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ABSTRACT 

Accurate identification and explication of program bugs requires an understanding of the pro- 
grammer's intentions. This paper describes a system called PROUST which performs intention-based 
diagnosis of errors in novice PASCAL programs. The technique used involves generating possible 
goal decompositions for the program, matching them against the program, and then proposing bugs 
and misconceptions to explain the mismatches. Empirical studies of PROUST's performance show 
that it achieves high performance in finding bugs in nontrivial student programs. 

1. Introduction 

Learning to program is a t ime-consuming and frustrating process for most 
novice programmers .  One reason for this is that they have to expend so much 
effort in debugging their programs.  Program bugs hinder the learning process 
in two ways. First, the students are distracted from the curriculum material  that 
they are trying to understand when the programs that they write have bugs 
unrelated to the concepts being learned. Second, novices frequently have 
misconceptions about programming language syntax and semantics, which lead 
to confusions when their programs behave differently from what they expect. It 
is extremely difficult for novices to discover on their own the misconceptions 
which account for the unexpected behavior.  

Bugs need not be a hindrance to novice programmers ,  however.  If a tutor 
were to supervise the students '  work and provide assistance when the students 
make mistakes,  then errors might even enhance the learning process. Perfor- 
mance errors provide a unique opportunity for the teacher to understand the 
students '  confusions and misconceptions [4]. Given such an understanding, the 
teacher can then focus on remedying the student 's  problems,  clearing the way 
for further progress through the curriculum. 

Unfortunately,  it is rarely possible to provide each student in a programming 
course with an individual tutor. What  is needed instead is a computer  program 
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which can serve in the tutor 's  role. Such a program would analyze the students '  
programs,  looking for bugs and bad programming style. It would then help the 
students overcome the misconceptions that were responsible for the incorrect 
code. 

The process of analyzing programs for syntactic errors is well understood at 
this point; techniques exist which do a fairly good job of identifying syntactic 
errors [2, 13] and of correcting them [6, 15]. Semantic and logic errors, on the 
other hand, are not so easily diagnosed. Most semantic and logical error 
detectors focus on narrow ranges of bugs, such as uninitialized variables [10] or 
spelling errors [32]. These errors all share the property that one can detect 
them regardless of what the intended functionality of the program is. However ,  
many logical errors result in programs which function, but which fail to 
compute the desired results. 

This paper  will argue that in order to reliably diagnose as near to the 
complete range of semantic and logical errors as possible, a debugging system 
must understand the p rogrammer ' s  intentions. A program is a designed 
artifact; as such, its design must be taken into account when analyzing it for 
bugs. The program has an intended function, and has been constructed in 
order to achieve this function. Debugging should focus on whether the 
intended function and design of the program are correct, and whether these 
intentions have been properly executed. Such an approach makes it possible to 
detect more bugs, and to explain better  how to correct them. By relating bugs 
to the student 's  intended design, it may be possible to help students learn to 
design their programs better. 

This paper  will show that intention-based analysis can be an effective method 
for diagnosing bugs in programs. It requires knowledge of how to write 
programs, what errors novice programmers  are likely to make,  and some 
general understanding of what a given program is supposed to do. Given such 
knowledge, one can identify the intended function of each statement in a 
program, what bugs are present,  and where they are manifested. A system 
called PROUST will be described which determines the intentions underlying 
novice programs and uses this understanding of intentions to perform accurate 
analyses of nonsyntactic bugs. The results of empirical evaluations of PROUST 
on student programs will be presented; these results will demonstrate  the 
effectiveness of the approach.  

1.1. Intention-based analysis of an example buggy program 

To see why understanding programmers" intentions is important in diagnosing 
bugs, let us examine the bugs in an example novice PASCAl_, program. The 
program to be considered here is a solution to the Rainfall Problem that was 
assigned in an introductory PASCAL course. 

Rainfall Problem. Noah needs to keep track of rainfall in the New Haven area 
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in order to determine when to launch his ark. Write a PASCAL program that will 
help him do this. The program should prompt  the user to input numbers from 
the terminal; each input stands for the amount of rainfall in New Haven for a 
day. Note: since rainfall cannot be negative, the program should reject 
negative input. Your program should compute the following statistics from this 
data: 

(1) the average rainfall per day; 
(2) the number of rainy days; 
(3) the number of valid inputs (excluding any invalid data that might have 

been read in); 
(4) the maximum amount of rain that fell on any one day. 

The program should read data until the user types 99999; this is a sentinel 
value signaling the end of input. Do not include the 99999 in the calculations. 
Assume that if the input value is nonnegative, and not equal to 99999, then it is 
valid input data. 

