
ARTIFICIAL INTELLIGENCE 51

Understanding and Debugging Novice
Programs

W. Lewis Johnson
USC/ In format ion Sciences Institute, 4676 Admiral ty Way,

Marina del Rey, CA 90292, USA

ABSTRACT

Accurate identification and explication of program bugs requires an understanding of the pro-
grammer's intentions. This paper describes a system called PROUST which performs intention-based
diagnosis of errors in novice PASCAL programs. The technique used involves generating possible
goal decompositions for the program, matching them against the program, and then proposing bugs
and misconceptions to explain the mismatches. Empirical studies of PROUST's performance show
that it achieves high performance in finding bugs in nontrivial student programs.

1. Introduction

Learning to program is a t ime-consuming and frustrating process for most
novice programmers . One reason for this is that they have to expend so much
effort in debugging their programs. Program bugs hinder the learning process
in two ways. First, the students are distracted from the curriculum material that
they are trying to understand when the programs that they write have bugs
unrelated to the concepts being learned. Second, novices frequently have
misconceptions about programming language syntax and semantics, which lead
to confusions when their programs behave differently from what they expect. It
is extremely difficult for novices to discover on their own the misconceptions
which account for the unexpected behavior.

Bugs need not be a hindrance to novice programmers , however. If a tutor
were to supervise the students ' work and provide assistance when the students
make mistakes, then errors might even enhance the learning process. Perfor-
mance errors provide a unique opportunity for the teacher to understand the
students ' confusions and misconceptions [4]. Given such an understanding, the
teacher can then focus on remedying the student 's problems, clearing the way
for further progress through the curriculum.

Unfortunately, it is rarely possible to provide each student in a programming
course with an individual tutor. What is needed instead is a computer program

Artificial Intelligence 42 (1990) 51-97
0004-3702/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

52 W.L. JOHNSON

which can serve in the tutor 's role. Such a program would analyze the students '
programs, looking for bugs and bad programming style. It would then help the
students overcome the misconceptions that were responsible for the incorrect
code.

The process of analyzing programs for syntactic errors is well understood at
this point; techniques exist which do a fairly good job of identifying syntactic
errors [2, 13] and of correcting them [6, 15]. Semantic and logic errors, on the
other hand, are not so easily diagnosed. Most semantic and logical error
detectors focus on narrow ranges of bugs, such as uninitialized variables [10] or
spelling errors [32]. These errors all share the property that one can detect
them regardless of what the intended functionality of the program is. However ,
many logical errors result in programs which function, but which fail to
compute the desired results.

This paper will argue that in order to reliably diagnose as near to the
complete range of semantic and logical errors as possible, a debugging system
must understand the p rogrammer ' s intentions. A program is a designed
artifact; as such, its design must be taken into account when analyzing it for
bugs. The program has an intended function, and has been constructed in
order to achieve this function. Debugging should focus on whether the
intended function and design of the program are correct, and whether these
intentions have been properly executed. Such an approach makes it possible to
detect more bugs, and to explain better how to correct them. By relating bugs
to the student 's intended design, it may be possible to help students learn to
design their programs better.

This paper will show that intention-based analysis can be an effective method
for diagnosing bugs in programs. It requires knowledge of how to write
programs, what errors novice programmers are likely to make, and some
general understanding of what a given program is supposed to do. Given such
knowledge, one can identify the intended function of each statement in a
program, what bugs are present, and where they are manifested. A system
called PROUST will be described which determines the intentions underlying
novice programs and uses this understanding of intentions to perform accurate
analyses of nonsyntactic bugs. The results of empirical evaluations of PROUST
on student programs will be presented; these results will demonstrate the
effectiveness of the approach.

1.1. Intention-based analysis of an example buggy program

To see why understanding programmers" intentions is important in diagnosing
bugs, let us examine the bugs in an example novice PASCAl_, program. The
program to be considered here is a solution to the Rainfall Problem that was
assigned in an introductory PASCAL course.

Rainfall Problem. Noah needs to keep track of rainfall in the New Haven area

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 53

in order to determine when to launch his ark. Write a PASCAL program that will
help him do this. The program should prompt the user to input numbers from
the terminal; each input stands for the amount of rainfall in New Haven for a
day. Note: since rainfall cannot be negative, the program should reject
negative input. Your program should compute the following statistics from this
data:

(1) the average rainfall per day;
(2) the number of rainy days;
(3) the number of valid inputs (excluding any invalid data that might have

been read in);
(4) the maximum amount of rain that fell on any one day.

The program should read data until the user types 99999; this is a sentinel
value signaling the end of input. Do not include the 99999 in the calculations.
Assume that if the input value is nonnegative, and not equal to 99999, then it is
valid input data.

This problem requires that the students write a program which reads in a
series of numbers, each of which represents the amount of rainfall on a
particular day. Input termination is signaled when the user types the value
99999. The program is supposed to check the input for validity, compute the
average and the maximum of the input, and count the total number of valid
inputs and the number of positive inputs. The program must prevent the final
99999 from being included in the computations. This problem thus tests the
students' ability to combine a variety of computations into a single working
program.

Figure 1 shows a solution to the Rainfall Problem written by a novice
programmer. We will refer to this example repeatedly throughout this paper
when discussing PROUST. This program has a number of different bugs;
however, there is one set of bugs that is of particular interest. Instead of there
being a single loop which reads the data, processes it, and checks for 99999,
there are two. One is a repeat loop, starting at line 8 and ending at line 28. The
other is a while loop contained within the repeat loop. The inner while loop is an
infinite loop; it tests the variable RAIN against 99999, but never modifies RAIN.

Well-known analysis techniques such as data flow analysis [10] are capable of
detecting the infinite loop in the program in Fig. 1. However , if an infinite loop
is a manifestation of a more significant programming error, then simply
pointing out the infinite loop may distract the student away from correcting the
true error. In particular, if a loop does not belong in the program at all, then
the question of whether or not the loop is infinite is moot. Our empirical
studies of how students debug programs indicate that novice programmers tend
to correct the surface manifestations of bugs rather than the bugs themselves;
thus proper descriptions of bugs are crucial.

We believe that the proper analysis of the bug in this program is as follows.
The student probably did not intend the while statement at line 19 to loop at

54 W.L. JOHNSON

6
7

8

9
10

11

12
13

14

15

16
17

18

19
20
21

22

23

24

25
26

27

28
29

30
31

32

33
34

35

36

program Rainfall (input, output);

var

Rain, Days, Totalrain, Raindays, Highrain, Averain: real;

begin
Rain : - 0

repeat
writeln ('Enter rainfall');

readln;
read (Rain);

while Rain < 0 do
begin

writeln (Rain:0:2, 'is not ~)ossible, try again');

readln;

read (Rain)
end;

while Rain < > 99999 do
begin

Days : - Days + 1 ;

Totalrain := Totalrain + Rain;
if Rain > 0 then

Raindays : Raindays + 1;

if Highrain < Rain then
Highrain := Rain

end;

until Rain = 99999;

Averain := Totalrain/Days;

writeln (Days:0:0, 'valid rainfalls were entered');

writeln ('The average rainfall was', Averain:0:2, 'inches');

writeln ('The highest rainfall was', Highrain:0:2);
writeln ('There were', Raindays:0:0, 'in this period');

end.

Fig. l. A buggy so lut ion to the Rainfall Problem.

all. Instead, the effect of an if statement was intended. Since the input
statements are at the top of the repeat loop, and the loop exit test is at the
bottom of the repeat loop, there has to be a way for control to skip from the
input statements to the end of the loop when 99999 is read. Otherwise the
99999 would be processed as if it were a rainfall amount. An if statement would
serve this purpose, but the student has written a while statement instead.
Empirical analyses of novice programming errors [19] have shown that novice
programmers commonly confuse the meanings of if and while, particularly when
they are embedded within other loops. If this bug were to be described to the
novice programmer, the description should focus on the probable misconcep-

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 55

tion about the meanings of if and whi le , rather than just on the fact that the
while statement is an infinite loop.

The key difference between the above analysis and the analysis that a data
flow analyzer would produce is the following. A data flow analyzer analyzes the
behavior of the program itself, independent of the intentions underlying it. In
the above analysis, the focus was on understanding the intentions underlying
the program, and then on referring to those intentions in diagnosing bugs.
Thus the bug analysis presented above is an intention-based analysis; a data
flow analyzer, in contrast, performs non-intention-based analysis.

Figure 2 shows PROUST's output when analyzing the program in Fig. 1. The
output demonstrates PROUST's ability to understand the intentions underlying
the program. PROUST finds all of the bugs in the program, including the
while-for-if bug. Although PROUST's output indicates the possibility that the

NOW BEGINNING BUG REPORT:

> > Now Reporting CRITICAL Bugs in the SETUP part of your program:

You left out the initializations for the variables HIGHRAIN, DRYDAYS, RAINDAYS, and
TOTALRAIN. Programs should not fetch values from uninitialized variables! If you don't initialize

these variables to the values that you want, you will have no way of knowing what values they
will be initialized to.

(TO CONTINUE, PLEASE PRESS CARRIAGE RETURN)

> > Now Reporting MINOR Bugs in the SETUP part of your program:

The initialization at line 7 appears to be unnecessary.
The statement in question is:

RAIN := 0

(TO CONTINUE, PLEASE PRESS CARRIAGE RETURN)

> > Now Reporting CRITICAL Bugs in the CONTROL part of your program:

You used a WHILE statement at line 19 where you should have used an IF. WHILE and IF are

NOT equivalent in this context; using WHILE in place of IF can result in infinite loops.
The statement in question is:

WHILE RAIN <>99999 DO. . .

(TO CONTINUE, PLEASE PRESS CARIAGE RETURN)

> > Now Reporting CRITICAL Bugs in the OUTPUT part of your program:

The maximum and the average are undefined if there is no valid input. But lines 34 and 33

output them anyway. You should always check whether your code will work when there is no
input! This is a common cause of bugs.

You need a test to check that at least one valid data point has been input before line 30 is
executed. The average will bomb when there is no input.

BUG REPORT NOW COMPLETE.

Fig. 2. PROUST's output for the program in Fig. 1.

56 W.L. JOHNSON

program will enter an infinite loop, it does not analyze the program by looking
for infinite loops. Rather, it tries to understand the intended role of each
component of the program, and in the process discovers a while s tatement that
appears to have the intended function of an if statement. Once the bug is
found, PROUST can then proceed to explain how the bug will be manifested in
incorrect program behavior.

1.2. The principal components of intention-based diagnosis

We will now look at what a system needs in order to be able to perform an
intention-based analysis such as the one that we have just seen. The particular
mechanisms which PROUST uses to perform the analysis will be introduced.
Further discussion of these mechanisms will appear later in the paper.

1.2.1. Problem descriptions

One of the things which an intention-based analysis system must do, as
indicated above, is to determine what the intended function of the program is.
It is difficult to infer the intended function of a program just by inspecting the
program; there is no way of knowing whether the program's behavior is really
what the p rogrammer had in mind. One needs some way of forming expecta-
tions about what the program functionality ought to be. In PROUST the
expectations are provided in the form of a description of the problem that was
assigned to the students. It is assumed that the students ' intended functionality
will be reasonably close to what was stated in the problem.

Problem descriptions, for PROUST, are sets of goals to be satisfied, and sets
of descriptions of the data objects that test goals apply to. Figure 3 shows one
of the problem descriptions that PROUST uses, the description of the Rainfall
Problem. 1 These problem descriptions define data objects which the program
will manipulate, and some goals to be achieved on those objects. For example,
Output(Average(?DailyRain)) specifies that the average of the rainfall inputs
should be computed and output, where the rainfall input is referred to as the

?DailyRain isa Scalar Measurement.

Achieve the following goals:
Sentinel-Controlled Input Sequence(?DailyRain, 99999);
Input Validation(?DailyRain, ?DailyRain <0);
Output(A verage(?DailyRain)) ;
Output(Count(?DailyRain)) ;
Output(Guarded Count(?DailyRain, ?DailyRain >0));
Output(Maximum(?DailyRain)) ;

Fig. 3. The Rainfall Problem in PROUST's problem description notation.

The syntax of the description has been altered to make it more readable.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 57

object ?DailyRain. Note that goals implied by the listed goals, such as checking
for division by zero when the average is computed, are omitted. Explicitly
mentioned goals are more likely to match the students' intentions than implied
goals, which the students often overlook or get wrong.

1.2.2. Hypothesizing goal decompositions

Given a problem description, the task of identifying the intentions underlying a
program amounts to answering the following questions:

- H o w do the goals in the problem description relate to the goals that are
actually implemented in the program?

- H o w did the programmer intend to implement these goals?

That is, general expectations about the intended function of a program must be
refined into a specific account of the functionality and design of the program.

