AO) (Figure
3(b)).

3. Branched Plans: AQ Plans and an Error Message Plan are branched (AOE)
{Figure 3{c)).

4. Appended Plans: RCS and AOE are appended to make the final program
(Figure 3(d)). A declaration and a header are appended.

3.3. LANGUAGES AND PLAN

Language Constructs are building blocks for implementing the Plan. Different
programming languages may use similar constructs to implement the Plan. However,
a language may emphasize its own particular data structures and features, such as
recursion in LISP and pointers in C. As a result, the structure of the Plan will
change as the programmers learn the use of the special features of the language.

NOVICE PROGRAMMER ERRORS 463

(a?
main(}
{
int number;
float sum, count;
for (count=0, sum=0; scanf (*'%d’' ', &number) ; sum+=number, ++count};
(count?printf (’%f’’,sum/count) :printf{‘'divided by zero’'};
{b)

(define (FindAverage)
(do ((countd(+1 count))
{sum ¢ {4+ sum num))
{{not (number? (set! num(read)))) (if {zero? count} 'division by zero
{/ sum count)}}})

{c}
(define (Average lst) {if (null? lst)’'division-by-zero (/ (suml1st} {count
1sti))}
{define (sum 1st) (if (null? 1sc}0 (+ (car 1st) (sum {cdr 1st}})))
{define (count lst) {(if(null? 1st)0 (+ 1 {count {(cdr 1st}}))}

FIGURE 4. Average program in C and LISP using iteration and recursion.

The previous average program can be written differently, in C and LISP. as shown in
Figure 4.

In the C program (Figure 4(a)) three Plans, ReadAlINumber, SumAlINumber and
CountAllNumber, are combined in the For loop and written in one line. This is one
of the C language features which allows multiple Plans to be implemented
differently. In the LISP programs, the programmer uses the concepts of both
iteration (Figure 4(b)) and recursion (Figure 4(c)). Recursion is emphasized more in
LISP than in other languages.

4. Methodology

This study investigates the causes of errors based on both Language Constructs and
Plan Composition, and their correlation.

The data was collected from 80 undergraduate students enrolled in computer
courses at State University of New York, College at Old Westbury. Four groups,
consisting of 20 students, each attended one of the following courses: Programming
I-—Pascal (CS3510); Unix & C (CS3530); FORTRAN (CS3520); and Al
Programming—LISP (CS3540). Two experiments, Language Constructs and Plan
Composition, were conducted on each group.

For the Language Constructs experiment, a series of small programs, known as
segments, were given to students to test the understanding of Language Constructs.
For the Plan Composition experiment the students were asked to write a program
known as “rainfall”. The experiments were conducted during the 6th week of the
semester for the Pascal class and during the 4th week of the semester for the C,
LISP and FORTRAN classes. The extra time was given to the Pascal group to “even
out” the gap, since the other groups had some knowledge of programming.

464 A. EBRAHIMI

Each student was requested to sumbit the final working version of the rainfall
problem and the results of the program segments. The C and FORTRAN programs
were written under the Unix operating system running on a Microvax, whereas the
Pascal and the LISP (Scheme) programs were written using the Apple Macintosh.
After the completion of the experiments, an interview of approximately fifteen
minutes was conducted with each student.

The purpose of these interviews was to identify the probable causes of each
student’s errors. In these interviews, students were asked to ‘“‘think aloud™ as they
went through their programs and solutions of the respective segments.

5. Language constructs experiment

In the Language Constructs experiment, the following categories of segments were
used.

1. Input/Qutput
2. Assignment statements
3. If statement variations
{a) If without ¢lse
(b) If with else
(c} Nested if
(d} Logical if
{¢)} Compound if
4. Loop variations
{a) While
(b} Repeat until (do while)
{c) For

Additional considerations were given to the most frequent Language Constructs
used by the novice programmer and to special features of the language.

The following segments illustrate a portion of the Language Constructs experi-
ment in Pascal and C. The complete Language Constructs experiments are shown in
Appendix A for each language.

