
Effects of Programming
Semantic Errors

Experience in Debugging

Paul W. Oman, Curtis, R. Cook, and Murthi Nanja
Computer Science Department, Oregon State University, Oregon

This paper presents the results of a controlled experiment
comparing debugging abilities of novice, intermediate, and
skilled student programmers. Debugging-performance dif-
ferences were studied using two single-page Pascal pro-
grams: a binary search program and a median calculation
program. Two types of semantic errors, array bounds and
undefined variable, and two types of error messages, with
and without line number, were varied within the two
programs. Subjects were asked to find and correct a single
error in each program. Results demonstrate skill-level
differences, show the importance of error and message
interaction, and support previous research claiming that
programmers can almost always correct an error once it is
located.

1. INTRODUCTION

Debugging, the location and correction of the errors in a
computer program, is one of the most common com-
puter-programming tasks. It is not unusual for debug-
ging to consume nearly half of the software-development
resources.

It is generally recognized that debugging is a skill
acquired through experience. There appear to be two
general debugging strategies. In the comprehension
approach, the programmer attempts to find and correct
bugs by first understanding what the program actually
does as compared to what it is supposed to do. In the
isolation approach, the programmer attempts to identify
candidate bug locations by searching for clues in the
output, recalling similar bugs, testing internal program
states, or using knowledge of the application domain.
Some programmers may use a combination of strategies;
for example, resorting to the comprehension approach
when the isolation approach fails to locate the bug.
Hence, debugging requires the effective application of
problem-solving skills, programming-language knowl-

Address correspondence to Curtis R. Cook, Computer Science
Department, Oregon State University, Corvallis, OR 97331.

The Journal of Systems and Software 9, 197-207 (1989)
0 1989 Elsevier Science Publishing Co., Inc.

edge, problem-domain knowledge, and debugging tech-
niques learned from previous experience.

Level of debugging skill is one of the major differ-
ences between novice and expert programmers. Experts
make fewer errors and locate and correct bugs faster
than novices 181. Novices frequently add additional bugs
during debugging, whereas experts seldom if ever
introduce new bugs [4]. Several studies have also shown
considerable differences in debugging speed even among
experts [2,3]. Although some debugging techniques and
tricks are included in programming courses, there are no
courses devoted entirely to program-debugging strate-
gies. Thus, debugging skill is primarily learned through
general programming experience.

There have been many debugging studies involving
novice, intermediate, and skilled student programmers
and expert professional programmers. Gould and
Drongowski [3] asked professional programmers to find
one of three types of errors (array, iteration, and
assignment statement) in single-page Fortran programs.
Several different types of debugging aids were studied
including program listing, indicator of type of bug, line
number where the error occurred, input data plus
corresponding incorrect output data, and input data plus
incorrect output data and desired (correct) output data.
Their results showed the assignment-statement bug took
four times longer to find and was found less frequently
than the other two types of bugs. They also demon-
strated that the line number of the statement where the
error occurred was by far the best debugging aid. The
line-number debugging aid was added to the study
because there were little or no differences between the
debugging speeds of the other four groups.

Gould [2] asked ten professional programmers, with
at least four years experience, to identify the one line
containing an error in the same 12 programs used in his
previous study. Subjects were given a program listing
and output and were told they could use an interactive
debugging package if desired. The results were similar

197

01641212/89/$3.50

198

to the previous study. Surprisingly, subjects used the
debugging package on only 15 % of the programs.

In verbal protocol analysis of 16 professional pro-
grammers, Vessey [7] found that chunking ability was a
better measure of debugging expertise than years of
programming experience. “Chunking” refers to a per-
son’s capacity to organize data elements into meaningful
units that assist in problem solving. Vessey classified the
16 programmers, into groups of 8 novices and 8 experts,
on the basis of their chtmking ability. Each programmer
was asked to debug a Cob01 program containing a single
error. She found that experts took less time to find and
correct the bug, stated fewer hypotheses about the bug,
and made fewer mistakes. Experts attempted to gain a
high-level understanding of the program, with the goal
of placing the error in context. Novices appeared more
anxious to solve the problem, used a depth-first search
strategy, and frequently changed hypotheses about the
origin of the bug. Vessey concluded that although both
groups used essentially the same basic debugging
methods, the experts were more effective in their
application of specific techniques.

