
A Discussion of Past Programming Errors and Their
Effect on Learning Assembly Language

Kathleen M. Swigger *
North Texas State University, Denton, Texas

Layne F. Wallace
University of North Florida, Tallahassee, Florida

This study examines the question of whether it is possible to
improve students’ programming ability through repeated
exposure to common programming errors. More specifi-
cally, it catalogs recurring errors in IBM 360/370 assembly
language. The authors then use this information to test
whether students who receive information and instruction
concerning common errors have fewer programming errors
than students receiving no such treatment. Results indicate
that there is no significant difference between the two
groups of students. These results seem to suggest that
practice, more than instruction, is important in teaching
students to find and correct programming errors.

INTRODUCTION

Although substantial research has focused on the area of
teaching novices computer programming (see DuBoulay
and O’Shea [l] for a complete literature review), much
of the research on specific teaching methods lacks
empirical evidence and remains a matter of personal
preference. Coombs and Alty [2], for example, suggest
that a student’s early programming assignments concen-
trate on program command structures and input/output.
Later exercises should build upon these initial assign-
ments, adding variations to each new example. Wein-
berg [3] advocates program reading as a learning tool
and laments the passage of the reading exercises that
were once undertaken while programmers gathered to
await their output. Bork [4] argues that novices should
be taught using a “holistic” approach rather than a

Address correspondence to Dr. Kathleen M. Swigger, HRL/ID,
Brooks Air Force Base, Brooks, Texas, 78235.

* This work was partially supported by HRLIID, Brooks Air Force
Base, San Antonio, Texas, in the form of Dr. Swigger’s participation
in the University Resident Research Program.

“grammatical” approach. The holistic approach ex-
poses students to complete programs from the beginning
and allows them to experience all programming con-
structs. The grammatical approach teaches about pro-
gramming constructs in a bottom-up fashion. Lemos [5],
however, compared the two approaches and found no
significant difference between students’ performances.
Shneiderman [6] suggests that the two methods should
be integrated into a single strategy called the “spiral”
approach. Unfortunately, Shneiderman presents no em-
pirical evidence to indicate the superiority of the spiral
approach.

One of the areas of research on novice programmers
that has achieved some results is that of identifying
semantic networks for expert programmers [7] and
showing how they relate to novices’ understanding of
programming [8]. There have been several studies on
how knowledge networks are established by naive and
novice programmers [9-121 and how these might be
used to improve students’ understanding of program-
ming [133. One of the most popular methods of gaining
information about knowledge networks for novice pro-
grammers is to examine programming errors, which are
the instances when the networks prove faulty [14].
Several attempts to catalog specific errors have been
made [12, 15-181. The knowledge gained from such
studies has been used to construct intelligent tutoring
systems [12, 191 that successfully diagnose students’
programming errors. However, knowledge about stu-
dent errors has never been used to enhance classroom
experience, nor has it been used to test whether
knowledge of such errors can prevent (rather than react
to) students’ programming errors.

The primary question asked in this paper is whether it
is possible to improve students’ programming ability by

395
The Journal of Systems and Software 8, 395-399 (1988)
0 1988 Elsevier Science Publishing Co.. Inc. 0164-1212/88/33.50

K. M. Swigger and L. F. Wallace

teaching them about the common errors that occur in a
prog~g language. Moreover, this study examines
recurring errors in IBM 360/370 assembly language and
divides these errors into two categories: misunderstood
commands and semantic errors (a list of these errors is
provided in Appendix 1). We then use this information
to test whether students who are given instructions
conceding colon error types have fewer program-
ming errors than students who receive no instruction
concerning common error types.

Assembly language was selected as the test language
because of its resemblance to the way the machine
actually processes instructions. Previous research has
indicated that students using a high-level language such
as Pascal, Basic, or PL/I do not really understand the
proper use or implication of some of the language’s
statements [12, 16-181. Some of this misunderstanding
may be due to the students’ lack of a notion of a
machine. Research, for example, indicates that begin-
ners develop a conceptual model as they learn to use a
computer system [20] and that there are benefits in
providing an explicit model of a computer for novices
learning a programming language [2 1, 221. Thus,
assembler might be a better place to start in examination
of students’ errors and in deciding whether knowledge of
common errors really improves programming ability. In
assembly language, each command causes one or at
most two changes, and each change may be described
and understood in concrete terms. Thus, assembly
language forces students to explain their knowledge of
the prong language as well as their misunder-
standings in very concrete terms.