This problem requires that the students write a program which reads in a 
series of numbers, each of which represents the amount  of rainfall on a 
particular day. Input termination is signaled when the user types the value 
99999. The program is supposed to check the input for validity, compute the 
average and the maximum of the input, and count the total number of valid 
inputs and the number of positive inputs. The program must prevent the final 
99999 from being included in the computations. This problem thus tests the 
students' ability to combine a variety of computations into a single working 
program. 

Figure 1 shows a solution to the Rainfall Problem written by a novice 
programmer.  We will refer to this example repeatedly throughout this paper 
when discussing PROUST. This program has a number of different bugs; 
however, there is one set of bugs that is of particular interest. Instead of there 
being a single loop which reads the data, processes it, and checks for 99999, 
there are two. One is a repeat loop, starting at line 8 and ending at line 28. The 
other  is a while loop contained within the repeat loop. The inner while loop is an 
infinite loop; it tests the variable RAIN against 99999, but never modifies RAIN. 

Well-known analysis techniques such as data flow analysis [10] are capable of 
detecting the infinite loop in the program in Fig. 1. However ,  if an infinite loop 
is a manifestation of a more significant programming error,  then simply 
pointing out the infinite loop may distract the student away from correcting the 
true error. In particular, if a loop does not belong in the program at all, then 
the question of whether or not the loop is infinite is moot.  Our empirical 
studies of how students debug programs indicate that novice programmers tend 
to correct the surface manifestations of bugs rather than the bugs themselves; 
thus proper  descriptions of bugs are crucial. 

We believe that the proper  analysis of the bug in this program is as follows. 
The student probably did not intend the while statement at line 19 to loop at 
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program Rainfall (input, output); 

var 

Rain, Days, Totalrain, Raindays, Highrain, Averain: real; 

begin 
Rain : -  0 

repeat 
writeln ('Enter rainfall'); 

readln; 
read (Rain); 

while Rain < 0 do 
begin 

writeln (Rain:0:2, 'is not ~)ossible, try again'); 

readln; 

read (Rain) 
end; 

while Rain < >  99999 do 
begin 

Days : -  Days + 1 ; 

Totalrain := Totalrain + Rain; 
if Rain > 0 then 

Raindays : Raindays + 1; 

if Highrain < Rain then 
Highrain := Rain 

end; 

until Rain = 99999; 

Averain := Totalrain/Days; 

writeln (Days:0:0, 'valid rainfalls were entered'); 

writeln ('The average rainfall was', Averain:0:2, 'inches'); 

writeln ('The highest rainfall was', Highrain:0:2); 
writeln ('There were', Raindays:0:0, 'in this period'); 

end. 

Fig. l. A buggy so lut ion  to the Rainfall Problem. 

all. Instead, the effect of  an if statement was intended. Since the input 
statements are at the top of the repeat loop,  and the loop exit test is at the 
bottom of  the repeat loop,  there has to be a way for control to skip from the 
input statements to the end of  the loop when 99999 is read. Otherwise the 
99999 would be processed as if it were a rainfall amount.  An  if statement would 
serve this purpose,  but the student has written a while statement instead. 
Empirical analyses of  novice programming errors [19] have shown that novice 
programmers commonly  confuse the meanings of  if and while, particularly when 
they are embedded within other loops. If this bug were to be described to the 
novice programmer,  the description should focus on the probable misconcep- 
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tion about the meanings of if and whi le ,  rather than just on the fact that the 
while statement is an infinite loop. 

The key difference between the above analysis and the analysis that a data 
flow analyzer would produce is the following. A data flow analyzer analyzes the 
behavior of the program itself, independent of the intentions underlying it. In 
the above analysis, the focus was on understanding the intentions underlying 
the program, and then on referring to those intentions in diagnosing bugs. 
Thus the bug analysis presented above is an intention-based analysis; a data 
flow analyzer, in contrast, performs non-intention-based analysis. 

Figure 2 shows PROUST's output when analyzing the program in Fig. 1. The 
output demonstrates PROUST's ability to understand the intentions underlying 
the program. PROUST finds all of the bugs in the program, including the 
while-for-if bug. Although PROUST's output indicates the possibility that the 

NOW BEGINNING BUG REPORT: 

> >  Now Reporting CRITICAL Bugs in the SETUP part of your program: 

You left out the initializations for the variables HIGHRAIN, DRYDAYS, RAINDAYS, and 
TOTALRAIN. Programs should not fetch values from uninitialized variables! If you don't initialize 

these variables to the values that you want, you will have no way of knowing what values they 
will be initialized to. 