(a) Run the following program segment separately each time with the data given
for the value of n:

0-55.
if n>=then
if n=0 then writeln (‘‘Here now' ")
elsewriteln {''‘not here’’)
else writeln [’ 'no where’');
(b) Run the following program segment separately each time with the given data
sets:
62 —1 9999
9999 —-126

scanf{''%d’ ", &n};

NOVICE PROGRAMMER ERRORS 465

while(n!=999%)

{
printf (‘7 %d’'’,n};
scanf(’*%d'",&n);

}

The students were requested to run each program segment mentally with given data,
without the use of a computer, and to record the expected output. Specific mistakes
each student made were noted. At the conclusion of this part of the experiment,
each student was asked to process the segments while “thinking aloud”. The
purpose of this additional step was to identify and classify the errors more accurately
(Ericsson & Simon, 1983). Consideration was given to minimize the novice's
conceptual inferences, such as non-intuitive variable names. For example, the
statement ‘‘s :=s+n” was used rather than “sum:=sum+num”. In the latter
assignment, the novice may cognitively infer that the program is trying to add a
sequence of numbers. Other assumptions, such as an initialization, an input or a
loop, can also be inferred.

A categorization scheme was developed to classify the type of Language
Constructs errors committed by each novice programmer. This is shown in Table 1.
Some of the Pascal Language Constructs error classifications include: Input, Output,
Assignment, IF statements (simple, nested, logical and compound), and Loops
(While, Repeat, and For).

An entry of “+” in the table indicates the type of error committed by a student.
Such an entry shows that the student had difficulty understanding the specific
construct. For example, subject 12 (Pascal) made the following error types: Input,
Logical IF, Compound IF, and While loop.

5.1. LANGUAGE CONSTRUCTS ERRORS

Figure 5 shows the Language Constructs error types for the four languages. In
Pascal and C the highest percentage of errors occurred in the use of IF statements.
In FORTRAN the most errors were made in assignment. The most common errors
made in LISP were in the use of logical operators. The most common errors in
language constructs are as follows.

IF statements
This type of error was the most common over all the languages. Many of the errors
occurred in a logical expression within an IF statement. For example, many students
did not understand negation rules for Boolean expressions containing AND and
OR. In C, students had trouble knowing when to use the assignment (*‘="’) operator
as opposed to the equal (* ==") operator. The same problem occurred with both
the logical OR (“||*") verses the bitwise OR (“|") and the logical AND (*‘s&”") verses
the bitwise AND (“&”).

In Pascal, students had trouble with grouping statements after 1F and ELSE with
BEGIN and END constructs. Students had difficulty following the control flow of
nested IF statement and matching ELSE with the proper IF statement. Since LISP

A. EBRAHIMI

466

$ + + + + + L

v + + + + 9

1 + S

14 + + + + 12

T + + £

¥ + + + + 4

I + [
wng o(] AU Joq N dwo) 1ado o paIsaN L ERN T =% udissy mding mduj al

NouIM wslgng
d001 41 S ECY

96 0 Zl ol 11 ST 6 L4 L £ L4 Zl wng
8 + + + + + + + + 0

9 + + + + + + 6l

8 + + + + + + + + 81

l + Ll

I + 91

L + + + + + + + <l

Z + + vi

0 €l

¥ + + + + zl

9 + + + + + + 1

L + + + + + + + oL
o1 + + + + + + + + + + 6

L + + + + + + + 8

3 + + + + + L

9 + + + + + + 9

£ + + + g

¥ + + + + ¥

3 + + + + + £

£ + + + [4

£ + + + 1
ung 104 teaday AYM dwe)) 1ado 3o Pa1saN 819 Yl INOYIM udissy mding induj ﬁ_:

12lgng
d007 41
{eased ()

2d£j 40442 PoNAIsUOD) 8PNSUDT
[918v],

467

NOVICE PROGRAMMER ERRORS

MNOOT XN OO NNmO =N — NO T —

on

—

+++

—
—

+ 4+ +

++

0l

+ 4+ +

Zl

+ +

4+

+ 4+t

01

4o+

+

— Nt NG~ O

wng

od

1eaday

UM

dwo)

13do Borg

PaISON

s PIM

moyim

d0O0T

Al

13auo))
9 udissy

nding

indug

ail
102lqng

NVELIOT (2)