TEST I. AN EXAMINATION OF PROGRAMMING
ERRORS

Method

The first study cataloged common error types occurring
in assembly language. The subjects were graduate and
undergraduate students attending North Texas State
University and enrolled in an in~~ucto~ IBM 3~/370
assembly language course. Students enrolled in this class
have previously had programming courses, one in Basic
and one in Pascal. However, the Basic course is actually
an overview of computer science applications with only
three weeks devoted to the study of the Basic language.
Therefore, after much cons~~tion, it was deans
that students enrolled in this course should still be
classified as “novice’” programmers. Subjects of our
study were taken from these courses for a period of three
extended semesters. The effect of an individual instmc-
tar’s teaching style was reduced by using three different
ins~cto~ to counterbalance styles. While the textbook

for each class was the same, all instructors used a variety
of sources for their lecture material To reduce the
possibility of having errors specific to a particular
programming assignment, all instructors gave different
assignments throughout the semester. To ensure com-
plete independence of results, the instructors collected
data from only their own classes for the three semesters
and then collated the results at the end of the research
period.

Collection of data was accomplished by observing
which errors occurred repeatedly during debugging
sessions with the students. Care was taken to make sure
that a single student was the source of all errors. The
errors were then divided into misunderst~ co~ands
and semantic categories.

Results and Discussion

It was found that the same progr~ng errors did
indeed appear across classes and across semesters.
Students who made these errors did not seem to fall into
groups divided by sex, age, or education level. One of
the common factors, however, was the amount of
exposure to the concepts used in assembly language
programming at an intimate level-in writing programs,
for example. After students were made aware of the
faulty concept, they did not usually commit that specific
error again, or if they did, they were able to recognize
the error and correct it without assistance from the
ins~ctor.

While some questions were catagorized as misunder-
stood commands, the underlying cause may actually
have been semantic. For example, one error found
frequently was to use a DS statement instead of the DC
statement to initialize a variable. This seems to be purely
a faulty network node concerning the use of DS and DC
and their implications for computer consequences. An-
other example of a faulty network is the error of trying
to MVC data to an output file instead of using the PUT
macro. The previous example may be an indication that
the networks for high-level languages are organized in a
different fashion than the networks for assembly lan-
guage. An alternative explanation could be that of
cognitive interference, where the concept of printing in
assembly language has become confused with the
concept of printing in a high-level language.

The errors we found to be the most colon were
presented to other assembly language teachers who had
taught this course in the past using different textbooks,
and all agreed that these errors seemed to be the most
prevalent. This provides some continuity between the
present instructors and the past instructors, as well as
indicating that the errors are not te~~k-s~ific. The

Past Programming Errors and Learning 397

question of whether these findings can be generalized to
other universities has yet to be answered.

Finally, it was discovered that students, as a group
and across semesters, continue to make mistakes even
after the instructor has repeatedly cautioned the class
against making such errors. This leads one to theorize
that students do not process some information at a
practical level during lecture but when forced to
assimilate information while writing a program they tend
to retain the concepts. Findings such as these suggest
that only practical experience with a language facilitates
the establishment of valid networks. Since the initial
research was obviously done by naturalistic observation,
the next logical step was to replicate these observations
using more experimental techniques.

TEST II. EFFECT OF INSTRUCTION ON ERRORS

Method

The second study looked at whether it is possible to
imrpove students’ programming performance if they are
instructed about error types. Seventy computer science
students were the subjects in this second experiment. All
were either graduate or undergraduate students enrolled
in an undergraduate course in assembly language pro-
gramming. Each had previous programming experience
in at least Pascal and Basic (one course in Pascal and one
course in Basic). But again the Basic course consisted of
an overview of computer applications with some empha-
sis on Basic. Students enrolled in the assembly language
course had had only one real computer science course.
All the students who participated in this study were
computer science majors.

The subjects were divided into two groups, each
enrolled in one section of the course. Both classes were
taught on the same day, by the same instructor, one hour
apart. The first class was given a list of errors (see
Appendix 1) and was instructed on how to avoid specific
errors and how to correct errors. Each error was
discussed in detail in classroom lectures. The second
class received no list of errors and was not lectured on
error types or specific errors. Instead, the students in the
control group received additional examples on each
instruction. All subjects were given the same homework
and programming assignments, and both were instructed
and tested on how to read memory dumps.