(TO CONTINUE, PLEASE PRESS CARRIAGE RETURN) 

> >  Now Reporting MINOR Bugs in the SETUP part of your program: 

The initialization at line 7 appears to be unnecessary. 
The statement in question is: 

RAIN := 0 

(TO CONTINUE, PLEASE PRESS CARRIAGE RETURN) 

> >  Now Reporting CRITICAL Bugs in the CONTROL part of your program: 

You used a WHILE statement at line 19 where you should have used an IF. WHILE and IF are 

NOT equivalent in this context; using WHILE in place of IF can result in infinite loops. 
The statement in question is: 

WHILE RAIN <>99999 DO. . .  

(TO CONTINUE, PLEASE PRESS CARIAGE RETURN) 

> >  Now Reporting CRITICAL Bugs in the OUTPUT part of your program: 

The maximum and the average are undefined if there is no valid input. But lines 34 and 33 

output them anyway. You should always check whether your code will work when there is no 
input! This is a common cause of bugs. 

You need a test to check that at least one valid data point has been input before line 30 is 
executed. The average will bomb when there is no input. 

BUG REPORT NOW COMPLETE. 

Fig. 2. PROUST's output for the program in Fig. 1. 
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program will enter an infinite loop, it does not analyze the program by looking 
for infinite loops. Rather,  it tries to understand the intended role of each 
component  of the program,  and in the process discovers a while s tatement that 
appears  to have the intended function of an if statement.  Once the bug is 
found, PROUST can then proceed to explain how the bug will be manifested in 
incorrect program behavior.  

1.2. The principal components of intention-based diagnosis 

We will now look at what a system needs in order to be able to perform an 
intention-based analysis such as the one that we have just seen. The particular 
mechanisms which PROUST uses to perform the analysis will be introduced. 
Further discussion of these mechanisms will appear  later in the paper.  

1.2.1. Problem descriptions 

One of the things which an intention-based analysis system must do, as 
indicated above, is to determine what the intended function of the program is. 
It is difficult to infer the intended function of a program just by inspecting the 
program; there is no way of knowing whether the program's  behavior is really 
what the p rogrammer  had in mind. One needs some way of forming expecta- 
tions about what the program functionality ought to be. In PROUST the 
expectations are provided in the form of a description of the problem that was 
assigned to the students. It is assumed that the students '  intended functionality 
will be reasonably close to what was stated in the problem. 

Problem descriptions, for PROUST, are sets of goals to be satisfied, and sets 
of descriptions of the data objects that test goals apply to. Figure 3 shows one 
of the problem descriptions that PROUST uses, the description of the Rainfall 
Problem. 1 These problem descriptions define data objects which the program 
will manipulate,  and some goals to be achieved on those objects. For example,  
Output(Average(?DailyRain)) specifies that the average of the rainfall inputs 
should be computed and output,  where the rainfall input is referred to as the 

?DailyRain isa Scalar Measurement. 

Achieve the following goals: 
Sentinel-Controlled Input Sequence(?DailyRain, 99999); 
Input Validation(?DailyRain, ?DailyRain <0); 
Output( A verage( ?DailyRain) ) ; 
Output( Count( ?DailyRain) ) ; 
Output(Guarded Count(?DailyRain, ?DailyRain >0)); 
Output( Maximum( ?DailyRain)) ; 

Fig. 3. The Rainfall Problem in PROUST's problem description notation. 

The syntax of the description has been altered to make it more readable. 
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object ?DailyRain. Note that goals implied by the listed goals, such as checking 
for division by zero when the average is computed,  are omitted. Explicitly 
mentioned goals are more likely to match the students' intentions than implied 
goals, which the students often overlook or get wrong. 

1.2.2. Hypothesizing goal decompositions 

Given a problem description, the task of identifying the intentions underlying a 
program amounts to answering the following questions: 

- H o w  do the goals in the problem description relate to the goals that are 
actually implemented in the program? 

- H o w  did the programmer intend to implement these goals? 

That  is, general expectations about the intended function of a program must be 
refined into a specific account of the functionality and design of the program. 

Although the problem description helps determine what the intended func- 
tion of the program is, it says nothing about how that function is to be 
implemented. In fact there is nothing it could say, because each student is 
likely to implement the problem goals in a different way. In small programs it 
may be possible to enumerate  the different ways of solving the problem, but in 
more complex problems such as the Rainfall Problem the number of possible 
solutions is too great. When an intention-based diagnosis system works in a 
complex domain such as PROUST's, it cannot rely solely on a canned descrip- 
tion of possible solutions. Instead, it must be able to construct a description of 
the intentions underlying each individual student solution. 