— DN DWW e 0 O

o

++ +

++

+++++

++

wng
0c
61
81
Ll
91
sl

A, EBRAHIMI

468

~

DM NN AT NN OO T)0

+++

vy

DO N— N NNDOD — OO S e

++2

+++2

-+

+ 4+ o+

+++++++d

+ o+
+
+

00O WD - 00 O

wng

maay

Suo))

qas
Hvo

jung

M

dO0O1

oq

dwo)

t1ado Jor7 poIsaN EHERIIETY

ag[e
noyim

SNOLLIANOD

uflissy

mding

1ndug

al
132fqng

dSI1 (P)

(panutiuo)) 1 d1av]

NOVICE PROGRAMMER ERRORS 469

®C
M 10pu (12.5%)] B 1oput (9.0%)
Output (4.2%) If Log Oper (15.6%) | Output (11.9%) If Log Oper (14.9%)
L Assign (3.1%) O irComp(11.5%) [Assign (6.0%) [] Comp If (6.0%)

% 1f Without Else (7.3%) B Loop While (10.4%) If Simple (17.9%) Bl Loop For (5.0%)
If With Else (4.2%) Loop Repeat (12.5%) EB If Then Else (3.0%) 2 Loop While (3.0%)
If Nested (9.4%) [Loop For (9.4%) If Nested (4.5%) [_] Loop Do (14.9%)

(d) Lisp

BB 1nput (12.3%)

Cutput (6.2%) EA1f Log Oper (13.6%) M 10put (10.5%) Con Nested (10.5%)
[Without Else (4.9%) £J1f Comp (6.2%) Output (5.3%) Con Log Oper (21.1%)

Assign and Conver (14.8%) Loop While (6.2%}) Assign (3.5%) (] con Comp (17.5%)
If Then Else (6.2%) Loop Repeat(6.2%) Con Without Else (3.5%) = Loop Do (17.5%)

B i Nested (12.3%) [Loop Do (11.1%) Con With Else (5.3%) (] Loop While (5.3%)

FIGURE 5. Language Constructs error types.

provides two major forms of a conditional statement, IF and COND, the different
syntax and semantics of these constructs has led to major confusion.

Loops

Students had trouble with how and when to terminate loops. For example, the DO
loop and the REPEAT loop are very different. Students did not notice the
difference easily and treated them like a WHILE loop, thinking the condition will
always be checked before any statement is executed. In C, the FOR loop caused a
problem because it does not clearly correspond to its evaluation and execution. The

complexity of the DO loop structure in LISP made it difficult for students to
understand.

470 A. EBRAHIMI

Input/output

Students had difficulty with the format of input and output. For example, each
language provides a type of read statement, requiring some degree of formatting.
This was beyond the comprehension of most students.

In C, the PRINTF function did not provide a default format. Therefore, if none is
specified, the output will not be printed. Because Pascal does not provide input
formatting, students had trouble with the READ and READLN statements.
FORTRAN can read and print data with or without format, but students did not
understand the real concept behind the format.

Assignment

Most of the errors with assignment occurred in FORTRAN because of the way
FORTRAN treats variables. Variables starting with 1" through ‘¥’ are automati-
cally treated as integers, and thus there will be truncation of the decimal part. For
example, the netpay = 1000.99 leads to the assignment of 1000 to netpay, because
netpay is automatically an integer, not a real number. The expression C=5/9 *
(F-32.0) always results in 0, because integer division (5/9) is 0.

6. Plan composition experiment

The problem used for the Plan Composition experiment is known as “‘rainfall”. This
problem has been used extensively in previous empirical studies (Johnson, 1986;
Bonar & Cunningham, 1988; Fr)}e, Littman & Soloway, 1988). The rainfall problem
has the following characteristics:

(a) Several Plans such as Sum, Count, Average and Maximum are used.
(b) A variety of Language Constructs such as input, output, assignment, IF
statement and loops are used.

“Rainfall” problem: Write a program that will read the amount of rainfall for
each day. A negative value of rainfall should be reiected, since this is invalid and
inadmissible. The program should print out the number of valid recorded days, the
number of rainy days, the rainfall average over the period, and the maximum
amount of rain that fell on any one day. Use a sentinel value of 9999 to terminate
the program. ’

The submitted programs were evaluated and errors were recorded by the author
who taught the courses. These errors were classified based on the difference between
the correct Plan and the intended Plan used by the novice programmer.