This paper presents the results of a controlled experi-
ment that compared the debugging abilities of novice,
intermediate, and skilled student programmers. We
were interested in comparing the debugging perform-
ance of beginning and experienced programmers given
limited information about the bug. In particular, we
concentrated on how programming experience and
limited error messages affect debugging ability. The
subjects were presented with two Pascal programs and
were asked to find and correct the single error in each
program. The only clue about the error was the error
message; there was no actual output to compare with
expected output and on-line debugging aids were not
permitted.

We were also interested in testing two of Gould and
Drongowski’s [3] findings. They found that the line
number of the statement where execution terminated was
the most helpful debugging aid. To determine if this was
true for both beginning and experienced programmers,
we tested error messages with and without line numbers.
They also found that, in almost every instance, profes-
sional programmers were able to correct an error once it
was located. We were interested in seeing if this held
true for various levels of student programmers.

This study is different from other studies in three
respects. First, two types of semantic errors, array
bounds and undefined variable, were studied. The
programs compiled correctly, but, when executed, they
terminated abnormally with an error message and no
other output. Second, we considered two types of error
messages, one with and one without the line number of
the statement where the program terminated. Third, the

P. W. Oman et al.

debugging aid was restricted to just a simple error
message with or without a line number. Subjects had no
input data, no correct or expected outputs, and were not
permitted to use other debugging aids.

2. EXPERIMENT

2.1 Purpose

In addition to testing the two findings of Gould and
Drongowski as described above, this experiment investi-
gated three general hypothesis:

1.

2.

3.

Programmers’ proficiency at using debugging aids
increases with general programming experience; in
this case, the debugging aids are the error message
and line number of the statement at which the
program terminated.
With increased experience, programmers become
less dependent upon debugging aids; specifically, the
line number of the statement at which the program
terminated.
Programmers’ ability to locate and correct errors
increases with general programming experience;
they become faster and make fewer mistakes.

2.2 Subjects

The subjects were novice, intermediate, and skilled
student programmers. The levels of experience corres-
pond to the number of computer science courses taken
by the subjects. The novices were students in CS 212,
the second term of a sophomore-level Pascal program-
ming sequence. Intermediates were students in CS 319,
the third term of a junior-level data-structures sequence.
The skilled group were students in CS 416, the third
term of a senior-level operating-systems sequence. CS
212 is a prequisite for CS 319, and CS 319 is a
prerequisite for CS 416. There were 66 subjects in the
novice category, 70 intermediates, and 57 in the skilled
group.

2.3 Materials

A binary-search program and a median-calculation
program were the two Pascal programs used in the
experiment. The programs are given in Appendix A. All
subjects were familiar with the binary-search algorithm
and the bubble-sort algorithm used int he median
program.

Each program contained a single semantic error.
Semantic errors are defined here relative to the debug-
ging process. Hence, we define semantic errors as
violations of the semantic meaning (or processing

Effects of Programming Experience 199

capabilities) of the programming language as detected by
the computer system. (Syntactic errors are violations of
the syntactic specification of the programming language
as identified by a compiler.) Two types of semantic
errors were studied: (1) an index exceeding array
bounds and (2) use of an undefined variable (i.e.,
variable referenced before it was assigned a value).
Although some Pascal compilers detect an undefined
variable during compilation, it is generally considered a
semantic error. When the program executes the state-
ment where the error manifests itself, the computer
system outputs an error message and terminates abnor-
mally. These two errors were selected because they are
errors commonly made by students.

Table 1. Debugging-Score Frequency

Debugging scores

0 1 2 3

Binary search

array bounds
Novice

undefined variable
I array bounds

10

14

undefined variable

Skilled
array bounds

undefined

8
4

2

The materials distributed to subjects consisted of a
page of instructions and the two program listings.
Appendix B contains an example test packet. The bottom
of each listing had an error message with or without the
line number of the statement where program execution
was terminated. The terse error messages for the two
types of errors were (1) index out of range [at line
number xx], and (2) Undefined value [at line number
xx].