A short program (less than 100 lines-see Appendix
2) was assigned to the two groups. The programming
assignment was not logically complicated. No students
had difficulty with the overall algorithm, although many
experienced difficulties with small details. Collection of
data was accomplished by having students route all
output from execution of the programs to the instructor’s
file area.

Students’ programming errors were grouped into six
categories corresponding to the error types previously
mentioned. Syntax errors flagged by the assembler were
not considered in this study. Furthermore, only catego-
ries that contained a total of at least five errors were
included in the comparison. If a student submitted
multiple copies of the same error, the error was counted
as a single error. A chi-square test was performed to
determine whether there were any significant differences
between the two groups in any of the six categories.

Results and Discussion

It was expected that the group who received extensive
instruction regarding assembly language errors would
have fewer errors and dumps than the group receiving
no instruction. However, no significant differences were
found between the groups for any of the six categories (x
= 9.73, df = 5, P < 0.08). At most, we can say that
there is a trend indicating that some treatment may help
alleviate errors, especially for errors relating to the
category labeled Declaration errors. Although the treat-
ment group (Table 1) actually had fewer dumps than the
group receiving no treatment, this was not significant.

An analysis of the specific categories reveals that,
even into the third course, students continue to have
difficulty understanding storage and the manipulation of
storage. The categories dealing with storage declaration
and storage transfer accounted for over 50% of all
errors. Such a phenomenon suggests that even students
in their third programming course do not have a firm
notion of how storage is manipulated inside a computer,
Although the curriculum in the first and second courses
includes a discussion of addresses, storage, and memory
locations, this specific content is obviously not fully
understood by most of the students. The question of
whether this is a unique phenomenon of this study or
something that is generalizable needs further testing.

CONCLUSION

Unfortunately, evidence presented in this study indicates
that instruction on error types using this particular
method has no significant effect on programmers’

Table 1. Number of Errors for Each Treatment

Error type No treatment Treatment

Declaration/initialization 31 14
Index/address 9 14
LOOP 8 I
Storage transfer 22 23
but 11 11
Accumulation 6 6

398 K. M. Swigger and L. F. Wallace

performance. Apparently, some exposure to the machine
and the errors in the context of a machine may be an
integral part of forming an accurate and usable mental
model of programming. Even if learning, thinking, and
debugging strategies, whether general or specific, are
shown to exist, it might not be possible to teach them
directly. Perhaps they must spontaneously emerge as a
consequence of substantial experience. At the very least,
it might be possible to select and design experiences to
result in a more rapid and complete emergence of such
skills. These findings suggest that courses that try to
teach a programming language using in-class exercises
alone are inadequate for knowledge transfer to occur.
Taking this idea a step further, programming courses
that require the student to write programs and then run
these programs may convey information at a level that
will allow prolonged retention of the material.

Trying to do packed arithmetic with an invalid sign in one or
both operands

Trying to print numeric data without changing the sign portion
to character format

Confusing address manipulation with data manipulation

Forgetting that the number system for IBM 360/370 assembly
language starts with zero and not one

Inability to distinguish execution-time operations from com-
pile-time operations

Forgetting to initialize registers or memory locations

APPENDIX 2. PROGRAM DESCRIPTION

Future research should be directed toward examina-
tion of the actual knowledge networks being used by
beginning students as well as the manner in which the
students build such networks. This study suggests that
class exercises about possible error types are not
sufficient to eradicate student programming errors and
are perhaps insufficient for building needed knowledge
nets. Research should be initiated to determine whether
experience or prolonged exposure to a construct will
help formalize an internal model that can avoid common
error types. We are currently examining the impact of
experiences on error types and are cataloging errors that
occur over time. Individual student’s errors are being
mapped over time to determine if student error patterns
exist. Such studies should aid in both the teaching and
understanding of programming.

Given a list of 20 employees, along with their ID
numbers and monthly payroll figures, print one list of
employees who make under $2500 a month and one list
of employees who make $2500 or over a month. Each
list should contain the names, employees IDS, and
payroll for the individuals and a total for that group. On
a separate line, print the total for both groups (aN
employees).