This method is similar to the error classification used by Johnson and Soloway
(1983) for novice programmers and by Ostrand and Weyuker (1934) for professional
programmers. The errors were classified into four major categories which had six
sub-categories. This type of classification clarifies any discrepancy that might arise
between errors, The four major categories used for Plan differences are:

1. Missing: An entire Plan or one or more of its components are missing, €.g. sum
initialization is missing.

2. Misplaced: An entire Plan or one or more of its components appears in the
wrong place, e.g. counter initialization done inside the loop.

NOVICE PROGRAMMER ERRORS 47

3. Malformed; An entire Plan or some of its components is formulated incor-
rectly, or is only partially correct, e.g. “‘num : = sum+num” instead of “sum :=
sum+num’.

4. Misused (Spurious): An irrelevant Plan, or component thereof, i5 used, e.g.
using a counter for counting the negative numbers.

Each of the above Plan difference categories was further divided into sub-
classifications known as Plan components, for example, “Missing initialization”
where “missing” is the Plan difference and “initialization” is the component. The
Plan component sub-classifications are the following:

1. Imitialization; Initialization of a variable, €.g. sum := 0.

2. Input: Reading the input data, e.g. READ (num).

3, Output: Output the data, e.g. WRITE {num) .

4. Update: Change the value of a variable by new assignment, e.g. counter : =

counter+1,
5. Guard: Test condition, e.g.
(a) If: I£ num <0 (b} loop: While(not eof).....

6. Declaration: Data characteristics such as variable, type and constand declara-
tion, e.g int average.

6.1. PLAN ERROR TABLE

A Plan Error Table summarizes the error classifications of novice programmers
based on Plan differences (rows) and Plan components (columns). Each entry in the
table indicates the number of errors for each category. Table 2 illustrates a Plan
error, with each entry specifying a sample error. The column sub-heading, Loop,
refers to errors involving the control variables{s) of the loop. The Non-loop column
subheading refers to errors involving variables that do not belong to the loop.

6.2. WHAT IS CONSIDERED AN ERROR?

In this study, errors are not simply limited to missing code or malformed statements,
but also include any unnecessary or misplaced code even if the output has been
achieved. Novice programmers often think that, since there are no syniax or
run-time errors, their programs are correct. Their argument is “My program ran, so
therefore it must be correct.” They tend not to distinguish among errors in different
phases of programming, such as compile time, run time, and logic. Moreover, the
novice programmer usually does not consider efficiency to be important. The
following are some examples of these errors:

1. Code Misplacement: Plan component is incorrectly placed. For example,
computing the average value inside a loop:
while not eof do
begin
avg := sum/count
end
2. Spurious Initialization: Unnecessary initialization of a variable. For example,
the initialization of a variable before it is read or assigned:

A. EBRAHIMI

472

1BA apgm 1 doog Gae 4+ wns 3Im peas uondaouodsiu
BIiXS Holt BiNs TINS =1UWns j+i=tt o—:3az H TINS onys 3 snoumndg
1233211 > 10] = ualp wny peal 10)
se Gae 512 0=> 30} < wns =; Jae 1= — 6666— = Wns o=:1 ujILIM u|peal pounoyelA
wnu peal 1eadaa dooj dooy| doop dooi
pua al0Jaq pue doot ur apISInO apIsul doo| wm apisui IPISINO
uidaq) > wnu JI [aunuss adelaae [+1=:1 0 =:wns [=:! M pea1 pasejdsipy
ETREN pus wnu Jo 210U
ieA wdaq < Xew JI aym B4+5=% [+1=:1 0 =:wns [=:1 EITA NS peas Funssipy
sI23U10 1dasuos asea JI doo deoj-uoN doomp doo|-uoN doo nding induy SIIUDIIJIP
XBJUAG ueyg
pIEDD) arepdny g

siuauoduion ueld

SALGUI F]AWDS Yiim UONDIYISSD)D 10449 UD)J

7 T18V],

NOVICE PROGRAMMER ERRORS 473

rain:=10

avg :=0;
read{rain);

avg : = sum/count ;

3. Missing Initialization: Novices may neglect to initialize a variable because they
assume that alt variables used in a program are automatically initialized to zero
by the system.