Although the problem description helps determine what the intended func-
tion of the program is, it says nothing about how that function is to be
implemented. In fact there is nothing it could say, because each student is
likely to implement the problem goals in a different way. In small programs it
may be possible to enumerate the different ways of solving the problem, but in
more complex problems such as the Rainfall Problem the number of possible
solutions is too great. When an intention-based diagnosis system works in a
complex domain such as PROUST's, it cannot rely solely on a canned descrip-
tion of possible solutions. Instead, it must be able to construct a description of
the intentions underlying each individual student solution.

In order to construct descriptions of novice intentions, PROUST relies upon a
knowledge base of programming plans. Programming plans, as defined by
Soloway, are stereotypic methods for satisfying programming goals [29]. Rich's
programming cliches serve a similar function [22]. PROUST's plan knowledge
base was constructed as a result of studying commonly occurring patterns of
code in PASCAL programs, and from examples culled from programming
textbooks. PROUST combines these plans into possible implementations for
each goal, and then matches the plans against the program. If the student's
code matches one of the predicted plans, then PROUST concludes that the
student's intended implementation matches fairly closely to the plan that
matched.

When PROUST combines plans into predictions of how the student im-
plemented the problem goals, it is said to be generating possible goal decompo-
sitions for the problem. A goal decomposition relates the goals that a program
is supposed to achieve to the plans that achieve it. In the process of going from
goals to plans, it may be necessary to break goals into sets of subgoals,
combine related goals into a larger goal, and add goals that are not explicitly
stated in the problem. For nontrivial problems, there is often a large number of
possible goal decompositions.

58 W.L. JOHNSON

write('Enter rainfall value:');

read(Rain);

while Rain < > 99999 do

begin

if Rain < 0 then

writeln('lnvalid input, try again');

if Rain :> 0 then

Raindays : - Raindays + 1 ;

if Highrain -~ Rain then

Highrain : - Rain;

if Rain :-~ 0 then

begin
Totalrain : - Totalrain + Rain;

Days :-- Days ÷ 1 ;

end;

write('Enter rainfall value:');

read(Rain);

end

Fig. 4. An alternative way of combining input and input validation.

An example of where goals can be combined in different ways in the Rainfall
Problem is in deciding whether the goal of inputting the rainfall data and the
goal of checking it for validity should be combined. If the two goals are
combined into a single plan, then a program such as the one in Fig. 1 results.
There the contiguous block of code from line 10 to line 17 reads, tests, and
then re-reads the data. If the Input goals and the Input Validation goal are not
combined, then they may wind up in separate parts of the program, as in the
example in Fig. 4.

It should be emphasized that the goal decomposit ion that PROUST hypoth-
esizes for a program need not correctly implement the goals in the problem
description. The student may have decomposed goals improperly, or have used
an inappropriate plan. In such cases PROUST's goal decomposit ion should still
reflect what the student did. PROUST's programming knowledge base is there-
fore extended so that it can generate incorrect goal decompositions. PROUST is
thus able to predict some kinds of bugs as it constructs goal decompositions.
Not all bugs are recognized in this fashion, but a significant number are.

1.2.3. When predicted intentions fail to match

Even though PROUST generates a number of goal decompositions for each
goal, there is no guarantee that any of them will match the student 's program
exactly. In fact, mismatches are what most often provide clues that there are
bugs in the program. If we have chosen the right goal decomposit ion, and it
fails to match the program, then the mismatches can be explained as failed
at tempts on the part of the p rogrammer to implement the goal decomposition
in the code.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 59

SENTINEL READ-PROCESS REPEAT PLAN

Constants: ?Stop
Variables: ?New
Template:

repeat

subgoal lnput(?New)
subgoal Sentinel Guard(?New, ?Stop, ?*)

until ?New ?Stop

Fig. 5. A plan for implementing Sentinel-Controlled Input Sequence.

PROUST detects the possibility of a while-for-if bug in the example program by
matching different goal decompositions against the program. The goal that
PROUST tries to decompose is the Sentinel-Controlled Input Sequence goal, the
goal of reading in a sequence of numbers until some designated sentinel value
is reached. It constructs several goal decompositions for this goal, some using
while loops, some using repeat loops; it also tries different ways of structuring
the loop. The closest decomposition that it finds uses the SENTINEL READ-
PROCESS REPEAT PLAN, shown in Fig. 5. PROUST first matches the repeat
statement pattern in the plan against repeat statement at line 8 in the program.
It then selects plans to implement the subgoals in the plan, Input and Sentinel
Guard. No plan for implementing the Sentinel Guard subgoal matches the
program. All of PROUST'S plans for implementing Sentinel Guard require that
there be an if statement to test for the sentinel value; no such if statement
appears in the program.

Now, in order to make sure that the student's program is properly under-
stood, some knowledge of common student errors is needed. We need to be
able to recognize that the while loop in program could be a buggy implementa-
tion of the expected subgoal. In PROUST this knowledge is represented as a
knowledge base of production rules, called plan-difference rules. These plan-
difference rules are responsible for suggesting bugs and misconceptions which
account for the mismatches. One such rule, a rule for recognizing when while
statements were used in place of if statements, is paraphrased in Fig. 6.
Plan-difference rules either account for the differences between the plan and
the code by means of bugs and misconceptions, or suggest a way to transform
the plan to make it fit the programmer 's apparent intentions better.

IF a while statement is found in place of an if statement,
AND the while statement appears inside of another loop,

THEN the bug is a while-for-if bug, probably caused by
a confusion about the control flow of embedded loops.

Fig. 6. Paraphrase of a plan-difference rule for explaining while-for-if bugs.

60 W.L. JOHNSON

1.3. Summary of PROUST'S approach

To summarize, intention-based errors diagnosis, as it is realized in PROUST,
involves performing the following steps:

-generating hypotheses about the intentions underlying the program,
-ma tch ing these hypothesis against the code,
-explaining the mismatches.

PROUST is unique in that it can generate a range of hypotheses to test against
each program, and because it uses knowledge of common bugs and misconcep-
tions to explain mismatches.

Subsequent sections will explore the different stages of PROUST'S analysis in
further detail. Section 3 describes the process of constructing goal decomposi-
tions. Section 4 describes plan-difference analysis. Section 5 describes how
PROUST chooses among alternative interpretations of the program. A more
detailed description of each of these processes can be found in [16].

2. Comparing PROUST'S Approach to Other Approaches

A number of systems have been built to analyze program errors. Virtually all
of these systems are non-intention-based. Instead of identifying the pro-
grammer's intentions, they analyze the structure or behavior of the program,
and then infer bugs directly from this analysis. In this section some of these
other approaches will be compared against PROUST's. In general, other systems
cannot recognize as wide a range of bugs, nor can they diagnose bugs as
accurately. We will then look at the few systems which are capable of
intention-based analysis in other domains, or in other contexts, in order to see
how these systems compare with PROUST.

2.1. Non-intention-based approaches

The most common approach to finding nonsyntactic program bugs is to look
for anomalous program behavior or structure. The focus here is on programs
which can clearly be seen to have bugs, regardless of what the programmer's
intentions were. Some systems look for anomalous data flow [10], computa-
tions that may not terminate [33], or compare the code against a catalog of
common novice mistakes [30]. Others try to interpret runtime errors [14, 32].
Still others analyze program traces for surprising behavior [31]. These systems
may be effective for finding certain classes of bugs, but they will not work when
the program has no obvious anomalies. Furthermore, they are not very good at
pinpointing where the error occurred and why. We saw this in the while-for-if
bug in Fig. 1. Without any knowledge of the intended function of the faulty
loop, there is no way of knowing whether the exit test of the loop is wrong,
whether the body is wrong, or whether a loop was intended at all. Thus a

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 61

system which looks for common anomalies will not be able to help a novice
programmer realize his intentions in the code.

Another way to find bugs without knowledge of the programmer 's intentions
is to have the programmer say what is wrong with the program, and have the
system try to trace the cause of the bug. The user describes the error by
supplying test data which causes the program to generate incorrect output, and
indicating the discrepancies between the desired output and the actual output.
This approach is used in Eisenstadt's P R O L O G Trace Package [8], and in
troubleshooting systems such as FALOSY [25], E. Shapiro's debugger [27], and
D. Shapiro's SNIFFER system [26]. These systems all assume that the pro-
grammer is competent enough to spot any and all incorrect behavior. This
assumption is not valid for novice programmers; in fact part of what novice
programmers must learn is how to test their programs systematically. A
debugging system for novices should be smart enough to find bugs without
depending upon the user for assistance.

2.2. Intention-based approaches

In comparison to the number of non-intention-based error diagnosis systems,
the number of intention-based ones are few. Those that exist are relatively
limited either in their ability to hypothesize intentions underlying programs, or
in their ability to handle a wide range of programming errors.

A first step toward intention-based diagnosis is to analyze programs by
comparing them against one or more ideal solutions supplied by the instructor.
LAURA was an early example of the use of this approach [1]. It was given a
single ideal solution for each problem, and compared student solutions against
the ideal. Such an approach is acceptable if there is little variability in correct
problem solutions, i.e., if the goal decompositions of solutions are essentially
the same. In the programming problems that PROUST analyzes, there is simply
too much variability for such a scheme to work.

T A L U S [23] is another system that compares ideal solutions against programs;
it compares each program against a suite of known correct algorithms. TALUS
reports the differences between the student's program and the most closely
matching correct algorithm. TALUS is similar to PROUST in that it analyzes
programs by comparing them against hypothetical algorithms. It differs from
PROUST in that all possible goal decompositions must be built in ahead of time,
and because it has no knowledge about what bugs and misconceptions are
likely to occur in novice programs. Thus T A L U S is unlikely to perform as well
as PROUST on problems where many variations in goal decompositions are
possible, and where students are likely to make mistakes which obscure the
intended function of the code. There is a number of different goal decomposi-
tions for the Rainfall Problem, resulting from decisions about how to check for
boundary conditions, and how to combine the various goals stated in the

62 W.L. JOHNSON

problem. Misconceptions about the semantics of PASCAL keywords such as
while, if, repeat, begin, and end can frequently result in programs with bizarre
structure which is hard to relate to any correct program solution.

The LISP tutor [9] can perform intention-based analysis of errors in LISP
programs. It has a model of what the student 's current goals are, and updates
this model whenever the student makes an edit to the program. If the student
makes an incorrect edit to the program, the LISP tutor tries to understand why
the student made that change, based upon the tutor 's model of the student 's
intentions. It then corrects the student immediately.

The LISP tutor is successful at diagnosing errors, provided that it understands
the programmer ' s intentions properly. Such an understanding is possible only if
the tutor knows what goal the p rogrammer is carrying out at each point in the
task. In nontrivial programs, this can be difficult, and the LISP tutor therefore
requires guidance from the student. For example, when a student is writing a
recursive program using the LISP tutor, the tutor forces the user to select from
among a predefined set of recursion plans. The tutor then supplies the student
with a program template, which he or she fills in. Recursion plans which do not
belong to the predefined set are disallowed.

The advantage of the LISP tutor 's approach is that it provides the user with
immediate feedback when errors are encountered. The disadvantage is that it
restricts the f reedom of the student in designing the program. Although
PROUST cannot currently analyze recursive programs, it can analyze iterative
ones, and it does not require guidance from the user to do so. PROUST also is
designed to analyze programs which achieve multiple goals; it does not
presume that these goals will be satisfied in any particular order. The LISP tutor
is designed to handle programs which achieve a relatively small number of
goals; it must assume a small number in order to be able to predict what the
user 's goal state might be at any given time.

The MACSYMA advisor [13] is similar to PROUST in that it critiques a novice's
use of MACSYMA after the novice has a t tempted to solve the problem. The
problems that it analyzes require fewer steps to solve than PROUST'S, however.
Fur thermore , the MACSYMA advisor makes simplifying assumptions about the
student 's abilities: it assumes that the students ' errors are caused only by
factual misconceptions about MACSYMA commands. PROUST makes no similar
assumption: it is designed to handle the bugs that novice programmers are
actually observed to make, regardless of cause. The difference in assumptions
results in differences between PROUST's and the MACSYMA advisor's repre-
sentations of intentions, as we will see later on.

3. Goal Decompositions

This section describes PROUST's goal decompositions, and explains how they
are constructed. These goal decomposit ions are central to PROUST: PROUST'S

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 63

ability to analyze student programs successfully depends upon its ability to
construct goal decompositions which fit these programs. The goal decomposi-
tions constitute a model of the student's intentions, a model which is used
when identifying and describing bugs. The discussion in this section will
proceed as follows. First, the content and purpose of goal decompositions will
be discussed. Then the knowledge used in creating these goal decompositions
will be discussed. Then the knowledge used in creating these goal decomposi-
tions will be described, together with the process which creates them. Finally,
the effectiveness of PROUST at recognizing the goal decompositions underlying
programs will be assessed.

3.1. The contents of goal decompositions

A goal decomposition is an account of how the goals in the problem are
realized in the program. It relates goals to the means by which the goals are
implemented; i.e., it relates goals to subgoals and/or plans. The goal decompo-
sition describes why each goal or subgoal arose as part of the solution, e.g., it
was dictated by the problem statement, or it was implied by one of the goals in
the problem statement. PROUST's goal decompositions thus indicate, for every
statement in the program, what goal that statement serves to implement, and
in turn how the implemented goal fits into the overall scheme for solving the
problem.