REFERENCES

1. B. DuBoulay and T. O’Shea, Teaching Novices Program-
ming, in Computing Skills and User Interface (M.
Coombs and J. Alty , Eds.), Academic, London, 1981, pp.
147-200.

APPENDIX 1. MOST COMMON PROGRAMMING
ERRORS

6.
Mwnderstood Commands

Using a DS instead of a DC to initialize a variable

Using L instead of CVB and/or ST instead of CVD

Trying to access the results of a D or DR as though it were one
number

7.

Using an incorrect EDit pattern and getting incorrect (or no)
output

8.

Not realizing the implications that MVC uses the length of the
first operand to determine the number of bytes to be moved

Semantic Errors

Using MVC to print data

9.

10.

M. Coombs and J. Alty, Eds., Computing Skills and
User Znterface, Academic Press, London, 1981, pp. 145.
G. M. Weinberg, The Psychology of Computer Pro-
gramming, Van Nostrand-Reinhold, New York, 1971.
A. M . Bork, Learning to Program for the Science Student,
J. Educ. Data Proc. 8, l-5 (1971).
R. S. Lemos, Fortran Programming: An Analysis of
Pedagogical Alternatives, J. Educ. Data Proc. 12(3),
21-29 (1975).
B. Shneiderman, Teaching Programming: A Spiral Ap-
proach to Syntax and Semantics, Comp. Educ. 1, 193-
197 (1977).
K. B. McKeithen, J. S. Reitman, H. H. Rueter, and S. C.
Hirtle, Knowledge Organization and Skill Differences in
Computer Programmers, Cognitive Psychof. 13, 307-
325 (1980).
H. Kaheney, Problem Solving by Novice Programmers,
in The Psychology of Computer Use (T. R. Green, S. J.
Payne, and G. C. van der Veer, Eds.), Academic,
London, 1983, pp. 121-142.
Friedman, D. The Little L&per. Science Research
Associates, Calif., 1974.
J. T. Schwartz, What Programmers Should Know, Com-
put. Lang. 2, 25-39.

Reserving the incorrect number of bytes for storage with DS 11. N. Wirth, The Programming Language Pascal, Acta ZnJ
and DC statements l(l), 35-63 (1977).

Trying to propagate blanks through the print area without 12. E. Soloway, J. Bonar, B. Woolf, E. Barth, and K. Erlich,
defining a blank immediately before the print area Cognition and Programming: Why Your Students Write

Past Programming Errors and Learning 399

Those Crazy Programs. Proc. Nat. Educ. Computer
Co@., Denton, Texas! 1981, pp. 206-219.

13. J. Hoc, Analysis of Beginners’ ~obIem-Solving Strate-
gies in Programming, in The Psychology of Computer
Use (T. R. Green, S. J. Payne, and G. C. van der Veer,
Eds.), Academic Press, London, 1983, pp. 97-127.

14. I. D. Gannon, Characteristic Errors in Programming
Languages, Proc. ACM Ann. Conf., 1978, pp. 75-81.

15. D. Sleeman, R. T. Putnam, J. Baxter, and L. Kuspa,
Pascal and High School Students: A Study of Errors, J.
Educ. Comput. Res. 2(l), 5-24 (1986).

16. K. M. Swigger and F. L. Wallace, Use of Appropriate
Looping Structures: Expert vs. Novice. Proc. Human
Factors Society, Seattle, Washington, 1982, pp. 999-
1003.

17. P. Bayman and R. E. Mayer, A Diagnosis of Beginning
Programmers’ Mi~n~~ons of BASIC P~gr~ng
Statements, Commun. ACM 24(q), 677-679 (1983).

18. S. R. Ruion, Beginners’ Misconceptions of Nine BASIC
Statements. Proc. Fed. North Texas Area Universities,
Denton, Texas, 1984, pp. 84-92.

19. J. Anderson and B. Reiser, The LISP Tutor, Byte 10(4),
159-178 (1985).

20. T. P. Moran, An Applied Psychology of the User,
Comput. Surv. 13(l), l-11 (1981).

21. R. E. Mayer, The Psychology of Learning BASIC,
Commun. ACM 22(111, 589-493 (1979).

22. R. E. Mayer, The Psychology of How Novices Learn
Computer Programming, Comput. Surv. 13(l), 121-141
(1981).