4. Spurious Coding: Additional unnecessary code is used in the program but not
required by the original specification, e.g. counting the negative values or
printing the sums when they are not required.

6.3. PLAN COMPOSITION ERRORS

The most common errors in Plan Composition are as follows.

Guard IF

This feature was the most common source of error among all four languages.
Students neglected to take into account, when using IF statements, the need to
check for special situations, such as division by zero. Understanding where to place
the guard IF was another problem. This situation indicates that textbooks and/or
instructors fail to emphasize error checking,

Initiglization

This was another major source of Plan Composition errors. Students frequently
overlooked the initialization of variables because of the assumption of automatic
initialization by compilers. Some Pascal compilers initialized variables to zero
although it is not specifically defined by the language.

Update

Students had problems with both improper and unnecessary updating of variables.
For example, some students updated the average inside the loop, which works, but is
unnecessary. Also, the updating of counter variables was a problem.

Loops
Students had difficulty with what type of loop to use, how to terminate the loop, and
the structure of the loop.

Eighty programs were analysed within the Plan Composition experiment. The
subjects for this test were the same as those in the Language Constructs experiment.
Table 3 tabulates the Plan-component errors for each of the four Plan-difference
categories. Table 4 shows the number of errors for each student. Figure 6 represents
the errors for the Plan differences. A total of 125, 80, 108 and 81 Plan errors were
observed for Pascal, C, FORTRAN and LISP respectively. The results of the Plan
Composition experiment show that students have difficulty putting Plans together.

474

A. EBRAHIMI

TaBLE 3
Plan error

Plan components

Guard
Plan differences Input Qutput INIT Update Loop If Declare Sum
(a) Pascal
Missing 2 12 1 22 37
Misplaced 1 2 1 16 1 3 24
Malformed 3 5 14 7 2 31
Spurious 3 4 1 3 2 4 6 33
Sum 4 1 24 25 17 36 8 125
(b C
Missing 4 3 2 16 25
Misplaced 1 1 5 2 9
Malformed 3 4 6 2 3 18
Spurious 2 16 4 1 2 3 28
Sum 6 5 23 1 7 22 6 80
(c) FORTRAN
Missing 3 14 12 19 48
Misplaced 1 8§ 1 10
Malformed 1 3 2 7 5 3 6 27
Spurious 2 9 4 4 1 2 1 23
Sum 4 15 20 3t 6 5 7 108
(d) LISP
Missing 5 1 4 L0 — 20
Misplaced 1 1 1 8 4 — 15
Malformed i 2 4 8 5 6 — 26
Spurious 1 8 2 2 6 1 — 20
Sum 3 16 8 22 11 1l — 81
TABLE 4
Student plan error
Subject
D 1 2 3 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20
(a) Pascal
no, of errors 4 5 7 g8 7 1015 7 [4 1 2 9 z) 11 & 9
(by C
no. of errors 3 5 3 36 00 2 8 8 0 5 5 4 ‘ 10 2] 9
(c) FORTRAN
no. of errors 2 101z 5 10 4 015 0 g8 10 0 3 7 0 2 9 5 2
(d) LISP
no. of errors 06 4 3 0 4 8 6 2 4 4 1 1 8 & t 5 6 3 8

Please note that subject 1Ds represent different subjects for each language.

NOVICE PROGRAMMER ERRORS 475

[| Missing (29.6%) (J Malformed (24.8%) Missing (31.3%) . 1 Malformed (22.5%)
B Misptaced (192%) [Spurious (26.4%)

& Misplaced (11.3%) () Spurious (35.0%)

B Missing (44.4%) [Matformed (25.0%) MM Missing (247%) [Malformed (32.1%)
B Misplaced (9.3%) [l Spuricus (21.3%) W Misplaced (18.5%) [Spurious (24.7%)

FiGure 6. Plan difference errors.