In order to see what goes into PROUST's goal decompositions, let us examine
the goal decomposition generated by PROUST for the example program in Fig.
1 in some detail. An analysis will be presented of the implementation of the
goal Sentinel-Controlled Input Sequence, the goal of inputting a sequence of
values until a sentinel value is read, in this program. An excerpt of the
program relating to this goal appears for reference in Fig. 7.

8 repeat
9 writeln ('Enter rainfall');

10 readln;
11 read (Rain);
12 while Rain< 0 do
13 begin
14 writeln (Rain:0:2, 'is not possible, try again');
15 read In;
16 read (Rain)
17 end;
18
19 while rain <>99999 do
20 begin

28 end;
29 until Rain = 99999;

Fig. 7. An excerpt of the program in Fig. 1.

64 W.L. JOHNSON

PROUST'S goal decomposit ion for this example refers to several goals and
plans, each of which will be defined below. The following goals will be referred
to in P R O U S T ' s goal decomposition:

-Sentinel-Controlled Input Sequence: read data and process it until a
sentinel value is input;

- I n p u t Validation: ensure that input data is valid;
- I n p u t : read a single datum;
- Sentinel Guard: guard against a sentinel value accidentally being processed

as data.

The following plans will be used:

- SENTINEL READ-PROCESS REPEAT PLAN: a repeat loop, in which an Input
subgoal, a Sentinel Guard subgoal, and a set of computat ions on the input
are found (this plan was shown in Fig. 5);

- VALIDATED PROCESS-READ WHILE INPUT PLAN: an Input subgoal, followed
by a while loop which tests the input for validity, and re-reads it if
necessary;

- SENTINEL SKIP GUARD PLAN: an if s tatement test for a sentinel value.

Note that here, as in the rest of this article, names of goals appear in italics;
names of plans appear in capitals.

PROUST's goal decomposit ion for the example program is as follows.

The problem description includes two goals, among others: Sen-
tinel-Controlled Input Sequence and Input Validation. The Sentinel-
Controlled Input Sequence goal is implemented using the SENTINEL
READ-PROCESS REPEAT PLAN. The Input subgoal of the plan is
combined with the Input Validation goal, and the resulting goal is
implemented using a VALIDATED PROCESS-READ WHILE INPUT
PLAN. This plan matches lines 10 through 17 in the program. The
Sentinel Guard subgoal of the SENTINEL READ-PROCESS REPEAT
PLAN is implemented using a SENTINEL SKIP GUARD PLAN. How-
ever, there is a bug in this plan: a while s tatement was used instead
of an if.

PROUST's account of the code in Fig. 7 maps the goals in the problem
statement onto plans, and maps the plans onto the code. Each plan is a
program template, often containing subgoals which have to be filled in using
other plans. Some plans implement a single goal; others, such as the VAL-
IDATED PROCESS-READ WHILE INPUT PLAN, implement more than one goal.
Each plan is mapped onto particular lines in the program. The goal decomposi-
tion thus identifies the overall design of the program, and what role each
statement in the program plays as part of the design. It makes no claims about
how the student went about producing this design, e.g., which goals the
student a t tempted first when solving the problem.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 65

3.2. Knowledge used in constructing goal decompositions

In order to generate goal decompositions for novice programs, PROUST re-
quires an extensive knowledge base describing how novices write programs.
This knowledge base contains the results of extensive empirical analyses of
programs written by novice programmers [3, 17, 19]. The knowledge base is
organized as a network of frames, one frame for each plan and goal in the
knowledge base. The knowledge base includes plans that novices frequently
use to implement programming goals, and it describes common ways in which
novice programmers reformulate goals.

3.2.1. Goal frames

Goal frames in PROUST list various properties of goals, the most important
being the possible ways of implementing the goal. When PROUST is construct-
ing a goal decomposition incorporating a goal such as Sentinel-Controlled Input
Sequence, it looks up the goal frame to see what alternative implementations
are listed there. Each possible implementation is used to construct an alterna-
tive goal decomposition.

Figure 8 shows PROUST's description of the goal Sentinel-Controlled Input
Sequence. The possible implementations are listed in the Implementations slot of
the goal frame. Of the six implementations listed, the first four, SENTINEL
PROCESS-READ WHILE, SENTINEL READ-PROCESS WHILE, SENTINEL READ-

PROCESS REPEAT, and SENTINEL PROCESS-READ REPEAT, are all plans. One of
these, SENTINEL READ-PROCESS REPEAT, was employed in constructing the
goal decomposition in the previous section. The last two implementations are
knowledge structures called "goal reformulations," which will be described
later in this section.

The example in Fig. 8 also shows some of the other slots that goal frames
typically have. The Form and Main Variable slots define the parameters of the
goal: the Form lists all parameters that the goal can take, and the Main Variable

Instance Of:
Form:
Main Variable:
Name Phrase:
Outer Control Goal:
Implementations:

Sentinel-Controlled Input Sequence

Read & Process
Sentinel-Controlled Input Sequence(?New, ?Stop)
?New
"sentinel-controlled loop"
T

SENTINEL PROCESS-READ WHILE PLAN
SENTINEL READ-PROCESS WHILE PLAN
SENTINEL READ-PROCESS REPEAT PLAN
SENTINEL PROCESS-READ REPEAT PLAN
BOGUS YES-NO LOOP
BOGUS COUNTER-CONTROLLED LOOP

Fig. 8. A goal.

66 W.L. JOHNSON

slot indicates which parameter is the principal input or output of the goal. The
Instance Of slot relates goals to more abstract goal classes that they belong to.
Sentinel-Controlled Input Sequence belongs to the goal class Read & Process,
which consists of those goals which perform some sort of iterative reading and
processing of data. The Name Phrase slot indicates how to describe the goal to
a student, in English, should there be a bug in the implementation of this goal.
The Outer Control Goal slot gives an estimate of how much code is required to
implement the goal; a T here indicates that the code will be one of the larger
constructions in the student's program. These estimates help PROUST decide
which goals to analyze first in a student's program, through a process described
in detail in Section 5.

3.2.2. Plans

Just as there is a frame in the knowledge base for each goal, there is a frame
for each plan. Currently PROUST's knowledge base comprises more than fifty
plans. Each frame contains a plan template, which is a pattern of statements to
match against the student's code. As we saw in the SENTINEL READ-PROCESS
PLAN in Fig. 5, these templates can have subgoals embedded in them. The
subgoals are added to the goal decomposition, after which PROUST generates
possible goal decompositions for them in turn, which are then matched against
the code. Plans thus serve a dual role in PROUST: they indicate the textual
structure that the code must have, and they also indicate the supergoal-subgoal
structure of the code.

Figure 9 shows the SENTINEL READ-PROCESS REPEAT PLAN, in greater detail
than the version that appeared in Fig. 5. This plan frame has three slots:
Constants, Variables, and Template. The Template slot contains the plan template
to be matched against the program. This template consists of a repeat statement
of the form repeat.., until ?New = ?Stop. Contained within the repeat statement
are two subgoals, Input and Sentinel Guard. Their position in the plan template
dictates where the code implementing these goals should appear in the
program. Since the Input subgoal is at the top of the body of the repeat loop
pattern, the code that implements the subgoal should bc at the top of the

Constants:
Variables:
Template:

Mainloop:
Next:
Internalguard:

SENTINEl_ READ-PROCESS REPEAT PLAN

?Stop
?New

repeat
subgoal lnput(?New)
subgoal Sentinel Guard(?New, ?Stop, Process: ?*)

until ?New ?Stop

Fig. 9. The SENTINEL READ-PROCESS REPEAT PLAN, shown in greater detail.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 67

student 's repeat loop. The code implementing Sentinel Guard should immedi-
ately follow the code implementing the Input goal, since the Sentinel Guard
goal immediately follows the Input goal in the plan.

All symbols in the plan template preceded by question marks are pat tern
variables. Pattern variables are bound to data in the student 's program when
the plan is matched. The Constants and Variables slots are used to declare
pattern variables, and to indicate the kinds of data that they match. A pat tern
variable that is declared in the Constants slot must be bound to a fixed value;
for example, the constant ?Stop is bound to 99999 in solutions to the Rainfall
Problem. A pat tern variable that is declared in the Variables slot must be bound
to some varying quantity, e.g., a PASCAL variable. The pat tern variable ?New
in Fig. 9, which represents the data that the sentinel-controlled loop reads and
processes, is declared variable.

As the example in Fig. 9 shows, the s ta tement patterns in plan templates are
represented in a form similar to the syntactic structure of the code. For
example, the pat tern for the repeat s tatement states specifically that a repeat
s tatement should be matched, and not some other kind of looping statement
such as a while statement. This syntactic orientation contrasts with the plan
calculus of Rich [22], in which plans are represented in a programming-
language-independent form. A syntax-oriented representat ion is used in
PROUST to provide lexical cues for recognizing buggy code in which the
syntactic structure is wrong. The while-for-if bug in Fig. 1 is typical here. In the
course of analyzing numerous novice PASCAL programs, many programs were
encountered where syntactic constructs were either used inappropriately or
were misused. Here are some other examples:

-begin-end pairs are sometimes inappropriately used to indicate the boun-
daries of loops. They appear lexically outside of the loop, rather than
inside.

-begin-end pairs are sometimes omit ted entirely.
- Extra repeat s tatements sometimes appear at the end of a program, as if to

indicate that control should branch back from that point, as in a BASIC next
statement.

In order to interpret programs with bugs such as these, one needs to know
exactly which syntactic keywords were used in the program, and where. Thus
the relevant syntactic keywords were built into the plan templates. If a
syntactic keyword is being used inappropriately, the plan will fail to match.
Plan difference rules, as ment ioned in Section 1.2.3, can then react to and
explain the incorrect keyword usage in the context of the plan. If one were to
use a more abstract plan calculus representat ion for plans, one would then
have to maintain two different representat ions of the same program, one used
for plan analysis and another for bug analysis.

68 W.L JOHNSON

Each significant statement or subgoal in a PROUST plan has a label attached
to it. In the SENTINEL READ-PROCESS REPEAT PLAN, the repeat statement is
labeled Mainloop, the Input subgoal is labeled Next, and the Sentinel Guard
subgoal is labeled Internalguard. These labels are used to characterize the
function of each component of the plan. There is a fixed, predefined set of plan
labels which are used to annotate all plans in the knowledge base. Mainloop
labels, for example, are always associated with the looping statements of plans.
Plan labels differ from subgoals in that instead of characterizing the function of
each plan component separately, they characterize the role that the component
plays within the overall plan. For example, Input subgoals can be used either to
initialize variables or to obtain successive values for variables. Because the
Input subgoal in the SENTINEL READ-PROCESS REPEAT PLAN is labeled Next,
rather than Init, PROUST can tell that the Input subgoal does not initialize ?New,
but instead obtains successive values of ?New.

Not all subgoals of plans must be implemented in a specific place in the
program, as the Input and Sentinel Guard subgoals of the SENT1NEL READ-
PROCESS REPEAT PLAN must be. Some plans leave the location of subgoal
implementations unspecified. The AVERAGE PLAN, the ordinary plan for com-
puting the average of a sequence of values, is an example of a plan which does
not specify where subgoals should be found. The AVERAGE PLAN appears in
Fig. 10. This plan computes the average by dividing the sum of a sequence of
values by the count of the number of values in the sequence. The sequence of
values is represented by the pattern variable ?New. The goal of computing the
sum of a sequence of values is called Sum: the goal of counting the number of
values is called Count. It does not matter where the sum and count are
computed, as long as they are computed before the AVERAGE PLAN is invoked.
Therefore the Sum and the Count goals are not specified as plan components;
instead, they are listed as "posterior goals," i.e., goals that should be added to

AVERAGE PLAN

Variables: ?Avg, ?Sum, ?Count, ?New
Posterior Goals:

Count(?New, ?Count)
Sum(?New, ?Sum)
Guard Exception(component Update of goal Average,

((?Count from goal Count) = 0))
Exception Condition:

(?Count from goal Count) - 0
Template: (component Mainloop of goal Read & Process)

followed by:
Update: ?Avg:= ?Sum/?Count

Fig. 10. A plan with two different kinds of subgoals.

U N D E R S T A N D I N G A N D D E B U G G I N G N O V I C E P R O G R A M S 69

the goal decomposition, but which are not subcomponents of the plan. 2 The
third posterior goal, Guard Exception, requires that the average computation
not be performed if the count of data items is zero. The Exception Condition slot
supplies the conditions under which the results of the plan are undefined, i.e.,
when the count of data items is zero.

3.2.3. Goal reformulations

Suppose that a student fails to follow the problem requirements strictly, and
writes a program which reads a fixed number of inputs, rather than reading
until 99999 is typed. Such slight deviations in program goals occur with some
regularity in programs written by novices. In order to understand such a
program, PROUST much recognize that the student's goals deviate from the
problem description. Goal reformulations are used to predict and characterize
such deviations.