In order to construct descriptions of novice intentions, PROUST relies upon a 
knowledge base of programming plans. Programming plans, as defined by 
Soloway, are stereotypic methods for satisfying programming goals [29]. Rich's 
programming cliches serve a similar function [22]. PROUST's plan knowledge 
base was constructed as a result of studying commonly occurring patterns of 
code in PASCAL programs, and from examples culled from programming 
textbooks. PROUST combines these plans into possible implementations for 
each goal, and then matches the plans against the program. If the student's 
code matches one of the predicted plans, then PROUST concludes that the 
student's intended implementation matches fairly closely to the plan that 
matched. 

When PROUST combines plans into predictions of how the student im- 
plemented the problem goals, it is said to be generating possible goal decompo- 
sitions for the problem. A goal decomposition relates the goals that a program 
is supposed to achieve to the plans that achieve it. In the process of going from 
goals to plans, it may be necessary to break goals into sets of subgoals, 
combine related goals into a larger goal, and add goals that are not explicitly 
stated in the problem. For nontrivial problems, there is often a large number of 
possible goal decompositions. 
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write('Enter rainfall value:'); 

read(Rain); 

while Rain < >  99999 do 

begin 

if Rain < 0 then 

writeln('lnvalid input, try again'); 

if Rain :> 0 then 

Raindays : -  Raindays + 1 ; 

if Highrain -~ Rain then 

Highrain : -  Rain; 

if Rain :-~ 0 then 

begin 
Totalrain : -  Totalrain + Rain; 

Days :-- Days ÷ 1 ; 

end; 

write('Enter rainfall value:'); 

read(Rain); 

end 

Fig. 4. An alternative way of combining input and input validation. 

An example of where goals can be combined in different ways in the Rainfall 
Problem is in deciding whether the goal of inputting the rainfall data and the 
goal of checking it for validity should be combined. If the two goals are 
combined into a single plan, then a program such as the one in Fig. 1 results. 
There the contiguous block of code from line 10 to line 17 reads, tests, and 
then re-reads the data. If the Input goals and the Input Validation goal are not 
combined,  then they may wind up in separate parts of the program,  as in the 
example in Fig. 4. 

It should be emphasized that the goal decomposit ion that PROUST hypoth- 
esizes for a program need not correctly implement the goals in the problem 
description. The student may have decomposed goals improperly,  or have used 
an inappropriate plan. In such cases PROUST's goal decomposit ion should still 
reflect what the student did. PROUST's programming knowledge base is there- 
fore extended so that it can generate incorrect goal decompositions. PROUST is 
thus able to predict some kinds of bugs as it constructs goal decompositions. 
Not all bugs are recognized in this fashion, but a significant number  are. 

1.2.3. When predicted intentions fail to match 

Even though PROUST generates a number  of goal decompositions for each 
goal, there is no guarantee that any of them will match the student 's  program 
exactly. In fact, mismatches are what most often provide clues that there are 
bugs in the program. If we have chosen the right goal decomposit ion,  and it 
fails to match the program, then the mismatches can be explained as failed 
at tempts on the part of the p rogrammer  to implement  the goal decomposition 
in the code. 
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SENTINEL READ-PROCESS REPEAT PLAN 

Constants: ?Stop 
Variables: ?New 
Template: 

repeat 

subgoal lnput(?New) 
subgoal Sentinel Guard(?New, ?Stop, ?*) 

until ?New ?Stop 

Fig. 5. A plan for implementing Sentinel-Controlled Input Sequence. 

PROUST detects the possibility of a while-for-if bug in the example program by 
matching different goal decompositions against the program. The goal that 
PROUST tries to decompose is the Sentinel-Controlled Input Sequence goal, the 
goal of reading in a sequence of numbers until some designated sentinel value 
is reached. It constructs several goal decompositions for this goal, some using 
while loops, some using repeat loops; it also tries different ways of structuring 
the loop. The closest decomposition that it finds uses the SENTINEL READ- 
PROCESS REPEAT PLAN, shown in Fig. 5. PROUST first matches the repeat 
statement pattern in the plan against repeat statement at line 8 in the program. 
It then selects plans to implement the subgoals in the plan, Input and Sentinel 
Guard. No plan for implementing the Sentinel Guard subgoal matches the 
program. All of PROUST'S plans for implementing Sentinel Guard require that 
there be an if statement to test for the sentinel value; no such if statement 
appears in the program. 

Now, in order to make sure that the student's program is properly under- 
stood, some knowledge of common student errors is needed. We need to be 
able to recognize that the while loop in program could be a buggy implementa- 
tion of the expected subgoal. In PROUST this knowledge is represented as a 
knowledge base of production rules, called plan-difference rules. These plan- 
difference rules are responsible for suggesting bugs and misconceptions which 
account for the mismatches. One such rule, a rule for recognizing when while 
statements were used in place of if statements, is paraphrased in Fig. 6. 
Plan-difference rules either account for the differences between the plan and 
the code by means of bugs and misconceptions, or suggest a way to transform 
the plan to make it fit the programmer 's  apparent intentions better. 