Median calculation

array bounds
Novice

(undefined variable
i array bounds

22

21
17

Intermediate
undefined variable

t

array bounds
Skilled

undefined variable

16
10

10

1 9 10

0 0 22
1 18 I5

0 0 27
0 0 24

0 0 27

0 1 10

0 0 12
3 1 15

0 0 18
2 2 14

0 0 19

Thus, the independent variables were programmer
expertise (novice, intermediate, skilled), program type
(binary search or median), error type (array bounds
error or undefined variable), and message type (with and
without line number).

a O-bug not located.
l-bug located not corrected.
Z-semantic correction only.

3-semantically and syntactically correct.

2.4 Procedure

The experiment was conducted during the first 20 min of
class. Subjects were randomly assigned to treatment
groups for error type and message type and asked to
debug the binary-search program first and then the
median program. Subjects were told that each program
contained a single error that could be repaired by
changing only one statement. They were asked to circle
the statement on the program listing that caused the error
and then write the correct version of the statement.
Subjects were informed that it was a timed exercise
with a maximum of 10 min for each program. The
experimenters wrote the elapsed time in minutes on the
blackboard during the experiment. Subjects were asked
to record the time when they finished the task. At the end
of 10 min, they were instructed to turn the page and
repeat the process using the median program without
further work on the binary-search program.

correct version of the incorrect statement, and one point
if the repair was also syntactically correct. Dependent
measures for each subject consisted of a debugging score
(range: O-3) and a debugging time (range: O-9) for both
of the programs.

A frequency distribution of debugging score by skill
level, program, and error type is shown in Table 1. The
rarity of scores equal to 1 is striking. This score would
only be obtained if a subject found the error but could
not correct it. This data supports Gould and
Drongowski’s conjecture that if a programmer can find
an error, then he or she can almost always correct the
error. In our study of 386 debugging trials, only seven
times did subjects find the error and not provide a
semantically correct repair. Frequently, however, the
correction was not syntactically proper and would have
cause another error to occur (e.g., using / instead of
DIV). Interestingly, there were no scores of 1 or 2 for
the undefined variable error in either program. This
reflects an all-or-none debugging condition; if the
programmer can locate the error, then he or she can
properly correct it.

3. RESULTS

A debugging score was computed for each program for
each subject on a three-point basis: one point for circling
the statement in error, one point for a semantically

Average debugging scores for all three levels of
expertise and all program conditions are shown in Table
2. In every experimental condition, debugging score
improved with increase in subjects’ experience. In all
but one condition, the median program with an unde-

P. W. Oman et al. 200

Table 2. Average Debugging Scores Table 4. Significant Effects

Novice Intermediate Skilled

Binary search

I

no line number
Array
bounds

line number

I

no line number
Undefined
variable

line number

Median calculation

I

no line number
Array
bounds

line number
no line number

Undefined
variable

I line number

1.5 2.2

1.8 2.4 2.6
1.1 1.5 2.5

2.4 3.0 3.0

0.31 1.1

1.5 1.6 2.2
1.1 1.4 2.2

1.0 1.7

2.5

1.2

1.7

fined variable and a message without a line number,
subjects debugging scores for the line-number condition
exceeded those in the no-line-number condition,

Averages for debugging times are shown in Table 3.
Average debugging time decreased with increase in
expertise in all but two cases. Intermediate subjects were
slightly faster than the skilled subjects on the binary
program with an array-bounds error and a line-number
message. Novices were slightly faster than intermediates
on the median program with an undefined variable and a
message without a line number. Debugging times for the
line-number conditions were less than or equal to those
for the no-line-number condition in all but three in-
stances: novice and skilled programmers working on the

Table 3. Average Debugging Times

Novice Intermediate Skilled

Binary search

I

no line number

Array
bounds

line number

I

no line number
Undefined
variable

line number

Median Calculation

I

no line number
Array
bounds

line number
no line number

Undefined
variable

I line number

4.1 3.5 3.5

4.1 3.1 4.0
6.5 5.7 4.0

3.7 3.0 2.8

5.9 4.9 4.7

5.1 4.5 3.4
5.5 5.8 3.6

5.9 5.1 4.5
_

Degree of
F freedom Probability

(a) Analysis of Debugging Score
Binary search

Expertise main effect 11.9 2,181
Message main effect 15.53 1,181
Error X message interaction 7.87 1,181