In general, goal reformulations substitute one set of goals for another set of
goals. The new goals may or may not be equivalent to the old goals. PROUST'S
goal for reading and processing a fixed number of inputs is called Counter-
Controlled Input Sequence, reflecting the fact that a counter-variable is used as
the loop control variable in such cases. PROUST reformulates its Sentinel-
Controlled Input Sequence goal into a Counter-Controlled Input Sequence goal
in order to construct an accurate goal decomposition for the student's program.
Since the student's goal is inappropriate for the problem the goal decomposi-
tion must be marked as buggy.

Goal reformulations such as the one going from Sentinel-Controlled Input
Sequence to Counter-Controlled Input Sequence are stored in PROUST's knowl-
edge base as goal reformulation frames. Two of the six implementations for
Sentinel-Controlled Input Sequence, B O G U S YES-NO L O O P and B O G U S C O U N T E R -

CONTROLLED LOOP, are goal reformulation frames. Figure 11 shows one of

BOGUS COUNTER-CONTROLLED LOOP

Form:
BOGUS COUNTER-CONTROLLED LOOP(?New, ?Stop)

Component Goals:
Counter-Controlled Input Sequence(?Cnt, ?New, ?Max)

Bugs:
Implements Wrong Goal((Lisp code for further describing bug))

Fig. 11. A buggy reformulat ion of Sentinel-Controlled Input Sequence.

2 The word " 'posterior" is used because the goals are added to the goal decomposit ion after the
plan template has been matched. This is an efficiency consideration, to ensure that no further
development of the goal decomposit ion is per formed until PROUST has determined that the
current plan template matches the code.

70 W.L. JOHNSON

these, the BOGUS COUNTER-CONTROLLED LOOP reformulation. The reformula-
tion frame contains two principal slots: a Component Goals slot, which lists the
goals which will replace the old goals, and a Buos slot, which describes the bug
associated with this goal reformulation. The bug description indicates that the
student is implementing the wrong goal; the details of the bug description are
provided by a piece of LISP code that is not shown here. Such goal reformula-
tion frames are examples of buggy novice "knowledge" about programming,
used to characterize common flaws in novice goal decompositions.

Another example of goal reformulation appeared in the goal decomposition
of the program in Fig. 1. There the goals Input and Input Validation were
combined into single goal, implemented using the VALIDATED PROCESS-READ
WHILE INPUT PLAN. This is done by first reformulating the two goals into a
single goal, called Validated Input, and then looking for a plan to implement
that goal. To handle cases such as this, reformulation rules are associated with
goals such as Input and Input Validation in the knowledge base. Such rules fire
when a goal is being decomposed while other related goals are active,
suggesting ways of regrouping the goals.

3.3. Constructing and matching goal decompositions

The discussion will now turn from the knowledge used in goal decompositions
to the process of constructing goal decompositions and matching them against
the student's code. This process involves searching a state space called the
interpretation space. The term "interpretation" will be used in this article to
refer to the entire body of information gained when analyzing a student's
program. The current discussion focuses on two parts of interpretations, goal
decompositions and the mapping between goal decompositions and the stu-
dents' code.

Each state in the interpretation space includes three things:

- a n agenda of goals whose implementation in the program has yet to be
determined,

- a partial goal decomposition,
- matches between the plans in the partial goal decomposition and the code.

In the initial state, the goal agenda is exactly those goals which are listed in the
problem description, and the partial goal decomposition is empty. In the final
state, the goal agenda is empty, and the goal decomposition is completely
specified. As PROUST traverses the state space, it incrementally elaborates the
goal decomposition and matches the plans in the goal decomposition against
the program.

The following types of transitions are performed between states:

-goal selection: a goal is selected from the goal agenda;

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 71

- goal reformulation: the selected goal, possibly together with other goals, is
reformulated;

- plan selection and matching: the selected goal is implemented using a plan,
and the plan is matched against the program. Any subgoals in the plan are
added onto the goal agenda.

PROUST goes through a cycle of these transitions, alternately selecting goals
and either selecting and matching plans or reformulating goals. The set of
states that PROUST passes through, together with the transitions between them,
constitute a tree, called the interpretation tree. The interpretation tree is
implemented literally in PROUST as a tree of nodes, each representing a
different state in the interpretation space.

The construction of the interpretation tree for the Rainfall Problem begins as
follows. PROUST starts by selecting the goal Sentinel-Controlled Input Sequence.
Then possible goal decompositions involving Sentinel-Controlled Input Se-
quence are identified. From the goal frame for Sentinel-Controlled Input
Sequence shown in Fig. 8, PROUST finds that there are four possible plans:
SENTINEL PROCESS-READ WHILE, SENTINEL PROCESS-READ WHILE, SENTINEL

READ-PROCESS REPEAT, and SENTINEL PROCESS-READ REPEAT. There are also
two possible buggy goal reformulations: BOGUS YES-NO LOOP and BOGUS
COUNTER-CONTROLLED LOOP. PROUST therefore constructs six new interpreta-
tion states, four for the plans and two for the reformulations, and links them to
the current state. Each state includes an agenda of goals remaining to be
processed. In the case of the plan selection states, the goal agenda is the
original goal agenda minus Sentinel-Controlled Input Sequence. For the goal
reformulation states, the agenda also includes the new goals added as a result
of the goal reformulation. In the case of the BOGUS COUNTER-CONTROLLED
LOOP state, for example, the goal agenda contains the added goal Counter-
Controlled Input Sequence, which is supposed to be implemented in place of
Sentinel-Controlled Input Sequence.

The interpretation tree must be expanded until PROUST has identified
alternative plans to match against the program. It is through matching the
plans that PROUST determines whether or not a particular interpretation fits the
student's program. Therefore the goal reformulation states must be expanded,
using the same procedure of goal selection, goal reformulation, and plan
selection. In the case of the BOGUS COUNTER-CONTROLLED LOOP state, the
new goal Counter-Controlled Input Sequence is selected. Plans implementing
this goal are retrieved. This expansion process continues until every leaf in the
interpretation tree is a plan selection state.

Once a set of alternative plans are selected, each plan is matched against the
program. Information is added to each interpretation tree node indicating
where the plan matched the program, and whether there were any matching
errors. At most one match is recorded for each plan. This means that if a plan

72 W.L. JOHNSON

matches the program in two places, the node in the tree for that plan must first
be copied. Each copy is then annotated to indicate what part of the program it
was matched against. When matching the example in Fig. 7, SENTINEL
READ-PROCESS REPEAT is one of the plans that is matchable. As was shown in
Fig. 9, the matchable part of the plan is the repeat loop; it matches just one
statement, the repeat statement at line 8. No node splitting is necessary. In
order to complete matching the plan, however, the plan subgoals must be
interpreted as well. The interpretation tree expansion therefore continues, this
time for each subgoal of the plans that have matched successfully.

Once PROUST has tried each of the alternative plan matches, there will
usually be a single plan that matches better than the alternatives. Deciding
which match is best is an involved process, which will be described in detail in
Section 5. For now let it suffice to say that the goodness of match depends
upon how close the match is, whether or not the mismatches can be explained
as bugs, and whether the plans' subgoals were interpreted successfully. Then
the node describing the best match is selected for further expansion; a new goal
is selected, and the process repeats. If PROUST is unable to choose between two
alternatives, it will try to back up and select a different goal. In the example in
Fig. 9, no backup is necessary; the SENTINEL READ-PROCESS REPEAT PLAN
matches better than any of its alternatives. Therefore expansion continues from
the point in the tree where the matching of SENTINEL READ-PROCESS REPEAT
and its subgoals was completed.

3.4. Goal selection and the ambiguity problem

When PROUST constructs goal decompositions it must be sensitive to problems
that the plan matcher may have in matching the plans in the goal decomposi-
tion against the code. If a plan is matched without any knowledge of where in
the program it should match, there is risk of ambiguous matching. The plan
may match more than one section of the program, and PROUST will have no
way of knowing which match is the right one. Some simple examples are plans
for inputting and outputting data. All input statements and output statements
look much alike. PROUST does not attempt to parse variable names or interpret
output messages in order to determine what data a given input or output
statement is manipulating. Therefore PROUST avoids matching input and
output plans until it knows what data the variables in the program refer to.

Match ambiguity results in excessive search of the space of interpretations;
since PROUST cannot tell which is the correct match for a plan, it must explore
all possibilities. PROUST's plan matcher is designed to take advantage of
information gained in interpreting one part of a program when matching plans
in other parts of the program. PROUST orders the selection of goals to allow the
plan matcher to take maximal advantage of available information about the
program, thus minimizing the problem of ambiguity.

U N D E R S T A N D I N G AND D E B U G G I N G NOVICE PROGRAMS 73

3.4.1. Using context to reduce ambiguity

Contextual information is supplied to the plan matcher in two ways. First,
plans can refer to labeled components of other plans. Second, parameters of
goals can be used to bind pattern variables in the plans that implement the
goal. The COUNTER PLAN in Fig. 12 can make use of both kinds of contextual
information. This plan is the common method for implementing the goal of
counting a sequence of values, called Count. The template in this plan refers to
the component labeled Process of a Read & Process goal. The Process
component of a Read & Process goal is the part of the plan where the data is
processed. The COUNTER PLAN states that the counter update must lie inside
the Process part of the loop, thus restricting where the plan matcher must look
for matches. The COUNTER PLAN has one pattern variable ?Count; this stands
for the counter variable. The goal of counting values, Count, has two parame-
ters, ?New, which is the quality being counted, and ?Count, which is the
resulting count. The parameter bindings in the goal are passed on to the plan.
Therefore if PROUST believes that the counter variable is represented by a
specific PASCAL variable, say Days, this variable is supplied as a parameter to
the goal, e.g., the goal might read Count(Rain, Days). The binding of ?Count to
days is passed on to the plan, so the statement pattern ?Count:= ?Count + 1
becomes Days := Days + 1.

The degree of ambiguity in matching a plan thus depends crucially upon
whether or not bindings for plan variables are known beforehand. In the
COUNTER PLAN example, the scope of search through the program can be
reduced if we know where the Read & Process goal is implemented. The
counter update can be spotted if we know beforehand what the counter
variable is. Otherwise the plan would match any increment statement any-
where in the program.

The ambiguous match of the COUNTER PLAN can be avoided if the plan is
matched after the Sentinel-Controlled Input Sequence and Average goals are
analyzed. The Sentinel-Controlled Input Sequence goal is a Read & Process
plan, so once a plan implementing it is matched, the plan matcher can locate
the counter update in the body of the loop. The analysis of the Average goal
provides a binding for the pattern variable ?Count. When PROUST analyzes the
average computation, say Averain:=Totalrain/Days, it matches it against the

Variables: ?Count

Template:
Init:

Update:

?Count := 0

(in component Process of goal Read & Process)
?Count := ?Count + 1

Fig. 12. The COUNTER PLAN.

74 W.L. JOHNSON

pattern ?Avg := ?Sum/?Count in the AVERAGE PLAN, shown in Fig. 10. Each of
the pattern variables in this pattern is bound; in particular, ?Count is bound to
Days. The plan indicates that the binding of ?Count should subsequently be
used when matching the Count goal. Thus when the Count goal is analyzed
later on, the possibility of ambiguous plan matching is reduced.

3.4.2. Goal selection strategies to reduce ambiguity

The success of PROUST in reducing match ambiguity depends upon whether or
not it can select goals for analysis in an order so as to take maximal advantage
of previous match bindings. It employs the following strategies:

(1) select first those goals which are implemented using large plans,
(2) try to select goals whose parameters are all bound,
(3) try to select goals which do not have potential plan-matching conflicts

with other goals on the agenda.

The first of these strategies is responsible for PROUST selecting Sentinel-
Controlled Input Sequence first for decomposition. The goal frame for Sentinel-
Controlled Input Sequence indicates that the goal is an outer control goal, i.e.,
it should match a major control structure in the program, such as a loop. Such
major control structures are more likely to appear uniquely in the program, so
ambiguity is less of a concern with them. The second and third strategies
ensure that the Count goal is not selected until the parameters of the goal arc
all bound. The problem description contains two goals, Count and Guarded-
Count, which are similar to each other, in that they both update counters.
Therefore there are potential plan-matching conflicts between these two goals:
a plan implementing one goal might match code implementing the other goal.
The Average goal, however, has no such potential for conflict; plans for
implementing the goal are clearly distinct from plans for implementing the
other goals. Therefore PROUST favors selection of the Average goal over
selection of either the Count goal or the CountPositives goal. Once the Average
goal has been matched, the parameters of the Count goal are all bound to
variables in the student's program, so it is now possible to select that goal
without worrying about ambiguous matches.