IF a while statement is found in place of an if statement, 
AND the while statement appears inside of another loop, 

THEN the bug is a while-for-if bug, probably caused by 
a confusion about the control flow of embedded loops. 

Fig. 6. Paraphrase of a plan-difference rule for explaining while-for-if bugs. 
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1.3. Summary of PROUST'S approach 

To summarize, intention-based errors diagnosis, as it is realized in PROUST, 
involves performing the following steps: 

-generating hypotheses about the intentions underlying the program, 
-ma tch ing  these hypothesis against the code, 
-explaining the mismatches. 

PROUST is unique in that it can generate a range of hypotheses to test against 
each program, and because it uses knowledge of common bugs and misconcep- 
tions to explain mismatches. 

Subsequent sections will explore the different stages of PROUST'S analysis in 
further detail. Section 3 describes the process of constructing goal decomposi- 
tions. Section 4 describes plan-difference analysis. Section 5 describes how 
PROUST chooses among alternative interpretations of the program. A more 
detailed description of each of these processes can be found in [16]. 

2. Comparing PROUST'S Approach to Other Approaches 

A number of systems have been built to analyze program errors. Virtually all 
of these systems are non-intention-based. Instead of identifying the pro- 
grammer's intentions, they analyze the structure or behavior of the program, 
and then infer bugs directly from this analysis. In this section some of these 
other approaches will be compared against PROUST's. In general, other systems 
cannot recognize as wide a range of bugs, nor can they diagnose bugs as 
accurately. We will then look at the few systems which are capable of 
intention-based analysis in other domains, or in other contexts, in order to see 
how these systems compare with PROUST. 

2.1. Non-intention-based approaches 

The most common approach to finding nonsyntactic program bugs is to look 
for anomalous program behavior or structure. The focus here is on programs 
which can clearly be seen to have bugs, regardless of what the programmer's  
intentions were. Some systems look for anomalous data flow [10], computa- 
tions that may not terminate [33], or compare the code against a catalog of 
common novice mistakes [30]. Others try to interpret runtime errors [14, 32]. 
Still others analyze program traces for surprising behavior [31]. These systems 
may be effective for finding certain classes of bugs, but they will not work when 
the program has no obvious anomalies. Furthermore,  they are not very good at 
pinpointing where the error occurred and why. We saw this in the while-for-if 
bug in Fig. 1. Without any knowledge of the intended function of the faulty 
loop, there is no way of knowing whether the exit test of the loop is wrong, 
whether the body is wrong, or whether a loop was intended at all. Thus a 
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system which looks for common anomalies will not be able to help a novice 
programmer realize his intentions in the code. 

Another  way to find bugs without knowledge of the programmer 's  intentions 
is to have the programmer say what is wrong with the program, and have the 
system try to trace the cause of the bug. The user describes the error  by 
supplying test data which causes the program to generate incorrect output,  and 
indicating the discrepancies between the desired output and the actual output. 
This approach is used in Eisenstadt's P R O L O G  Trace Package [8], and in 
troubleshooting systems such as FALOSY [25], E. Shapiro's debugger [27], and 
D. Shapiro's SNIFFER system [26]. These systems all assume that the pro- 
grammer is competent  enough to spot any and all incorrect behavior. This 
assumption is not valid for novice programmers;  in fact part of what novice 
programmers must learn is how to test their programs systematically. A 
debugging system for novices should be smart enough to find bugs without 
depending upon the user for assistance. 

2.2. Intention-based approaches 

In comparison to the number  of non-intention-based error  diagnosis systems, 
the number of intention-based ones are few. Those that exist are relatively 
limited either in their ability to hypothesize intentions underlying programs, or 
in their ability to handle a wide range of programming errors. 

A first step toward intention-based diagnosis is to analyze programs by 
comparing them against one or more ideal solutions supplied by the instructor. 
LAURA was an early example of the use of this approach [1]. It was given a 
single ideal solution for each problem, and compared student solutions against 
the ideal. Such an approach is acceptable if there is little variability in correct 
problem solutions, i.e., if the goal decompositions of solutions are essentially 
the same. In the programming problems that PROUST analyzes, there is simply 
too much variability for such a scheme to work. 