Median calculation
Expertise main effect 5.04 2,181
Message main effect 4.10 1,181
Error X message interaction 5.51 1,181

(b) Analysis of Debugging Times
Binary search

Expertise main effect 4.98 2,181
Error main effect 4.38 1,181
Message main effect 15.41 1,181
Error X message interaction 16.00 1,181

Median Calculation
Expertise main effect 6.15 2,181

p < 0.8001
p < 0.6001
p < 0.0056

p < 0.0074
p < 0.9472
p < 0.0200

p < 0.0079
p < 0.0378
p < 0.0001
p < 0.0801

p < 0.9026

undefined variable error in the median program, and
skilled programmers working on the array-bounds error
in the binary program.

The data were analyzed using the BMDWV [l]
multivariate analysis-of-variance program. For the bi-
nary-search program, significant main effects of exper-
tise and message type, and a significant error by
message interaction, were found for both the debugging
score and time. The main effect of error type was also
significant for debugging time but not debugging score.
F statistics and corresponding probabilities are shown in
Table 4. For the median-calculation program, effects for
debugging score followed the same pattern as in the
binary-search program, but for debugging times, only a
main effect of expertise was found to be significant.

Debugging score interactions between error type and
message type are shown in Figure 1 for each level of
expertise. Two-way interactions between error type and
message type were significant for debugging score on
both the binary-search and median-calculation pro-
grams. Corresponding debugging-time interactions are
shown in Figure 2. Significant error by message
debugging-time interaction was found in only the binary
program. Although the three-way interaction between
expertise, error type, and message type was not signifi-
cant, the data are presented with separation by skill level
to show possible trends in this regard.

The effects of message type across skill levels are best
illustrated by differences in debugging success as de-
fined to be the percent of subjects capable of semanti-
cally correcting the error in the given amount of time.
These percentages are shown in Table 5 for each
program and both programs combined. Overall, percent

Effects of Programming Experience 201

3.0 --

2.0 --

1.0 --

skilled
intermed

novice

skilled
intermediate

novice

without
line number

with
line number

1

without with
1 ine number line number

ARFNY INXX LNXFINED VARIABLE

3.0 --

2.0 --

1.0 --

skilled
intermediate

novice

I

without
line number

I

with

line number

I I I
I I

without with
line number line number

AFRAY IIWEX LImEFINED VARIABLE

MDIAN cXuJLAT1m FTKBml
Figure 1. Debugging score (expertise X error X message).

202

6.0 -- 6.0 --

4.0 --

2.0 --

&

T

novice
skilled 4.0 --

intermediate

1

without
line number

I

with
line number

-1 I I

without with
line number line number

6.0 --

4.0 --

2.0 --

ru

ARRAY INIEX

P. W. Oman et al.

novice
intermediate
skilled

LMEFINED VARL4BLE

nov
int

ski

t
I 1

I

without with
line number line number

,
I

without

line number

I
I

with
line number

ARRAY INXX LMEFINED VARIABLE

IVEDIAN cALuLAT1m FFuxxM

Figure 2. Debugging time (expertise X error X message).

Effects of Programming Experience 203

Table 5. Percent Success

Novice Intermediate Skilled

Binary search

I
no line number

Array
bounds

line number

1

no line number
Undefmed
variable

line number

Median Calculation

I

no line number
Array
bounds

line number
no line number

Undefined
variable

I line number

Both programs

no line number
line number

62.5 88.8 85.7

66.6 100 86.6
38.8 52.9 85.7

82.3 100 100

12.5 38.8 42.8

52.9 50.0 71.4
37.5 47.0 73.3

35.2 58.8 57.1

37.8 57.1 71.9
59.0 77.1 78.9

success increases with both expertise and when error
messages include line numbers. However, the positive
effect of having line numbers with error messages
appears to diminish with increased skill level.