7. Correlation of plan composition and language constructs errors

A Plan is the conceptual representation of a program and its subdivided steps in
solving a problem. A program usuaily requires several Plans to reach the solution
and these Plans must be put together properly. Novice programmers develop some
of these conceptual model representations (Plans) and their compositions as they
learn programming. Language Constructs are used as building blocks to form a Plan.
The errors from the Language Constructs (Table 1) and Plan Composition
experiments (Table 4) demonstrate a high linear correlation among these types of
errors for all the programming languages in question. A strong positive correlation
between Language Constructs and Plan Composition errors ranging from 0.91 to
0.97 across programming languages indicates that programmers who make more
Plan Composition errors also tend ot make more Language Constructs errors and
vice versa. For example, in Pascal, subject ID# 17 had one error in Language
Constructs, and no errors in Plan Compostion. Subject ID# 9 had nine errors in

Language Constructs and 10 in Plan Compostion. The resuits are very similar for all
the other languages.

476 A. EBRAHIMI

In the following regression analysis, 1.3, 1.1, 1.6 and 0.9 are the slopes of the
regression lines; 0.0, 0.3, —1.0 and 0.5, are the intercepts where y=mx +b or
Plan = (slope # x) + intercept:

plan = 1.3 % construct + (.0 r = 0.96 (Pascal)

plan = 1.1 * construct + (.3 r=0.91(C)

plan = 1.6 * construct — 1.0 r=0.97 (FORTRAN)
plan = 0.9 % construct + 0.0 r=0.92 (LISP)

The correlation graph for Language Constructs and Plan Comgosition errors for
each of the languages is shown in Figure 7. Each dot represents the intersection of
Language Constructs and Plan Composition errors. The larger, open dots represent
two or more data points in the same intersection. The existing straight line of
correlation can be attributed to the fact that novices use Language Constructs to
build the Plans. Similarly, the Plans are viewed and expressed in terms of Language
Constructs.

13 ey Pascal v 0 e s

_ 6 8
g
o
g
[
15 P) Li
(¢) Fortran " g (Lisp o e
121~
6 o e JO
9 —
6 —
3 —
0] 0 _ol t | | |
0 2 4 6 8 10 0.0 1.5 3.0 4.5 6.0

Construct error

FIGURE 7. Correlation of Plan composition errors versus Language Constructs. (a) Pascal, {b) C,
(c}) FORTRAN, and {(d) LISP. Open circles represent two or more data points at the same intersection.

NOVICE PROGRAMMER ERRORS 477

Several prior studies suggest that most of the programming errors occur in Plan
Composition rather than in Language Constructs. It should be noted however, that
when a problem is given as an experiment for both Language Constructs and Plan
Composition, such as the average “‘rainfall” program, students often have the option
of using those Language Constructs with which they are most familiar and because
this inevitability suppresses the number of errors in Language Constructs, it impedes
the process of genuine error evaluation. A more reliable rate at which Language
Constructs errors occur is determined by designing experiments that are related
directly to the comprehension of Language Constructs. Some of the current research
shows that students have more problems understanding simple loops than under-
standing simple problems (Shackelford & Badre, 1993). This supports the conviction
that the knowledge of Plan Composition and Language Constructs is indispensable
to the understanding of basic programming,.

8. Conclusion

This study was conducted with 80 novice programmers divided into four equal
groups. Each group used one of the four following languages: Pascal, C, FORTRAN
and LISP. The subjects were taking introductory courses in these indicated
languages at the time. Each group participated in two experiments, one known as
Language Constructs and the other as Plan Composition.

In the Language Constructs experiment, several small programs, called segments,
were given to the students to run mentally and record the output with the given
input. These test were chosen in such a way as to examine the basic understanding
of Language Constructs, such as input and output, decision making, loop and
specific features of the languages.