4. Analyzing Plan Differences

If all goes well, the goal decomposition construction process outlined above
will succeed in matching a goal decomposition against the student's program.
Usually, however, none of PROUST's proposed goal decompositions matches
exactly. The match failure can be due to an unexpected bug, or due to an
unexpected variant of a plan. The differences between an expected plan and
the actual code are called plan differences. Most of PROUST's ability to
diagnose bugs comes from knowledge of how to explain these plan differences.

U N D E R S T A N D I N G AND D E B U G G I N G NOVICE PROGRAMS 75

In what follows, PROUST'S knowledge about plan differences, in the form of
plan-difference rules, will be described, together with the mechanism that
PROUST u s e s t o invoke plan-difference rules.

4.1. Why plan-difference analysis is needed

Plan differences can arise for the following reasons.

- A goal was improperly implemented, resulting in a bug.
- A goal was implemented in an unusual way, but correctly.

In PROUST, plan-difference rules are used to account for both kinds of plan
differences. Some rules simply recognize common plan differences, and de-
scribe the bugs or misconceptions that would cause them. Others transform the
matched plan into a form that corresponds more closely to the student's
implementation, or transform the student's code to make the underlying goal
decomposition clearer. PROUST applies plan-difference rules in succession until
all plan differences are accounted for. The catalogue of plan-difference rules
was constructed as a result of hand analysis of numerous novice PASCAL
programs, as described in [19].

We have already seen an example of a plan-difference rule that applies to
recognize an improper implementation: the while-for-if bug rule in Fig. 6.
Figure 13 shows an example of a correct, but unusual, implementation, which
results in a plan difference. In this example, the plans for computing the
maximum and the sum have been combined: the sum update is embedded
inside the if statement in the maximum computation. This sort of combination
of plans occurs fairly frequently in novice programs. When PROUST tries to
analyze this code, its plan predictions will fail. PROUST needs to recognize that
its plans for computing the maximum and the sum are really applicable here,
although they have been combined in an unusual way. PROUST also must
recognize that the code is correct, albeit stylistically dubious.

The plan-difference rule in this case is called the Distribution Transforma-
tion Rule. It extracts the update statements out of the if statement and
combines them into a single statement. The mechanism for doing this is as
follows. As described in Section 3.3, PROUST constructs a tree of interpretation
of the program. This tree serves as a database context mechanism. PROUST can

if Max > New then

begin

Max : - New;

Sum: S u m + N e w
end else

Sum := Sum + New;

Fig. 13. A variant computation of the sum and maximum of a variable.

76 W.L. JOHNSON

While (New < 9999) and (New < = 0) do
begin

Count := Count + 1 ;
Sum : - Sum + New;

if 0 < New then

Rainy := Rainy + 1 ;
if New > Max then

Max := New;

Writeln('Next value please:');
Read(New);

end

Fig. 14. Buggy code subject to various possible rule applications.

add assertions about the program to a given node in the tree; these assertions
will only be retrievable from that node or one of its descendents. The structure
of the program itself is represented as a collection of facts about each
statement in the program, facts which can be superceded by subsequent
assertions. The Distribution Transformation Rule simply asserts that the two
running total statements are below the if statement. It also deletes one of the
two statements from the list of statements remaining to be interpreted in the
program. Then when the plan is rematched, it matches only one running total
update, which now appears in the right position.

Finally, consider a more complex example, the buggy loop in Fig. 14. The
while loop here has three bugs:

(1) it uses 9999 rather than 99999 as the sentinel value,
(2) it tries to validate the input and perform an exit test at the same time,
(3) its input validation test is incorrect; it throws out positive data rather

than throwing out negative data.

The solution also has a legal variant on the predicted plan: it treats any value
greater than or equal to 99999 as a sentinel value. In the predicted plan, 99999
must be typed exactly for the loop to terminate, but the sentinel test in this
example is still considered to be satisfactory. PROUST can successfully analyze
this code by applying a series of plan-difference rules, one for each observed
difference between the predicted plan and the code.

4.2. Plan-difference rules

Plan-difference rules are test-action pairs. The test part matches a plan
difference, as well as the context in which the plan difference occurred. The
action part accounts for the difference in terms of bugs, plan variants, and
misconceptions.

Figure 15 shows one of PROUST's plan-difference rules, the rule for detecting
typographical errors in numbers. This rule is trivial in comparison to other

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 77

Number Spelling Error Rule

Error Patterns: ((* Const * . * Const*))
Test Code: (SpellCorrectible (ErrorPattern) (ErrorMatched))
Bug: (Typo (FoundStmt., (Match-Node (BuggyMatch)))

(ExpectedExpr., (ErrorPattem))
(FoundExpr., (ErrorMatched))
(InterpNode., * InterpNode*)))

Fig. 15. A rule for identifying typographical errors.

rules such as the Distribution Transformation Rule; its simplicity makes it that
much easier to explain. The rule is represented in a frame-like manner, where
some slots describe tests to be performed, and some slots describe actions to be
performed. A variety of slots are specifiable as parts of plan-difference rules;
this particular rule has only three slots. The Error Patterns slot characterizes the
plan difference that the rule applies to. The plan difference is described as a
dotted pair, where the car of the pair is what the plan predicted, and the cdr is
what was actually found. Here the error pattern refers to a plan difference in
which a constant was expected, e.g., 99999, and a different constant was found,
e.g., 9999. The Test Code slot is a fragment of LISP code to further test
applicability of the rule; this test code fragment checks whether the found
constant is plausibly a typographical error. The Bug slot is part of the action
part of the rule: it contains a pattern for the bug description to be generated to
account for the plan difference. The pattern contains fragments of LISP code
which are evaluated at the time when the rule fires; values that are generated
become slot fillers for the new bug description.

Rules such as the one in Fig. 15 are so simple because their role is only to
acknowledge that the bug is a known bug. The hard work has already been
done in the goal decomposition and plan matching. The more complex rules
are the ones that transform the code, such as the Distribution Transformation
Rule. In these cases, however, the action part of the rule is represented
procedurally; a LISP procedure modifies the plan, or makes local assertions
about the structure of the program. It would be desirable to implement a more
declarative formalism for describing these rule actions.

4.2.1. Test parts of plan-difference rules

The plan differences themselves are actually only a small part of what
plan-difference rules test for. Altogether, the following kinds of information
are used by plan-difference rules:

- plan differences,
- t h e plan component being matched,
- t h e plan and goal currently being analyzed, as well as those which have

been analyzed previously,

78 W.L. JOHNSON

-the structure of the code being matched, or its intended structure,
-bugs and misconceptions which have so far been identified.

Rules can examine the context of the plan in the program, and examine
other bugs which have so far been found, in order to select the best interpreta-
tion of the plan difference. In general, plan-difference rules need to make use
of any information which might shed light on the student's intentions and likely
bugs.

The term patterns of plan-difference rules are written primarily in a declara-
tive form. The plan difference, the plan component being matched, and the
plan and goal being analyzed all go into the declarative pattern. However,
since such a wide range of information must be tested in plan-difference rules,
the declarative test-pattern language cannot be used to describe all tests that
may be needed. Therefore LISP procedures are also required to perform some
of the special-purpose tests, such as the test to see whether a plan difference is
a plausible typographical error.

4.2.2. Action parts of plan-difference rules

The action parts of plan-difference rules do three kinds of things:

- sugges t bugs and misconceptions,
- m o d i f y the current plan to make it fit the student's code better,
- indicate how the code should be rephrased to make the student's intentions

clearer.

When bugs and misconceptions are suggested, they are added as assertions
to PROUST's interpretation tree. PROUST can then see for each goal and plan
what bugs and misconceptions arose in their implementation. When it is ready
to describe the bugs to the student, PROUST traverses the interpretation tree
from the leaf to the root, collecting all of the bug and misconception assertions
that it finds there. It then can generate explanations for each bug and
misconception to present to the student.

If a rule suggests that the student's plan is a variant on PROUST'S plan, the
plan-difference rule modifies PROUST's plan to fit the student's code better. For
example, consider the test in the maximum computation in Fig. 13:

if New > Max t h e n . . .

The test which appears in PROUST's MAXIMUM PLAN is slightly different:

if ?Max < ?New t h e n . . .

The test predicate is reversed from what PROUST expected. A plan-difference
rule is required to explain the difference. The rule which applies in this case is

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 79

a rule to invert relational expressions, turning expressions of the form ?x < ?y
into-expressions of the form ?y > ?x. This rule is applied to the plan being
matched, the MAXIMUM PLAN, changing the expected test in the plan. The plan
is then matched a second time; the second time the plan matches.

Plan-difference rules sometimes suggest ways of rephrasing in the student's
code to make the underlying intentions clearer. The while-for-if bug in Fig. 1
requires such a rephrasing. Once PROUST determines that the student intended
the effect of an if statement, it must make an assertion in the interpretation tree
indicating that the while statement should be interpreted as if it were an if
statement. Then the analysis of the remaining code in the loop will not be
thrown off by the extra while statement. The same mechanism is used by the
Distribution Transformation Rule to handle the merged maximum and running
total plans in Fig. 13.

4.3. Application of plan-difference rules

PROUST's plan-difference rule application mechanism must apply those rules
which help explain plan differences, and avoid rules which do not contribute to
an explanation. It must be able to chain rules and consider alternative rules to
apply, but avoid blind application of rules. The example in Fig. 14 will be used
to illustrate the kinds of rule application that must be permitted and the kinds
that should be avoided. As indicated earlier, the loop exit test, (New < 9900)
AND (New<=0), has multiple bugs. Several plan-difference rules must be
applied together in order to account for the plan differences. Suppose that one
of the while loop plans implementing Sentinel-Controlled Input Sequence is
being matched, so that a test such as New<>09000 is expected. First, a rule
called the conjoined Loop Bug Rule applies, which suggests that the exit test of
the loop is performing two tests at once, which are combined using an AND
operator. The actual sentinel-control test should be one of the two clauses of
the AND expression. It is not possible for the rule to tell which clause is the
desired one, since there are other plan differences involved. Therefore the rule
proposes two ways of rephrasing the test in the plan, ((New<> 99900) and ??)
and (?? anct (New<>00000))) The plan-difference rule applier then tries
matching these new patterns against the code.

When each of the new plan patterns are matched, new plan differences arise.
The first pattern fails to match because New<0090 was found instead of
New <> 99999. The second pattern fails to match because New <=0 was found
instead of New<>00000. The second of these matches is a dead end; there is
no rule that can relate New<=0 to New<>00990. Rules can be applied to
explain the plan difference of the other pattern, however. A rule called the
Sloppy Sentinel Guard Bug Rule applies which suggests that the student may
be testing for any value greater than or equal to the sentinel value, rather than

" ?? in these patterns is a wild-card pattern variable, matching an arbitrary expression.

80 W.L. JOHNSON

testing for the exact sentinel value. The Number Spelling Error Rule explains
the difference between the expected 99999 and the actual 9999 as a typographi-
cal error. The plan differences are now all accounted for, so the bugs that were
found are recorded in the interpretation tree. If any of the plan differences had
been left unaccounted for, the entire plan-difference analysis would be scrap-
ped, and PROUST would have to try matching a different plan against the
program.

We see in this example that PROUST sometimes has to apply multiple
plan-difference rules in succession, yet it cannot be certain that a given rule is
applicable until the plan-difference analysis as a whole succeeds. When the
Conjoined Loop Bug Rule applies, it can suggest that one of the conjuncts of
the and clause is the sentinel test, but it cannot determine which one is the
sentinel test. If too many rules suggested too many patterns to try, there would
be a multitude of blind alleys in the plan-difference analysis. Such blind
application of rules must be avoided if PROUST is to complete its analysis in a
reasonable amount of time.

In order to restrict unnecessary rule application, PROUST's rule application
mechanism implements the following policies. First, a constraint relaxation
approach is used. Each rule is given a ranking. This ranking takes into account
whether or not the rule identifies bugs, and the severity of the misconceptions
that cause the bugs. It also takes into account whether the rule attempts to
explain the plan differences in a statement which has already been matched, or
whether it causes the plan marcher to search elsewhere in the program for
possible matches. Those rules which do not presume bugs and which apply to
existing partial matches are attempted first; then if necessary rules involving
progressively more serious bugs and which involve greater amounts of search
of the program are considered. Thus the constraints on rule application are
progressively lifted until a suitable explanation is found. Similar constraint
relaxation schemes have been employed in other debugging systems such as
Davis' [7].

The other policy which PROUST's plan-difference rule application mechanism
follows is to apply only those rules which appear to help explain the plan
differences. PROUST counts the number of syntactic differences between the
pattern and the matched statement, and applies only those rules which reduce
this number. The rule may still be inappropriate, because the new plan
differences are unexplainable; if so, then backtracking will be necessary.
Nevertheless, most unnecessary rule applications are avoided by means of this
restriction.

Constraining rule application in the manner described above has a price, in
terms of missed bug diagnoses. The correct diagnosis is not always the most
constrained one, and the correct rule to apply does not always produce an
immediate improvement in the plan differences. PROUST may ultimately be
forced to apply a wider range of rules in order to achieve greater diagnostic

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 81

accuracy. The author has experimented with an alternative approach to rule
application, which terminates rule application only when loops appear in the
sequence of rules. This approach appears to do a significantly better job of
finding valid explanations for plan differences, without substantially increasing
the number of unnecessary rule applications.