T A L U S  [23] is another system that compares ideal solutions against programs; 
it compares each program against a suite of known correct algorithms. TALUS 
reports the differences between the student's program and the most closely 
matching correct algorithm. TALUS is similar to PROUST in that it analyzes 
programs by comparing them against hypothetical algorithms. It differs from 
PROUST in that all possible goal decompositions must be built in ahead of time, 
and because it has no knowledge about what bugs and misconceptions are 
likely to occur in novice programs. Thus T A L U S  is unlikely to perform as well 
as PROUST on problems where many variations in goal decompositions are 
possible, and where students are likely to make mistakes which obscure the 
intended function of the code. There  is a number of different goal decomposi- 
tions for the Rainfall Problem, resulting from decisions about how to check for 
boundary conditions, and how to combine the various goals stated in the 
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problem. Misconceptions about the semantics of PASCAL keywords such as 
while, if, repeat, begin, and end can frequently result in programs with bizarre 
structure which is hard to relate to any correct program solution. 

The LISP tutor [9] can perform intention-based analysis of errors in LISP 
programs. It has a model of what the student 's  current goals are, and updates 
this model whenever  the student makes an edit to the program. If the student 
makes an incorrect edit to the program, the LISP tutor tries to understand why 
the student made that change, based upon the tutor 's  model of the student 's  
intentions. It then corrects the student immediately.  

The LISP tutor is successful at diagnosing errors, provided that it understands 
the programmer ' s  intentions properly.  Such an understanding is possible only if 
the tutor knows what goal the p rogrammer  is carrying out at each point in the 
task. In nontrivial programs,  this can be difficult, and the LISP tutor therefore 
requires guidance from the student. For example,  when a student is writing a 
recursive program using the LISP tutor, the tutor forces the user to select from 
among a predefined set of recursion plans. The tutor then supplies the student 
with a program template,  which he or she fills in. Recursion plans which do not 
belong to the predefined set are disallowed. 

The advantage of the LISP tutor 's  approach is that it provides the user with 
immediate feedback when errors are encountered.  The disadvantage is that it 
restricts the f reedom of the student in designing the program. Although 
PROUST cannot currently analyze recursive programs,  it can analyze iterative 
ones, and it does not require guidance from the user to do so. PROUST also is 
designed to analyze programs which achieve multiple goals; it does not 
presume that these goals will be satisfied in any particular order. The LISP tutor 
is designed to handle programs which achieve a relatively small number  of 
goals; it must assume a small number  in order to be able to predict what the 
user 's goal state might be at any given time. 

The MACSYMA advisor [13] is similar to PROUST in that it critiques a novice's 
use of MACSYMA after the novice has a t tempted to solve the problem. The 
problems that it analyzes require fewer steps to solve than PROUST'S, however.  
Fur thermore ,  the MACSYMA advisor makes simplifying assumptions about  the 
student 's  abilities: it assumes that the students '  errors are caused only by 
factual misconceptions about  MACSYMA commands.  PROUST makes no similar 
assumption: it is designed to handle the bugs that novice programmers  are 
actually observed to make,  regardless of cause. The difference in assumptions 
results in differences between PROUST's and the MACSYMA advisor's repre- 
sentations of intentions, as we will see later on. 

3. Goal Decompositions 

This section describes PROUST's goal decompositions,  and explains how they 
are constructed. These goal decomposit ions are central to PROUST: PROUST'S 
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ability to analyze student programs successfully depends upon its ability to 
construct goal decompositions which fit these programs. The goal decomposi- 
tions constitute a model of the student's intentions, a model which is used 
when identifying and describing bugs. The discussion in this section will 
proceed as follows. First, the content and purpose of goal decompositions will 
be discussed. Then the knowledge used in creating these goal decompositions 
will be discussed. Then the knowledge used in creating these goal decomposi- 
tions will be described, together with the process which creates them. Finally, 
the effectiveness of PROUST at recognizing the goal decompositions underlying 
programs will be assessed. 

3.1. The contents of goal decompositions 

A goal decomposition is an account of how the goals in the problem are 
realized in the program. It relates goals to the means by which the goals are 
implemented; i.e., it relates goals to subgoals and/or plans. The goal decompo- 
sition describes why each goal or subgoal arose as part of the solution, e.g., it 
was dictated by the problem statement, or it was implied by one of the goals in 
the problem statement. PROUST's goal decompositions thus indicate, for every 
statement in the program, what goal that statement serves to implement, and 
in turn how the implemented goal fits into the overall scheme for solving the 
problem. 

In order to see what goes into PROUST's goal decompositions, let us examine 
the goal decomposition generated by PROUST for the example program in Fig. 
1 in some detail. An analysis will be presented of the implementation of the 
goal Sentinel-Controlled Input Sequence, the goal of inputting a sequence of 
values until a sentinel value is read, in this program. An excerpt of the 
program relating to this goal appears for reference in Fig. 7. 