4. DISCUSSION

Results show support for all three hypotheses. Experi-
enced programmers are more successful in locating and
correcting errors in program code. They locate errors
faster and make the proper correction more often than
less experienced programmers. Furthermore, they are
less dependent upon debugging clues (like line numbers)
and can perform reasonably well without such aids.
They appear to make better use of available debugging
aids, which may be due to practice, a wider range of
experience to draw from, or increased domain knowl-
edge. Intermediate programmers appear stable and
predictable. Their performance invariably improves
when error messages contain line numbers, but in
general, is not as good as that of more experienced
programmers. Novice programmers’ debugging success
deteriorates in the absence of clues indicating the nature
and location of the errors. Their performance is very
poor in the absence of debugging aids. More experi-
enced programmers are less impacted by the loss of
these aids.

Vessey’s suggestion, that chunking ability is a better
measure of expertise than years of experience, may
partially explain why performance differences between

the intermediate and skilled groups were not as great as
expected. Our subject grouping was based entirely on
computer science coursework and not strictly on pro-
gramming ability or on the ability to organize “memory
chunks.” Another explanation is that intermediates had
more recent Pascal programming experience. They were
in the third (Spring) term of a data-structures sequence
that required much Pascal programming. On the other
hand, subjects in the skilled group completed the data-
structures sequence the previous year and were in the
third term of an operating-systems sequence that re-
quired much C programming.

Skill-level differences in debugging performance ap-
parently decrease with loss of application domain
knowledge. The binary-search program was chosen as
an example of a well-studied program familiar to all
subjects. The median program was chosen as an unusual
computation that subjects would not have studied as a
whole even though all were familiar with the parts of the
program. Although expertise differences hold across
both programs, in general, the differences are less
pronounced in the median-calculation program. This can
be seen by comparing the group averages for both
programs as shown in Table 6. Debugging-score group
differences for the median program are considerably less
than those for the binary-search program. However,
group differences in debugging time for the median
program are comparable to those for the binary-search
program. This suggests that domain knowledge in-
creases the probability of finding an error but does not
necessarily decrease the time required to find and
correct the error.

Shifts in debugging strategy by skilled programmers
could, in part, account for some of the peculiarities in
our data. Sheppard et al. [6] found that their subjects
used two general debugging strategies: (1) understand
the entire program before searching for the section with
the bug, and (2) use clues in the output to go directly to
the section of the program with the bug. The use of a
particular strategy was dependent upon the type and
amount of available debugging aids. It is interesting that
our skilled programmers, looking for an undefined

Table 6. Program X Skill-Level Averages

Novice Intermediate Skilled

Debugging Score
Binary search
Median calculation

Debugging time
Binary search
Median calculation

1.7 2.3 2.6
1.3 1.4 1.8

4.7 3.8 3.6
5.6 5.1 4.0

204

variable in the median program, with no line number for
a clue, actually scored higher, more often, and did so
faster, than comparable programmers given the same
error message with a line number. This suggests either
the occurrence of two different strategies (invoked by
the different message types) or the possibility of a
negative effect from the line-number condition. Because
this trend is not observed in the intermediate program-
mers, and marginal in the novice programmers, we
speculate that skilled programmers change strategies
according to the type of debugging aids available. This
conjecture is supported by Sheppard’s findings, but is
inconsistent with Vessey’s conclusion that experts first
try to gain an overall understanding of the program
before trying to isolate a bug. This discrepancy may be
due to differences between professional and student
programmers, or caused by the different methodologies
used to gathering data. Further study is need to resolve
this issue.

An inadvertent error in one set of test materials
provided additional support for the theory that the
debugging strategy of skilled programmers depends on
the information available. Besides the seeded error, the
function in the binary-search program given to the
skilled programmers did not assign a value to the
function name in one case. Even though the instructions
indicated that the program contained a single error, six
subjects noted and corrected both errors. Interestingly,
all six had received the program version containing the
error message without a line number. None of the
subjects, given the error message with line number,
found the accidental error. This strongly suggests that
the six subjects used a comprehension debugging strat-
egy and observed both errors while attempting to
understand the entire program. In our analysis, we
excluded the data for these subjects.

Specifically, we believe that skilled programmers first
use one of the two debugging strategies, the choice
depending on the problem environment, and then, if no
progress is made, promptly shift to the other approach.
Occasional shifts to and from the complementary strat-
egy may occur later, as the programmer gains knowl-
edge of the specific application.