4.4. Bug descriptions

When a plan-difference rule identifies a bug, it generates a bug description
characterizing what kind of bug or misconception it is, and the context in which
it occurred. These bug descriptions are subsequently used to generate diagnos-
tic explanations for the student. A pattern for a bug description appeared in
the plan-difference rule shown in Fig. 15. There are two types of representa-
tions which PROUST uses for describing bugs. Superficial representations are
used when PROUST is able to locate and characterize the plan difference, but
cannot identify the cause simply by looking at the code. Deeper representa-
tions are used when PROUST can describe the bug as an error in the student's
goal decomposition, or as a misconception.

4.4.1. Superficial bug descriptions

Superficial bug descriptions in PROUST use the notations in "Bug collection I"
[19] for describing bugs. In this system, the bugs are classified as being either
missing plan components, spurious plan components, misplaced plan compo-
nents, or malformed plan components. The plan components themselves are
characterized according to the fucntion that they perform, i.e., initialization,
input, output, update, guard, or nonexecutable statement. The function of the
plan component comes from the label assigned to that component in the plan,
as described in Section 3.2.2.

If PROUST describes a bug using this superficial categorization, it cannot give
a very insightful description of the bug to the student. However, the categori-
zation is still useful to PROUST when PROUST compares bugs. For example,
when PROUST finds that an initialization is missing, it checks to see whether
other initializations are missing. If all initializations are found to be missing,
then PROUST can suggest a misconception to the student which explains all of
the missing initializations at once. This allows PROUST to generate diagnostic
text such as the following:

You left out the initializations for the variables Highrain, Drydays,
Raindays, and Totalrain. Programs should not fetch values from
uninitialized variables! If you don' t initialize these variables to the
values that you want, you will have no way of knowing what values
they will be initialized to.

82 W.L. JOHNSON

4.4.2. Deeper bug descriptions

If a likely explanation for a bug can be found, PROUST describes the bug in
terms of that explanation. The following explanatory descriptions of bugs are
used:

- Implements Wrong Goal: Some goal was implemented in the program other
than the one required by the problem statement. For example, if a student
writes a counter-controlled loop instead of a sentinel-controlled loop, this is
classified as an Implements Wron9 Goal bug.

- W r o n g Plan for Goal: The student's plan for implementing a goal is not a
recommended one. For example, it may have an unwanted side-effect, such as
clobbering a variable which is used later on in the program.

-Misconception: The student's code indicates the presence of a specific
misconception. There has to be evidence of a misconception in more than one
place in the program for PROUST to classify it as a misconception. This category
is further subcategorized according to type of misconception involved. The
misconceptions that PROUST can recognize are described in [16]. Examples of
the kind of misconceptions that PROUST recognizes are misconceptions about
how control flows through while loops, and misconceptions about when vari-
ables must be initialized.

- I m p l e m e n t s Wrong Goal Argument: A goal is implemented in the student's
code, but one of the parameters of the goal is incorrect. For example, an Input
Validation goal might perform the wrong validity test on the input data.

- Improper Contingent Goal: A goal was implemented contingently, and this
resulted in a bug, because one or more cases were overlooked where the goal
needed to be implemented. Contingent goal realization is described in [16].

-Wrong Component for Plan: The student's plan for implementing a goal
contains a component which is appropriate to a different plan. For example,
the student might write a counter-update instead of a running total update.

-Mistransformed Code: The student at tempted to transform a plan, e.g.,
merge a RUNNING-TOTAL PLAN and a MAXIMUM PLAN as in Fig. 13. If the
merged code does not work correctly, it is described as mistransformed code.

-Typo: The student made a typographical error.

4.4.3. Reporting bug descriptions

After the analysis of a program is complete, the bug descriptions which were
created during analysis are collected and reported to the student. First, the bug
descriptions are sorted according to the severity of the bug, and the part of the
program in which the bug occurs. Then for each bug, an English description is
generated. The English is generated using an ordinary phrasal generator, which
selects a phrase to generate based upon the type of the bug and the slot fillers
of the bug. Blank fields in the phrase are filled in with the names of goals, the
line numbers at which statements occur, the names of variables, and other

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 83

information which might supply context for the bug. We are also experimenting
with other, nontextual methods for describing bugs, e.g., presenting test data
which will cause the bug to manifest itself as invalid input-output behavior.

4 . 5 . F a c t o r s i n f l u e n c i n g the f o r m o f PROUST'S i n t e r p r e t a t i o n s

We have now examined each component of the interpretations that PROUST
constructs for programs. These interpretations contain a variety of information;
altogether, they may include the following:

- a goal decomposition,
- matches of the plans in the goal decomposition against the code,
- bugs,
- differences between the intended function of individual statements and the

actual function of these statements,
- possible misconceptions.

This information fits into the following general categories:

- w h a t the programmer did in solving the problem,
- w h a t the programmer was trying to do,
- f laws in his /her knowledge which resulted in problem-solving errors.

These same types of information are found in the student models that many
intelligent computer-aided instruction (ICAI) systems generate. All iCAI
systems to varying degrees attempt to characterize the student's program-
solving process, and the knowledge that underlies this process. ICAI systems
tend to differ, however, in how they describe student's knowledge and problem
solving. The following will point out some of the differences between PROUST's
program interpretations and student models in other systems, and will show
how these differences result from characteristics of PROUST's domain.

One major difference between PROUST's diagnostic task and that of other
ICAI systems is that PROUST must derive its model of the student from a single
program. Systems in the subtraction domain, such as DEBUGGY [5], and in the
algebra domain, such as PI×IE [28], tend to work off of a series of student
solutions. When multiple problems are analyzed in succession, bug hypotheses
derived from one problem can be tested by assigning the student another
related problem. The system can then check whether the student solves the
new problem as the bug hypothesis would predict. In PROUST's domain,
however, it is not practical to assign multiple problems to students and then
analyze the bugs afterwards. Each programming problem requires substantial
effort on the part of the programmer, and programmers want immediate
feedback concerning their program before starting a new one. Thus it is
incumbent upon PROUST to analyze the student's errors and give feedback as
soon as possible, even if the underlying causes of the bugs are not yet clear to
PROUST.

84 W.L. JOHNSON

One consequence of the fact that PROUST models the intentions underlying a
single program is that it often cannot distinguish what the p rogrammer does in
the specific case from what the p rogrammer does in general. If a program has a
bug, it may result f rom an accidental error such as a typographical error, or it
may result f rom a deep-seated misconception. Distinguishing the two explana-
tions requires looking for repeated occurrences of the same bug. If a bug
occurs just once, it is likely to be an accidental error; if it occurs consistently, a
misconception may be implicated.

PROUST does have one means for checking whether bugs occur systematical-
ly; it can check whether the same bug occurs more than once in the same
program. The programming problems that we assign students tend to have
multiple goals; PROUST can compare the implementat ion of similar goals to
look for systematic errors. If, for example, all initializations are missing from a
program, then there is strong evidence that the p rogrammer has a misconcep-
tion about initializing variables. In simpler domains such as subtraction or
algebra there is less opportunity for the same bug to occur more than once
within the same problem solution. Thus systematicity of errors within a single
program can compensate in part for the lack of a suite of problems to analyze.

When ICAI systems try to model student behavior, they either trace student
errors to incorrect problem-solving procedures or to factual misconceptions
about the domain. Subtraction systems such as DEBUGGY are good examples of
systems that identify incorrect problem-solving procedures. Genesere th ' s MAC-

SYMA advisor [11] and Clancey's proposed GUIDON-2 system are examples of
systems which focus on factual misconceptions. The systems that focus on
factual misconceptions, unlike PROUST or DEBUGGY, make strong simplifying
assumptions about the student 's problem-solving ability. The MACSYMA ad-
visor is a case in point. In the MACSYMA advisor, there is an explicit model of a
student problem solver, called MUSER; this same problem solver is used both to
solve problems and to model the student solving problems. The advisor
assumes that if a student uses MACSYMA incorrectly, it can only be because the
student 's factual knowledge about how individual MACSYMA commands work is
incorrect. The appropriateness of this assumption cannot be assessed without
empirical analyses of how novice MACSYMA users actually behave; the advisor
appears to be based upon observations of only a handful of students.

In contrast to the MACSYMA advisor and GUIDON-2, PROUST makes fewer
assumptions about the student 's problem-solving procedure. PROUST assumes
that the student 's program can be analyzed in terms of goals, but there is no
requirement that the goals be decomposed as an expert would. A student
might not realize that p rogrammers have to worry about boundary conditions,
for example, and still produce a program with a recognizable goal decomposi-
tion. Such a student cannot be said to have the same problem-solving proce-
dure as expert programmers , since part of what an expert does is to check
systematically for boundary conditions.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 85

This weakening of the assumptions about the student's problem-solving
behavior has serious repercussions for error diagnosis. It means that it is not
always possible to trace bugs back to the student's factual knowledge. Any
given bug may be caused by a factual misconception, a flaw in the student's
problem-solving procedure, a failure to follow the problem requirements
strictly, or an accidental error. For this reason, bugs must often be described
superficially, without reference to underlying cause.

5. Finding the Best Interpretation

The previous sections have described how PROUST generates interpretations for
programs. However , PROUST must not only construct interpretations, it must
select from among rival interpretations. As we saw in Section 3.3, when
PROUST constructs goal decompositions for a program, it constructs a tree of
alternative goal decompositions. After the plans are matched, PROUST decides
which goal decompositions to explore further. Actually, that is not quite
correct; the choice of goal decomposition depends not only upon which plans
match, but also how the mismatches are explained in terms of bugs. PROUST is
thus comparing program interpretations, not just plan matches. This section
describes how PROUST attempts to arrive at the best available interpretation for
each program.

Three things are required in order to make sure that PROUST finds the best
possible interpretation. First, goals must be selected for decomposition in an
order such that interpretation choices are not simply the result of ambiguous
plan matches; the methods for selecting goals were described earlier in Section
3.4. Second, evaluation criteria are needed to make sure that each interpreta-
tion makes sense. Third, heuristics are required for comparing different
interpretations. The discussion in this section will focus on the latter two issues.

5.1. An example of selection among interpretations

In order to show how alternative interpretations for programs can arise, let us
return to the example of the Rainfall Problem that was introduced in Fig. 1.
The loop from this example is repeated in Fig. 16. One goal decomposition for
this loop was discussed in Section 3.1. Now let us consider an alternative goal
decomposition for Sentinel-Controlled Input Sequence, and see how the pro-
gram interpretations based upon these two goal decompositions can be com-
pared.

Recall that PROUST knows about four different plans for implementing the
goal Sentinel-Controlled Input Sequence. Up to now the discussion has focused
on one of these plans, the SENTINEL READ-PROCESS REPEAT PLAN. Now let us
consider what happens when one of the other plans, the SENTINEL PROCESS-
READ WHILE PLAN, is matched against the program. This plan is shown in Fig.
17. In this plan, the first value is input before the main loop is entered; this

86 W.L. J O H N S O N

8 repeat

9 writeln ('Enter rainfall');

10 readtn;

11 read (Rain);
12 while Rain < 0 do

13 begin
14 Writeln (Rain:0:2, 'is not possible, try again');

15 readln;

16 read (Rain)

17 end;

18
19 while Rain < > 9 9 9 9 9 do
20 begin

21 if Rain = 0 then

22 Drydays : Drydays + 1 ;
23 Totalrain : - Totalrain + Rain;

24 if Rain > 0 then
25 Raindays : - Raindays + 1 ;

26 if Highrain < Rain then

27 Highrain := Rain
28 end;

29 until Rain = 99999;

Fig. 16. The loop in the example in Fig. 1.

input serves to initialize the variable ?New. The loop itself uses a while
statement instead of a repeat statement. The Next step of the loop, which reads
in the successive values of ?New, is at the bot tom of the loop, instead of at the
top, unlike the SENTINEL READ-PROCESS REPEAT PLAN. The part of the loop
where the data is processed, labeled Process, is above the Next step. Because
the processing step is above the next input step in the loop, no additional
Sentinel Guard subgoal is required to break out of the loop. In what follows,
the SENTINEL P R O C E S S - R E A D W H I L E PLAN will be abbreviated a s s P-R W P L A N ,

and the SENTINEL R E A D - P R O C E S S R E P E A T PLAN will be abbreviated as SR-
P R PLAN.

The s P-R W PLAN can match the program at least partially, since the program

SENTINEL PROCESS-READ WHILE PLAN

Constants: ?Stop
Variables: ?New
Template:

Initinput: subgoal lnput(?New)
Mainloop: while (?New < > ?Stop) do

begin
Process: ? *
Next: subgoal Input(?New)

end

Fig. 17. Ano the r plan for inplementing Sentinel-Controlled Input Sequence.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 87

has a while statement at line 19 which matches the while statement pattern in
the plan. Using this plan as a starting point, an interpretation of the loop can
be constructed. This interpretation is as follows.