8 repeat 
9 writeln ('Enter rainfall'); 

10 readln; 
11 read (Rain); 
12 while Rain< 0 do 
13 begin 
14 writeln (Rain:0:2, 'is not possible, try again'); 
15 read In; 
16 read (Rain) 
17 end; 
18 
19 while rain <>99999 do 
20 begin 

28 end; 
29 until Rain = 99999; 

Fig. 7. An excerpt of the program in Fig. 1. 
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PROUST'S goal decomposit ion for this example refers to several goals and 
plans, each of which will be defined below. The following goals will be referred 
to in P R O U S T ' s  goal decomposition: 

-Sentinel-Controlled Input Sequence: read data and process it until a 
sentinel value is input; 

- I n p u t  Validation: ensure that input data is valid; 
- I n p u t :  read a single datum; 
- Sentinel Guard: guard against a sentinel value accidentally being processed 

as data. 

The following plans will be used: 

- SENTINEL READ-PROCESS REPEAT PLAN: a repeat loop, in which an Input 
subgoal, a Sentinel Guard subgoal, and a set of computat ions on the input 
are found (this plan was shown in Fig. 5); 

- VALIDATED PROCESS-READ WHILE INPUT PLAN: an Input subgoal, followed 
by a while loop which tests the input for validity, and re-reads it if 
necessary; 

- SENTINEL SKIP GUARD PLAN: an if s tatement  test for a sentinel value. 

Note that here, as in the rest of this article, names of goals appear  in italics; 
names of plans appear  in capitals. 

PROUST's goal decomposit ion for the example program is as follows. 

The problem description includes two goals, among others: Sen- 
tinel-Controlled Input Sequence and Input Validation. The Sentinel- 
Controlled Input Sequence goal is implemented using the SENTINEL 
READ-PROCESS REPEAT PLAN. The Input subgoal of the plan is 
combined with the Input Validation goal, and the resulting goal is 
implemented using a VALIDATED PROCESS-READ WHILE INPUT 
PLAN. This plan matches lines 10 through 17 in the program. The 
Sentinel Guard subgoal of the SENTINEL READ-PROCESS REPEAT 
PLAN is implemented using a SENTINEL SKIP GUARD PLAN. How- 
ever, there is a bug in this plan: a while s tatement  was used instead 
of an if. 

PROUST's account of the code in Fig. 7 maps the goals in the problem 
statement onto plans, and maps the plans onto the code. Each plan is a 
program template,  often containing subgoals which have to be filled in using 
other plans. Some plans implement  a single goal; others, such as the VAL- 
IDATED PROCESS-READ WHILE INPUT PLAN, implement  more than one goal. 
Each plan is mapped onto particular lines in the program. The goal decomposi-  
tion thus identifies the overall design of the program,  and what role each 
statement  in the program plays as part  of the design. It makes no claims about 
how the student went about producing this design, e.g.,  which goals the 
student a t tempted first when solving the problem. 
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3.2. Knowledge used in constructing goal decompositions 

In order to generate goal decompositions for novice programs, PROUST re- 
quires an extensive knowledge base describing how novices write programs. 
This knowledge base contains the results of extensive empirical analyses of 
programs written by novice programmers [3, 17, 19]. The knowledge base is 
organized as a network of frames, one frame for each plan and goal in the 
knowledge base. The knowledge base includes plans that novices frequently 
use to implement programming goals, and it describes common ways in which 
novice programmers reformulate goals. 

3.2.1. Goal frames 

Goal frames in PROUST list various properties of goals, the most important 
being the possible ways of implementing the goal. When PROUST is construct- 
ing a goal decomposition incorporating a goal such as Sentinel-Controlled Input 
Sequence, it looks up the goal frame to see what alternative implementations 
are listed there. Each possible implementation is used to construct an alterna- 
tive goal decomposition. 

Figure 8 shows PROUST's description of the goal Sentinel-Controlled Input 
Sequence. The possible implementations are listed in the Implementations slot of 
the goal frame. Of the six implementations listed, the first four, SENTINEL 
PROCESS-READ WHILE, SENTINEL READ-PROCESS WHILE, SENTINEL READ- 

PROCESS REPEAT, and SENTINEL PROCESS-READ REPEAT, are all plans. One of 
these, SENTINEL READ-PROCESS REPEAT, was employed in constructing the 
goal decomposition in the previous section. The last two implementations are 
knowledge structures called "goal reformulations," which will be described 
later in this section. 