We suspect that the use of multiple debugging
strategies has not been learned by less experienced
programmers. Intermediate programmers had improved
scores and substantial time decreases whenever line
numbers accompanied the error messages. Their pre-
dictable performance indicates a stable debugging ap-
proach across all treatment conditions. Novice program-
mers appear lost without debugging clues. Because they
are relatively new to the programming language syntax
and control structures, we speculate that their debugging

P. W. Oman et al.

efforts are near-random repetitions of past experiences
rather than organized strategies as outlined above.

5. CONCLUSIONS

Although this work demonstrates the existence of
debugging behavioral differences due to differences in
programming expertise, it does not explain how or when
debugging strategies are employed; nor does it explain
the interaction between type of error and the presence or
absence of line numbers on error messages. The strong
interaction between error and message supports the
notion of different classes of errors based on difficulty of
location and correction. That is, there appears to be
some errors where debugging clues are less helpful than
others, and some errors where debugging clues are
crucial for certain programmers. This has ramifications
in both computer science education and programming-
language design.

Additional studies should investigate when program-
mers use the program comprehension strategy versus
when they use the isolation strategy. How common is the
latter strategy? Is the former strategy used when the
latter fails? Is the choice of strategy dependent on
personality type as suggested by Littman et al. [5]?
Future work should address the following issues:

1.
2.

3.

4.

5.

Can these findings be replicated with logical errors?
Does minimizing problem domain knowledge re-
move all skill-level differences?
How do multiple errors affect shifts in debugging
strategy?
Why are intermediate programmers so consistent in
their approach to debugging? When do they start
using strategy shifts?
What effect does proximity between error location
and the statement(s) causing program termination
have on debugging behavior?

ACKNOWLEDGMENT

WewishtoacknowkQ8ChriaWeiaaandSaeedSadationfofth&
assistmceinformulathgandtesiingmaterialsusedinthisstudy.

REFERENCES

1. W. J. Dixon, BMDP Statistical Software 1981, Univer-
sity of California Press, Berkeley, California, 1981,

2. J. D. Gould, Some Psychological Evidence on how PeoPle
Debug Computer Programs, ht. J. Man-Machine Stud-
ies 7, 151-182 (1975).

3. J. D. Gould and P. Drongowski, An Exploratory Study of
Computer Program Debugging, Human Factors 16,
258-277 (1974).

4. L. Gugerty and G. M. Olson, Comprehension Differences

Effects of Programming Experience 205

in Debugging by Skilled and Novice Programmers, in
Empirical Studies of Programmers, (E. Soloway, and S.
Iyengar, eds.), Ablex, Inc., Notwood, New Jersey, 1986,
pp. 13-27.

5. D. Littman, J. Pinto, S. Letovsky & E. Soloway, Mental
Models and Software Maintenance, in Empirical Studies
of Programmers, (E. Soloway, and S. Iyengar, eds.),
Ablex, Inc., Norwood, New Jersey, 1986, pp. 80-98.

6. S. Sheppard, B. Curtis, P. Milliman, and T. Love,
Modem Coding Practices and Programmer Performance,
Computer 12(12), 41-49 (1979).

7. I. Vessey, Expertise in Debugging Computer Programs:
A Process Analysis, Int. J. Man-Machine Studies 23,
459-494 (1985).

8. E. Youngs, Human Errors in Programming, ht. J. Man-
Machine Studies 6, 361-376 (1974).

APPENDIX A

1

2

3
4
5
6
7
8
9
10
1.1
12
13
1‘4
I5
16
17
18
19
?O
?l
??
23
24
2s
2E
27
28
29
30
31
32
33
34
35
36
37
38
39
40

{ Binary search algorithm }
program binary(input, output);
const

size = 21;

tYPe
arraytype = array (l..size] of integer;

Yar
t : arraytype;
i, j : integer;

function BinnrySenrch(a : arraytype; key : inteqcr) ~~~rv,qr:
YX

low, high, middle : integer;
begm

low := I;
high := size;
while low < > high do

begin
middle :- (low + high);
if key < = a[middlej

then
high := middle

else
low := middle + I;

end;
II key = +w/l

then
BinarySearch := low

else
BinarySearcb := 0;

end; (BinarySearch runctmn }

begin (Main progmm }
for i := I M ?I do

t[il := 2 * i;
j := 12;
writeln(‘kcy = ‘, j, ’ vnluc = ‘, BinarySwrch(t. 1));
j := LOO;
writeln(‘key = ‘, j, ’ value = ‘, BinarySesrch(t. j));

end.