The while statement in the S P-RWPLAN matches line 19 in the
program. The begin-end pair matches lines 20 and 28. The initial
Input subgoal is combined with the Input Validation goal in the
problem description, yielding the composite goal Validated Input.
The VALIDATED PROCESS-READ WHILE INPUT PLAN is a possible
implementation of this goal, and it matches lines 10 through 17.
The Input subgoal in the Next step of the s P-RW PLAN cannot be
matched against the program. The student must have omitted
implementation of this subgoal. The probable cause is a misconcep-
tion about iterative inputs; the student may have thought that
successive input values would be read in automatically.

The principal differences between the interpretation based upon the s R-
P RPLAN and the one based upon the S P-RWPLAN are as follows. The
S R-PRPLAN interpretation makes the repeat loop at line 8 the main loop; the
s P-RW PLAN makes the while loop at line 19 the main loop. The s R-P R PLAN
interpretation regards the input and validation code at lines 10 through 17 as a
Next step in the loop; the other interpretation views it as an initialization step.
The S P-RWPLAN interpretation gives no interpretation whatsoever to the
repeat loop. The s P-R W PLAN interpretation has a missing-input bug, whereas
the other interpretation has a while-for-if bug.

Of the various differences mentioned above, the key ones are that the
s R-PRPLAN matches more of the program, and does not have any plan
components missing. PROUST has an interpretation evaluation heuristic that is
relevant to this case:

Avoid interpretations that leave significant parts of the program
uninterpreted.

The rationale for this heuristic is as follows. Each statement is presumed to
have a purpose, so if no purpose can be found for a statement, PROUST's goal
decomposition may be incorrect. When one interpretation assigns a goal to
every statement, and the other interpretation leaves statements without goals,
the interpretation which leaves statements without goals is almost certainly
incorrect.

The problem with the above evaluation heuristic is that it cannot be applied
until the entire goal decomposition is constructed and matched against the
program. If PROUST were unable to evaluate interpretations until after they are
complete, it would construct large numbers of interpretations, only to find that
nearly all of them are wrong. PROUST therefore applies the above heuristic
only as a last resort. Instead, it applies other heuristics to detect bad interpreta-
tions before the analysis goes too far. The actual heuristic which is applied in

88 W.L. JOHNSON

this case is the following:

Favor interpretations that match more of the program, and have
fewer missing plan components.

If this heuristic is applied consistently, PROUST will usually end up with an
interpretation which assigns a purpose to as many statements in the program as
possible. The heuristic favors the SENTINEL PROCESS-READ REPEAT interpreta-
tion because it both matches more of the code and has no missing plan
components.

This example illustrates the two kinds of interpretation evaluation processes
in PROUST. One kind of evaluation compares one interpretation against other
competing interpretations; this is called differential evaluation of interpreta-
tions. The other kind of evaluation examines the interpretation in isolation,
usually after the interpretation is complete; this is called interpretation assess-
ment. Both kinds of interpretation will be discussed below.

5.2. Differential evaluat ion of interpretat ions

Differentiating program interpretations is closely related to the notion of
differential diagnosis in medicine. In performing differential diagnosis a physi-
cian compiles a set of etiologies, or causes, which might be relevant to the
patient's symptoms. This set of etiologies is called a differential. The physician
then tries to narrow down the differential by comparing etiologies against each
other, and looking for evidence which confirms one subset of etiologies and
disconfirms the others. Eventually the differential is narrowed down to a single
diagnosis, the diagnosis which wins out at the end will be demonstrably
superior to the alternatives. If, on the other hand, the diagnostician cannot
distinguish between competing etiologies, the diagnosis must be considered
inconclusive.

The intention-based approach to program analysis lends itself naturally to
differential diagnosis. When a goal is selected for analysis, different im-
plementations of the goal are suggested. The set of candidate implementations
forms a differential. PROUST then decides which among these implementations
fits the program best. Differentiation leads to more robust bug analysis because
it allows PROUST to find a wide range of uncommon bugs, bugs which out of
context could not be assumed to be present. For example, the while-for-if bugs
are hard to identify out of context. Most novice programmers understand the
difference between while and if, so PROUST could not presume a while-if
confusion without independent evidence. If the while-for-if bug is part of an
interpretation that is better than any other interpretation, then the while-for-if
diagnosis can be given with more confidence.

Although differential evaluation is desirable, generation of numerous alter-
native interpretations is undesirable, as it will slow the system down. There are
two ways to get around this problem.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 89

-Differentially evaluate partial interpretations.
- Genera te just one interpretation; then when the interpretation is complete,

perform the differential evaluation, and change the interpretation to reflect
the result of the differential evaluation.

The former approach was used in the while-for-if example to determine which
plan is used to implement the Sentinel-Controlled Input Sequence goal. The
latter approach is commonly used in determining whether misconceptions are
present. For example, suppose that PROUST finds that an initialization is
missing. It can either describe the missing initialization as an accidental bug, or
as a manifestation of a misconception about initializations. The two interpreta-
tions can be differentiated by checking whether or not initializations were
systematically omitted; but such a check cannot be performed until after the
interpretation is completed. What PROUST does in this case is to describe the
missing initialization independent of cause, and wait until after the interpreta-
tion is complete to decide what the cause is likely to be. If it turns out that the
initialization bug is systematic, then the bug descriptions of all the missing
initializations are changed to indicate a possible misconception.

Differential evaluation of complete interpretations is straightforward, since a
substantial amount of information is available for use in comparing interpreta-
tions. For example, once the entire program is analyzed, PROUST can check
whether or not goals were assigned to every part of the program. Differential
evaluation of partial interpretations, on the other hand, is much trickier. The
differential interpretation in the previous section is a case in point. When
PROUST tries to designate the while statement as the main loop, it is leaving the
repeat statement uninterpreted. At this point it is not known whether or not
there is some other goal pending on the goal agenda that might account for
repeat statement. PROUST is thus making the differentiation on the basis of
incomplete information, and must rely upon heuristic comparisons of the
partial interpretations. The following discussion will focus on differential
evaluation of partial interpretations, and show why PROUST's heuristic ap-
proach is usually successful.

5.2.1. Differential evaluation of partial interpretations

Differential evaluation of partial interpretations is performed at each branch
point in the interpretation tree where plans are selected. As described earlier,
whenever a goal is selected for decomposition a number of branches of the tree
are constructed, each branch ending in a plan. The plans are then matched in
parallel. If some of the plans have mismatches, plan-difference rules are
applied to explain the mismatches. If a mismatch cannot be explained, the
offending plan component is presumed to be missing from the program. Once
plan matching and plan-difference analysis is complete, the differential evalua-
tion process can begin.

90 W.L. JOHNSON

The first step in choosing among plans is to filter out those which have
implausibly many components missing. We consider it plausible that a compo-
nent be missing if in our empirical studies of novice programs we observe that
novice programmers occasionally leave the component out. For example, it is
plausible for the initialization component of any plan to be missing. There
exists a set of rules in PROUST's knowledge base, similar to plan-difference
rules, which trigger when plan components are found to be missing, and
indicate what bugs might cause them. If no rules can account for why a plan
has missing components, the plan is thrown OUt. 4 All that remain are plans that
can be mapped onto the code in some plausible way. If all plans for a given
goal are thrown out, then PROUST concludes that the program does not
implement the goal.

The second step in choosing a plan is to count the number of components
that matched in each plan, and select those with the greatest number of
matched components. In other words, PROUST selects the greediest match. It is
this criterion which determines that the repeat loop is the main loop in the
program in Fig. 16. Greedy selection works for two reasons. First, not many
large plans pass the first selection step; those which remain are probably the
right matches. Second, if greedy selection picks the wrong plan, the selection
error will probably be discovered later, when a plan implementing a different
goal is found to match the same code. When two plans implementing different
goals match the same code, one or the other of the two plans is likely to be
matched incorrectly. Our ultimate aim is to give PROUST the capability of then
deciding between the two matches to the same code, and choosing different
plans to remove the conflict.

If two plans have the same number of matching components, they are
further differentiated by counting the number of misconceptions that are
suggested by the plan-difference rules. Interpretations which do not suggest
misconceptions are favored over those which do.

If these criteria fail to identify a unique interpretation as the best match,
PROUST puts the analysis of the goal aside, and selects a different goal for
decomposition. PROUST will then reconsider the analysis of the goal later, after
other goals have been analyzed. This allows PROUST to rely upon Occam's
razor in selecting interpretations. PROUST assumes that each part of the
program serves a unique purpose, unless the goal decomposition explicitly
dictates that two goals are being combined. If part of the program clearly
implements a particular goal, then it can be assumed that it does not match any
other goals. Interpretations of the other goals are restricted to those parts of
the program which have not previously been interpreted. The following

These missing-component rules were first introduced before PROUST's differential evaluation
mechanism was in place. It now appears that these rules can be replaced by more general heuristics
that can be incorporated into the differential evaluation mechanism.

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 91

example serves to illustrate. Suppose that a student confuses running total
updates and counter updates, writing Sum := Sum + 1 instead of Sum := Sum +
New. In such cases it may be hard to tell which update is supposed to be the
running total update, since there may be several increment statements in the
program. If PROUST postpones the decision and matches the Count goals
instead, then through a process of elimination PROUST can eventually identify
the buggy running total update.

5.3. Interpretation assessment

In spite of PROUST'S attempts to select the best interpretation for programs, it
sometimes makes mistakes. Programs sometimes have bugs that PROUST'S
plan-difference rules cannot recognize. The programmer may use variables in
inconsistent ways, giving PROUST false expectations about the bindings of
pattern variables in plans. In order to make sure that no mistake was made in
interpreting the program, PROUST examines the program interpretation as a
whole once analysis is complete, looking for evidence that the interpretation is
incorrect. If such evidence is found, questionable parts of the interpretation are
deleted, to guard against giving an incorrect bug report to the student.

The most obvious indication of interpretation failure is that very few of the
goals in the problem description were successfully mapped onto the student's
code. PROUST requires that interpretations be found for a significant fraction of
the goals in the problem description. If this fails to happen, the analysis is
aborted, and no bugs are reported to the student.

Even if most of the goals are mapped onto the code, the analysis is possibly
flawed if some of the code could not be analyzed, and some of the goals could
not be mapped onto the code. When this happens, PROUST performs bottom-
up analysis on the interpreted code, to see what kind of function it performs,
and then compares this against the outstanding goals. If the function of some of
the code is close to one or more of the outstanding goals, then the interpreta-
tion is probably in error. The interpretation is classified by PROUST as a partial
analysis. Bugs which may be in error because of the misinterpretation, such as
complaints about unimplemented goals, are deleted from the bug report that is
presented to the student. This process is described in more detail in [16].

6. Empirical Evaluation of PROUST

The bottom-line issue in evaluating the work that has gone into PROUST is
whether or not it has resulted in an effective tool for finding novice bugs. This
cannot be determined by observing PROUST's behavior on a few student
programs; instead, PROUST must be tested on hundreds of student programs, in
a variety of situations. The results of some of these empirical tests are
presented below. Further results are published elsewhere [16].

92 W.L. JOHNSON

6.1. Results on the Rainfal l Problem

Table 1 shows the results of running PROUST off-line on a corpus of 206
different solutions of the Rainfall Problem. The percentage of programs which
are analyzed completely is 81%. PROUST's analysis is complete if a complete
interpretation was generated, in which interpretation assessment could not find
any inconsistencies. 15% of the programs were analyzed partially, meaning
that a substantial part of the program was analyzed, but the interpretation was
incomplete or inconsistent. In 4% of the cases the analysis was aborted, either
because hardly any goals were successfully analyzed or because some construct
such as 9oto, which PROUST is not prepared to analyze, appears in the program.
When PROUST analyzes programs completely, it identifies 94% of the bugs, as
determined by hand analyses of the same programs. Note that these were not
94% of the bugs that we expected PROUST to detect; they were 94% of all
semantic and logical errors. At the same time there are a certain number of
false alarms, i.e., cases where PROUST either misinterpreted a bug or flagged a
bug which did not really exist. Most of these false alarms result f rom
misinterpretations of the programs ' goal decomposit ions, often because an
unusual plan or bug was present. Further extension and generalization of
PROUST's knowledge base would be required in order to reduce the occurrence
of false alarms. The Rainfall Problem was subsequently assigned to another
PASCAL class, and was tested on line. The subsequent results were comparable ,
with 70% of the programs receiving full analysis, and 98% of the bugs in these
programs correctly recognized.

Table 1
Results of running PROUST on the Rainfall Problem

Total number of programs: 206
Number of programs with bugs: 183 (89%)
Number of programs without bugs: 23
Total number of bugs: 795

Number of programs receiving full analyses: 167 (81%)
Total number of bugs: 598 (75%)
Bugs recognized correctly: 562 (94%)
Bugs not recognized: 36 (6%)
False alarms: 66

Number of programs receiving partial analyses: 31 (15%)
Total number of bugs: 167 (21%)
Bugs recognized correctly: 61 (37%)
Bugs not reported: 106 (63%)
False alarms: 20

Number of programs PROUST did not analyze: 9 (4%)
Total number of bugs: 32 (4%)

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 93

6.1.1. Results on a different problem

In a further test, PROUST was tested on a different programming problem,
called the Bank Problem.