In the Plan Composition ¢xperiment, a common problem known as “rainfall” was
posed. The “rainfall” problem is Plan-oriented as is typically used in introductory
programming courses where the average, minimum and maximum amount of rainfall
is determined. Prior studies have used the “rainfall” problem similarly. A Plan is a
problem-solving paradigm which consists of one or more related steps performing a
task. A Plan may be comprised of many subsidiary Plans, which themselves become
Plans. The study of the Plan Composition experiment investigates the cause of
errors based on how Plans are put together. Plan errors may occur as a result of
steps that are missing, malformed, misplaced or spurious. Language Constructs serve
as building blocks for Plans such as IF (decision making), WHILE {(repetition), and
READ and WRITE (input and output). A Plan can be implemented in more than
one way using different Language Constructs within the framework of the same
language. In addition, because of peculiar features of a language, a Plan may be
implemented uniquely, as in LISP where recursion is more commonly used.
Moreover, the same plan may be developed in different programming languages
using similar Language Constructs.

The errors for Language Constructs can be categorized as follows: in Pascal,
Logical IF, Input, and REPEAT...UNTIL loop; IF with “=" Operator, Logical IF
and DO...WHILE loop; in FORTRAN, IF without Else, Nested IF and Logical IF;
in LISP, Logical IF, Compound IF and DO Loop.

The analysis of Language Constructs errors indicates that the majority of these

478 A. EBRAHIMI

errors can be generalized in the following three categories: IF statements, Loops,
and specific language features. The IF statements with logical operators were the
most troublesome in all languages. This is primarily due to the students’ misun-
derstanding of the difference between logical AND and OR. In natural languages,
these notations are variously used, whereas in computer languages the difference
between is formally precise.

Loop errors mainly occurred as a result of the misinterpretation of loop
termination. The termination of a loop is based on the true or false value of the
condition. For example, in Pascal the REPEAT...UNTIL loop terminates when the
condition is true; on the other hand, the WHILE loop terminates when the
condition is false.

Some of the errors occurred as a result of the specific language features, for
example, Input in Pascal, use of “=" operator in C, and DO loop in LISP. Input in
Pascal is format free and a blank space between two data, where the last is a
character, causes a problem. The blank space would be read as the value of the
character. The equality operator in C uses two equal signs, “= =". One equal sign,
however, indicates assignment and is permissibly embedded in the IF statement. The
steps involved in the DO loop in LISP are written linearly, but the execution action
will not follow this order,

In the analysis of Plan Composition errors, the most frequent Plan error for all
languages was the Missing Guard IF. The other Plan errors can be itemized as
follows: in Pascal, Misplaced Update and Malformed Loop; in C. Spurious Qutput
and Malformed Initialization; in FORTRAN, Missing Initialization and Misplaced
Loop; in LISP, Misplaced Update and Spurious Qutput.

Beginner programmers just run the programs for a given data sat, but they fail to
perform error checking. The Missing Guard IF Plan error occurs as a result of the
student’s negligence in checking the invalid data. For the novice programmer, simply
solving a problem is difficult enough.

The Misplace Update Plan error occurred as a result of the improper location of
the assignment expression, such as the placement of the average computation inside
the loop. Initialization errors occurred because of the students’ assumption that the
language would automatically set the proper variable initialization. The Spurious
Output errors result from students displaying unrequested information. In LISP,
however, the return value of the function will be displayed automatically.

The comparison between the number errors of the Language Construct and Plan
Composition experiments for each student exhibits a high linear correlation among
those specific types of errors for the programming languages discussed. Students
who had more errors in the Language Constructs experiment also made more errors
in the Plan Composition experiment. In the same manner, students who had
minimum errors in Language Constructs also had a minimum number of errors in
the Plan Composition experiment. The understanding of Language Constructs
contributes indipensably to the building of Plans. Similarly, novice programmers
expressed the Plans in terms of the Language Constructs.

This study indicates that novice programmers have difficulties in both Language
Constructs and Plan Composition. It is incumbent on instructors to pinpoint these
potential pitfalls and help novice programmers to be aware of and to overcome
these difficulties. For example, error checking must be emphasized and more stress

NOVICE PROGRAMMER ERRORS 479

placed upon the specific features of the languages where misconceptions exist. The
study concludes that the Plan Composition capability and semantic interpretation of
the Language Constructs are mutually correlated to a significantly high degree.
Therefore, the teaching and presentation of Language Constructs and Plan
Composition must be accomplished concurrently.

References

Anperson, J. & Jerrries, R. (1985). Novice Lisp errors: undetected losses of information
from working memory. Human—Computer Interaction, 1(2), 107-131.