. ..**.......**..**..* ERROR *.*..*.****.**.***.**.**. l **.**..*****..**..***.* ~~~~~.*.**.**..I”*******.~.

error massage : index out of range at line number 20 error message : undefined value at line number 10
. ..**.~~...***.***.***..**...***.**.**.*.*.*******.*** ..******.**.**~***..***.*.****~****...***.**.******.**

A. Binary program with index out of range error. B. Binary program with undefined variable error.

1
2
3
4
5
6
1
8
9
10
11
12
13
14
15
16
17
13
19
20
21
22
23
24
2s
2G
27
28
29
30
31
32
33
34
35
3G
37
3%
39
‘IO

(Binary search algorithm }
program binary(input, output);
const

size = 21;

type
arraytype = array [1.&e) of integer:

“ar
t : arraytype;
I, 1 : integer;

function BinarySearch(a : arraytype: key integer) integer

“X
low, high, middle, size : integer;

begin
low := 1;
high := size;
while low < > high do

begin
,fnlddle := (low + high) div 2;
II key < - a(middle]

then
high := middle

else
low := middle + I,

end;
il’ key = ajlowj

then
BinarySearch := low

t!lX
BinirrySenrcb := 0;

end; (DiuarySearch function)

begin (Main program)
for i := I to ‘31 do

t(i\ = ‘? * I‘
’ j := ,?;

writeln(‘key = ‘, j, ’ v31lue = ‘, BiiwySwrch(t. j));
j := IW;
writeln(‘kcy = ‘, j, ’ value = ‘, DiwwyYe:wch(t, J)).

end.

206 P. W. Oman et al.

1

2
3

4

5
6
7
8
S
0
1
2
3
4
5
6
I
8
9
0
1
2
3
4
5
5
7
8
9
0
I
2
3
4
5

procedure Renddats(var a : arraytype; YIX size : integer);
var

i : integer;
begin

i := 1.
while (not eof) do

begin
resdln(a[i]);
i := i + 1;

end,
sire :- i - 1;

end; (Reoddrtn function }

begiu (h&in progrrm }
Readdnta(a, size);
(sort nrrny)
for i := 1 to size - I do

for j := I to size do
if a[j] > a]j+l] then

begin
temp := a[j] ;
n[j] := a[j+l];
a[j+l] := temp;

end;
if (size mod 2 5 0)
&en

I3 me~li~nv~lue := (nisiee div 21 + :+izc iliv 2 C I]) i ‘J.0
7 rise
8
9

{ purpose: to 5d median of II given set of integers }
pmgram Me~~(~put, output);

W’
arraytype - array [l..lOO] of integer;

Yar
* : arraytype;
i, j, sire, kmp : integer;
mediivaiue : real;

*****.********..******.*~~~*~.*****.f***************** l ********.*************** ~~~~**********..************

error message : index out of range at line number 28 error in-gs : undefined value at Iii+ number 28
.*.********************************.***************.**** ***t***..***.*****

C. Median program with index out of range error. D. Median program with undefined variable error.

?
2.
2,
Z!
?I
2
2!
2!
31
3.
3:
3:
3.
3:
31
3:
31
31
4(

I
2

{ PUJPSC: to 6nd median of a given set of integers }
program Me~~~mput, output);

3 type
4 arraytype - array [l..lODJ of integer;
5 “ar
6 a : arraytype;
7 i, j, size, temp : integer;
8 medianvalue : real;
9
0 procedure Readdata(a : arraytype; var size : integer);
1 Yar
2 i : integer;
3 begin
4 i := 1;
5 while (not eel) do
6 begin
7 readIn(a/iJ):
6 i := i + 1;
9 end;
D siw := i - i;
1 end; { Readdata function f
2
3 begin (Main program)
4 Readdata(n, size);
5 { sort array }
!3 for i :- I to sire - 1 do
7 for j := I to size - i do
J if a[j] > n]j+ij then
8 begin
3 tcmp := a]j] ;
1 a(j] := a(j+l];
z 3[j+l] := temp;
3 end;
I if (size mod 2 = 0)
i then
? medi~n~alue :E (a[siee div 21 + :r]sizc cliv 2 + ii) / ‘L.0
I else
1 medianvalue :I afsizc div ?/;
a writeln(‘median = ‘, mcdinnvnluc:5:?);
I end.