Bank Problem. Write a PASCAL program that processes three types of bank
transactions: withdrawals, deposits, and a special transaction that says: no
more transactions are to follow. Your program should start by asking the user
to input his /her account id and his/her initial balance. Then your program
should prompt the user to input

(1) the transaction type,
(2) if it is an END-PROCESSING transaction, the program should print out (a)

the final balance of the user's account, (b) the total number of transactions, (c)
the total number of each type of transaction, and (d) the total amount of the
service charges, and stop;

(3) if it is a DEPOSIT or a WITHDRAWAL, the program should ask for the
amount of the transaction and then post it appropriately.

Use a variable of type CHAR to encode the transaction types. To encourage
saving, charge the user 20 cents per withdrawal, but nothing for a deposit.

In this problem, the students are required to write a program which behaves
similarly to an automatic bank teller machine. The program is supposed to
input a series of deposit and withdrawal commands, followed by an end-
processing command. The user's account balance is updated according to the
amount of each deposit and withdrawal. At the end of the program a summary
of the transactions is printed.

Table 2 shows PROUST's current performance on the Bank Problem. The
frequency of completed analyses is much lower than in the case of the Rainfall
Problem; it analyzed 50% of the programs, as opposed to 81% on the Rainfall
Problem. PROUST's performance on the completely analyzed programs is
almost as good as it is on completely analyzed solutions of the Rainfall
Problem. 91% of the bugs in the Bank Problem solutions were correctly
identified, compared with 94% of the bugs in the Rainfall Problem solutions.
The incidence of false alarms, however, is relatively high; there were 41 false
alarms in the completely analyzed Bank Problem solutions, compared with 211
total bugs in the same group of programs. Four programs were omitted from
analysis because they were very far removed from an expected solution, to
such an extent that they were not considered a fair test of PROUST.

There appear to be several reasons why PROUST's performance on the Bank
Problem is less than that on the Rainfall Problem. First, the problem requires
that more goals be satisfied than the Rainfall Problem requires; this was an
intended feature of the problem. Other problems with the Bank Problem,
however, were unanticipated. For one thing, many more of the goals of the
Bank Problem were left implicit. For example, the problem statement says

94 W.L. JOHNSON

Table 2
Results of running PROUST on the Bank Problem

Total number of programs analyzed: 64
Total numbers of bugs 420

Number of programs receiving full analyses: 32 (50%)
Total number of bugs: 211 (50%)
Bugs recognized correctly: 191 (91%)
Bugs not reported: 20 (9%)
False alarms: 41

Number of programs receiving partial analyses: 26 (41%)
Total number of bugs: 168 (40%)
Bugs recognized correctly: 56 (33%)
Bugs not reported: 112 (67%)
False alarms: 24

Number of programs PROUST did not analyze: 6 (9%)
Total number of bugs: 41 (10%)

Number of programs omitted from analysis: 4

nothing about what to do if the balance becomes less than zero. Some solutions
had no checks for negative balance, some checked the balance only after the
last transaction is complete, and some checked the balance after each transac-
tion. PROUST did not generate all of these different goal decompositions, so it
failed to interpret some programs. Another difference between the two
problems is that the Bank Problem provides no explicit cues to disambiguate
plan matching. The Rainfall Problem states explicitly that the sentinel value is
99999; the plans for matching Sentinel-Controlled Input Sequence therefore
usually match unambiguously, since there is only one loop in a given solution
which tests for 99999. The Bank Problem, on the other hand, does not state
specifically which commands are to be used to indicate deposit, withdrawal, or
end-processing transactions. There is therefore a much greater risk of ambigu-
ous matches, and consequently of misinterpretations of the program. It appears
likely that a more detailed problem statement, in which the transaction
commands were listed explicitly, would have improved PROUST's performance.

7. Concluding Remarks and Future Directions

This article has claimed that accurate debugging of novice programs requires
an understanding of the intentions underlying programs. Without an under-
standing of the programmer's intentions, many bugs cannot be detected, and
those that can be detected cannot be localized and explained. In order to
diagnose bugs effectively, one needs knowledge both of what the program is
intended to do and how it is intended to do it. Since the intentions underlying
each program may be different, the precise intentions of the programmer must

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 95

be inferred from the buggy program as it is being analyzed. The key to doing
this is to start with a description of the problem being solved, and to use
programming knowledge to predict possible ways in which the problem might
be solved. In most cases the p rogrammer ' s intentions can be related to the
predictions. A program called PROUST was built which uses this approach to
diagnose bugs in novice programs.

Although significant results have been achieved so far with PROUST, much
more work remains to be done. One of the most immediate needs at this time
is to test PROUST on a wider range of programming problems. Now that an
acceptable level of per formance has been achieved on two programming
problems, the time has come to try to generalize and extend PROUST'S
knowledge. In addition, detailed feedback from novice users would be helpful,
to ensure that PROUST'S goal decomposit ions accurately reflect the novices'
intentions.

Until PROUST is coupled with a tutoring module, PROUST's ability to
diagnose programming errors will remain limited to the information that is
extractable from the buggy programs themselves. A tutoring component would
be able to ask students questions in order to select between alternative
explanations of bugs. It would allow PROUST to refine its model of the student 's
abilities, to make more explicit its model of the student 's knowledge and
problem-solving skills. This in turn would allow PROUST to make more
accurate predictions about the students ' intentions, and derive a deeper
understanding of the students ' bugs. Such a tutor is currently in the process of
being developed [20, 22].

A version of PROUST should be developed for a different programming
language, such as ADA or LISP. Building such a system would help determine
the generality of PROUST's approach, and would provide further insights into
the kinds of knowledge that p rogrammers use in solving problems. It would
also be useful to apply PROUST'S approach to other domains, in order to
demonstra te the generality of intention-based analysis as a means for identify-
ing and correcting bugs. There are already some promising results in this
direction: Sebrechts has taken a str ipped-down version of PROUST, called
M1CRO-PROUST [18], and adapted it to the domain of statistics. The resulting
system, G1DE, has undergone preliminary tests with statistics students [24].
PROUST's approach should be useful in a variety of domains where students are
given sets of goals to solve, and must combine plans in order to construct a
solution which achieves these goals.

ACKNOWLEDGMENT

I would like to thank Elliot Soloway, my advisor, for insightful suggestions regarding this research,
and for comments on an earlier draft of this paper. I would also like to thank Bill Clancey for his
comments regarding this paper, and for his help in clarifying some of the ideas presented here. Bill
Swartout and Bob Neches also made helpful suggestions regarding the paper.

96 W.L. JOHNSON

This work was co-sponsored by the Personnel and Training Research Groups, Psychological
Sciences Division, Office of Naval Research and the Army Research Institute for the Behavioral
and Social Sciences, under Contract No. N00014-82-K-0714, Contract Authority Identification
Number. No. 154-492. Approved for public release; distribution unlimited. Reproduction in whole
or part is permitted for any purpose of the United States Government.

REFERENCES

1. Adam, A. and Laurent, J.-P., LAURA: A system to debug student programs, Artificial
Intelligence 15 (1980) 75-122.

2. Barnard, D.T., A survey of syntax error handling techniques, Tech. Rept., University of
Toronto, Toronto, Ont. (1976).

3. Bonar, J., Ehrlich, K. and Soloway, E., Collecting and analyzing on-line protocols from novice
programmers, Behav. Res. Methods Instrumentation 14 (1982) 203 209.

4. Brown, J.S. and Burton, R.R., Diagnostic models for procedural bugs in mathematics,
Cognitive Sci. 2 (1978) 155-192.

5. Burton, R.R., Diagnosing bugs in a simple procedural skill, in: D. Sleeman and J.S. Brown
(Eds.), Intelligent Tutoring Systems (Academic Press, New York, 19821.

6. Conway, R.W. and Wilcox, T.R., Design and implementation of a diagnostic compiler for
PL/I, Commun. ACM 16 (1973) 169-179,

7. Davis, R., Shrobe, H., Hamscher, W., Weickert, K., Shirley, M. and Polit, S., Diagnosis
based on description of structure and function, in: Proceedings AAA1-82, Pittsburgh, PA
(1982) 137-142.

8. Eisenstadt, M., Prospective zooming: A knowledge based tracing and debugging methodology
for logic programming, in: Proceedings IJCAI-85, Los Angeles, CA (1985) 717-719.

9. Farrell, R.G., Anderson. J.R. and Reiser, B.J., An interactive computer-based tutor for LISP,
in: Proceedings AAAI-84, Austin, TX (1984) 1(16-109.

l(I. Fosdick, L.D. and Osterweil, L.J., Data flow analysis in software reliability, Comput. Surv. 8
(1976) 305-330.

11. Genesereth, M.R., Automated consultation for complex computer systems, Ph.D. Thesis,
Harvard University, Cambridge, MA (1978).

12. Genesereth, M.R., The role of plans in intelligent teaching systems, in: D. Sleeman and J.S.
Brown (Eds.), Intelligent Tutoring Systems (Academic Press, New York, 19821.

13. Graham, S.L. and Rhodes, S.P., Practical syntactic error recovery in compilers, Commun.
ACM 18 (11) (19751.

14. Harandi, M.T., Knowledge-based program debugging: A heuristic model, in: Proceedings 1983
SOFTFA1R (1983).

15. James, E.B. and Partridge, D.P., Adaptive correction of program statements, Commun. ACM
16 (1) (1973).

16. Johnson, W.L., Intention-Based Diagnosis of Novice Programming Errors (Morgan Kaufmann,
Los Altos, CA, 1986).

17. Johnson, W.L., Draper, S. and Soloway, E., Classifying bugs is a tricky business, in:
Proceedings NASA Workshop on Software Engineering (to appear).

18. Johnson, W.L. and Soloway, E., PROUST: An automatic debugger for Pascal programs, in:
Artificial Intelligence and Instruction: Applications and Methods (Addison-Wesley, Reading,
MA, 1986).

19. Johnson, W.L., Soloway, E., Cutler, B. and Draper, S., Bug collection l, Tech. Rept. 296,
Department of Computer Science, Yale University, New Haven, CT (1983).

20. Littman, D.C., Pinto, J. and Soloway, E., An analysis of tutorial reasoning about program-
ming bugs, in: Proceedings AAAI-86, Philadelphia, PA (1986) 320-326.

21. Murray, W.R., Automatic program debugging for intelligent tutoring systems, Ph.D. Thesis,
University of Texas, Austin, TX (1986).

UNDERSTANDING AND DEBUGGING NOVICE PROGRAMS 97

22. Rich, C., A formal representation for plans in the programmer's apprentice, in: Proceedings
IJCAI-81, Vancouver, BC (1981) 1044-1052.

23. Sack, W. and Soloway, E., From MENO to PROUST to CHIRON: AI design as iterative
engineering; Intermediate results are important!, in: Proceedings Invited Workshop on Com-
puter-Based Learning Environments', Pittsburgh, PA (1988).

24. Sebrechts, M., Schooler, L., LaClaire, L. and Soloway, E., Computer-based interpretations of
students' statistical errors: A preliminary empirical analysis of GIDE, in: Proceedings 8th
National Educational Computing Conference, Philadelphia, PA (1987).

25. Sedlmeyer, R.L. and Johnson, P.E., Diagnostic reasoning in software fault localization, in:
Proceedings S1GSOFT Workshop on High-Level Debugging, Asilomar, CA (1983).

26. Shapiro, D.G., Sniffer: A system that understands bugs, Tech. Rept. AI Memo 638, MIT
Artificial Intelligence Laboratory, Cambridge, MA (1981).

27. Shapiro, E., Algorithmic Program Debugging (MIT Press, Cambridge, MA, 1982).
28. Sleeman, D., A rule directed modelling system, in: R.S. Michalski, J.G. Carbonell and T.M.

Mitchell (Eds.), Machine Learning: An Artificial Intelligent Approach (Tioga, Palo Alto, CA,
1983).

29. Soloway, E. and Ehrlich, K., Empirical investigations of programming knowledge, 1EEE
Trans. Software Eng. 10 (5) (1984).

30. Soloway, E., Rubin, E., Woolf, B., Bonar, J. and Johnson, W.L., MENO-II: An AI-based
programming-tutor, J. Comput.-Based Instruction 10 (1) (1983).

31. Swartout, W., The Gist behavior explainer, in: Proceedings AAA1-83, Washington, DC
(1983). (Also available as ISI/RR-83-3.)

32. Teitelman, W., 1NTERLISP Reference Manual (1978).
33. Wertz, H., Stereotyped program debugging: An aid for novice programmers, Int. J. Man-

Mach. Stud. 16 (1982) 379-392.