Bayman, P. & Maver, R. {1983). A diagnosis of beginning programmers’ misconceptions of
basic programming statements. Communications of the ACM, 26{9), 677-679.

Bownar, 1. (1985). Understanding the bugs of novice programmers. Ph.D. Dissertation,
University of Massachusetts, MA, US.A.

Bonar, J. & CunnincHam, R. (1988), Bridge: tutoring the programming process. In I
Psotka, L. Dan Massey & S. Muter, Eds. Intelligent Tutoring Systems: Lessons
Learned. Hillsdale, NJ: Lawrence Erlbaum.

DeTiEnnE, F. & SoLoway, E. (1990). An empirically-derived control structure for the
process of program understanding. International Journal of Man—Machine Studies, 33,
323-342.

EBraniMi, A. (1989). Empirical study of errors by novice programmers and design of Visual
Plan Construct Language (VPCL). Ph.D. Dissertation, Polytechnic University, NY.
EsraniMi, A, (1992). VPCL: a visual language for teaching and learning programming. {A
picture is worth a thousand words). Journal! of Visual Languages And Computing, 3,

299-317.

EisenBerG, M. (1987). Understanding procedures as objects. In G, M. Ouson & E,
SoLoway, Eds. Empirical Studies of Programmers: Second Workshop, Norwood, NI:
Ablex.

Ericsson, K. & Simon, H. (1983). Protocel Analysis: Verbal Reports as Data. Boston, MA:
The MIT Press.

Fryg, D., Littman, D. & Soroway, E. (1988), The next wave of problems in ITS. In J.
Psotka, D. Massey & S. Murtter, Eds. Intelligent Tutoring Systems: Lessons Learned.
Norwood, NJ: Lawrence Erlbaum.

Jounson, W. (1986). Inrention-Based Diagnosis of Novice Programming Errors. Los Altos,
CA: Morgan Kaufman.

Jounson, W. & SoLoway, E. (1983). BUG CATALOGUE: {. Dept. of Computer Science:
Cognition and Programming Project, Yale University.

KiLeErer, M. (1984). Experimental study of a two-dimensional language vs. Fortran for
first-course programmers. International Journal of Man—-Machine Smdies, 20, 445-467,

Knuth, D. (1971). An empirical study of FORTRAN programs. Seftware-Practice and
Experience, 1, 105-133.

OstranD, T. & WEYUKER, E. (1984). Collecting and categorizing software error data in an
industrial environment. The Journal of Science and Software 4, 289-300.

SuackeLrorp, R. L. & Bapre, A. N, (1993). Why can’t smart students solve simple
programming problems? [nternational Journal of Man—Machine Studies, 28, 985-997.
Scuank, R. & Asewson, R. (1987). Scripts, Plans, Goals and Understanding. Hilldale, NJ:

Lawrence Erlbaum.

SoLoway, E. (1986). Learning to program = learning to construct mechanisms and explana-
tions. Communications of the ACM, 29(9), 850-858.

SpoHRER, J. & SoLoway, E. (19864). Novice mistakes: are the folk wisdoms correct?
Communications of the ACM, 29(9), 624-632.

SPOHRER, I. & SoLoway, E. (1980b). Analyzing the high frequency bugs in novice programs.
In E. SoLoway & S. Lyencar, Eds. Empirical Studies of Programmers. Proceedings of
the First Workshop. Norwood, NI: Ablex.

480 A. EBRAHIMI

SpoHRER, J., SoLoway, E. & Pore, E. (1985). A poal/plan analysis of buggy pascal
programs. Human—Computer Interaction, 1(2), 163-207.

WEINBERG, G. (1971). The Psychology of Computer Programming. New York: Van Nostrand
Reinhold.

Weissman, L. (1974). Methodology for studying the psychological complexity of computer
programs. Ph.D. dissertation, University of Toronto, Canada.

Yu, C. & Rosertson, 8. (1988). Plan-based representation of Pascal and Fortran code.
Edited by E. SoLoway, D. Frye & S. SHerrarp, Eds. CHI 88 Conference Proceedings.
Addison Wesley.