APPENDIX B. EXAMPLE TEST PACKET the listing is an execution error message. The error can
be corrected by changing only one statement. Find

Waft ins~c~ns to Subjects

Thk test is designed to measure your debugging
proficiency. It will not effect your grade in this, or
any other, course. It will not effect your standing in
computer science in any way.

-+Do not turn the page until told to do so+

The test is made up of two parts.

Part I: This part contains a listing of a standard
Pascal program that contains one error. The program
compiles but will not execute properly. At the bottom of

and circle the one statement that is causiug the error.
Then correct the error by changing only that statement.

It is a timed test, you will have 10 min to complete
Part I.

STOP when you have completed Part I.

Wait for your instructor to tell you when to start Part II.

Part II: This part is the same as Part I except that a
different Pascal program is listed. The program contains
one error; it compiles but will not execute properly. At
the bottom of the listing is an execution error message.

Effects of Programming Experience

PART I PART II

207

1
2
3
4

5
6
7
8
9
10
11
12
13
14
IS
16
17

18
19
20
21
22
23
24
25
28
27
28
29
30
31
32
33
34
35
36
37
38
39
40

{ Binary search algorithm)
program bii(input. output);
eon&

sire - 21;

tTpe
armytype - [L.&e] of integer; array

vu
t : arraytype;
i, j : iakgeer,

function BmarySeueh(a : amytype; key : inwpr) : integer;
Yar

low, high, middle : integer;
begin

low := 1;
high :- size;
while low < > high do

b+
middle := (low + high);
if key < = a(middle]

then
high :- middle

else
low := middle + 1;

end;
if key - ajlowj

then
BmarySearch := low

else
BmqSeMh :- 0;

end; (BinarySearch function)

begin (Main program)
for i :- 1 to 21 do

t[i] :- ? l i;
j := 12;
rrikln(‘kty - ‘, j. ’ value - 0 BiiarySeareh(t, j));
j := 100;
wrikln(‘key - ‘, j, ’ value = ‘, BiiarySearch(t. j));

end.

.EILROR.........................

error meuge : irrdnr out of range at I&e number 20
.~....~......~..~~~.~......~.~...~....~.~......~......

STOP: Do not go on to Part II until you are told to. STOP: DO not go back to Part I. Wait for instructions.

The error can be corrected by changing only one
statement. Find and circle the one statement that is
causing the error. Then correct the error by changing
only that statement.

It is a timed test, you will have 10 min to complete
Part II.

1 (purpcae: to 6ad median of a given set of integers]
2 program Medialqiiput, output);

3typs
4 armytype = amy [l..lOOl of integer;
5 YV
(I * : amytype;
1 i, j, size, kmp : inkger;
8 med&Ivalus : rerl;
9
0 procedure Reddak(a : armytype; var sire : integer);
1 “ar
2 i : inkger;
.3 begin
.4 i := 1;
.5 while (not eof) do
.g begin
.‘I readln(a(i]);
.8 i :- i + 1;
I9 end;
!O sire := i - 1;
!I end; (Readdata function)
!?
!3 begin (Main program)
!4 Readdata(a. size);
!S (WflarrJY)
10 for i := I to sire - 1 do
I? for j := 1 ta site - 1 do
28 if alj] > a(j+l] then
z9 begin
30 temp := aijl ;
31 a(jl :- a(j+II;
32 a[j+l\ := kmp;
33 end;
34 if (sire mod 2 - 0)
35 then
36 medianvalue :== (a(sire div 21 + ~(SIZC div 2 +ll) / 2.f
37 else
38
39 ~~~~~~~‘= ~~~~i~“vJlue:3~2),

40 end.

......I..*.*.....**..*. ERROR .*...*.....*..I***......

error messsge : undefined value

STOP when you have completed Part II and wait for
further instructions.

Please enter your social security number

Please circle one --) Male / Female

When your instructor says “Go” Turn the page and start
Part I. DO NOT go back to Part I.