The example in Fig. 8 also shows some of the other slots that goal frames 
typically have. The Form and Main Variable slots define the parameters of the 
goal: the Form lists all parameters that the goal can take, and the Main Variable 

Instance Of: 
Form: 
Main Variable: 
Name Phrase: 
Outer Control Goal: 
Implementations: 

Sentinel-Controlled Input Sequence 

Read & Process 
Sentinel-Controlled Input Sequence(?New, ?Stop) 
?New 
"sentinel-controlled loop" 
T 

SENTINEL PROCESS-READ WHILE PLAN 
SENTINEL READ-PROCESS WHILE PLAN 
SENTINEL READ-PROCESS REPEAT PLAN 
SENTINEL PROCESS-READ REPEAT PLAN 
BOGUS YES-NO LOOP 
BOGUS COUNTER-CONTROLLED LOOP 

Fig. 8. A goal. 
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slot indicates which parameter  is the principal input or output of the goal. The 
Instance Of slot relates goals to more abstract goal classes that they belong to. 
Sentinel-Controlled Input Sequence belongs to the goal class Read & Process, 
which consists of those goals which perform some sort of iterative reading and 
processing of data. The Name Phrase slot indicates how to describe the goal to 
a student, in English, should there be a bug in the implementation of this goal. 
The Outer Control Goal slot gives an estimate of how much code is required to 
implement the goal; a T here indicates that the code will be one of the larger 
constructions in the student's program. These estimates help PROUST decide 
which goals to analyze first in a student's program, through a process described 
in detail in Section 5. 

3.2.2. Plans 

Just as there is a frame in the knowledge base for each goal, there is a frame 
for each plan. Currently PROUST's knowledge base comprises more than fifty 
plans. Each frame contains a plan template, which is a pattern of statements to 
match against the student's code. As we saw in the SENTINEL READ-PROCESS 
PLAN in Fig. 5, these templates can have subgoals embedded in them. The 
subgoals are added to the goal decomposition, after which PROUST generates 
possible goal decompositions for them in turn, which are then matched against 
the code. Plans thus serve a dual role in PROUST: they indicate the textual 
structure that the code must have, and they also indicate the supergoal-subgoal 
structure of the code. 

Figure 9 shows the SENTINEL READ-PROCESS REPEAT PLAN, in greater detail 
than the version that appeared in Fig. 5. This plan frame has three slots: 
Constants, Variables, and Template. The Template slot contains the plan template 
to be matched against the program. This template consists of a repeat statement 
of the form repeat.., until ?New = ?Stop. Contained within the repeat statement 
are two subgoals, Input and Sentinel Guard. Their  position in the plan template 
dictates where the code implementing these goals should appear in the 
program. Since the Input subgoal is at the top of the body of the repeat loop 
pattern, the code that implements the subgoal should bc at the top of the 

Constants: 
Variables: 
Template: 

Mainloop: 
Next: 
Internalguard: 

SENTINEl_ READ-PROCESS REPEAT PLAN 

?Stop 
?New 

repeat 
subgoal lnput(?New) 
subgoal Sentinel Guard( ?New, ?Stop, Process: ?*) 

until ?New ?Stop 

Fig. 9. The SENTINEL READ-PROCESS REPEAT PLAN, shown in greater detail. 
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student 's  repeat loop. The code implementing Sentinel Guard should immedi- 
ately follow the code implementing the Input goal, since the Sentinel Guard 
goal immediately follows the Input goal in the plan. 

All symbols in the plan template  preceded by question marks are pat tern 
variables. Pattern variables are bound to data in the student 's  program when 
the plan is matched.  The Constants and Variables slots are used to declare 
pattern variables, and to indicate the kinds of data that they match. A pat tern 
variable that is declared in the Constants slot must be bound to a fixed value; 
for example,  the constant ?Stop is bound to 99999 in solutions to the Rainfall 
Problem. A pat tern variable that is declared in the Variables slot must be bound 
to some varying quantity, e.g.,  a PASCAL variable. The pat tern variable ?New 
in Fig. 9, which represents the data that the sentinel-controlled loop reads and 
processes, is declared variable. 

As the example in Fig. 9 shows, the s ta tement  patterns in plan templates are 
represented in a form similar to the syntactic structure of the code. For 
example,  the pat tern for the repeat s tatement  states specifically that a repeat 
s tatement  should be matched,  and not some other kind of looping statement  
such as a while statement.  This syntactic orientation contrasts with the plan 
calculus of Rich [22], in which plans are represented in a programming-  
language-independent  form. A syntax-oriented representat ion is used in 
PROUST to provide lexical cues for recognizing buggy code in which the 
syntactic structure is wrong. The while-for-if bug in Fig. 1 is typical here. In the 
course of analyzing numerous  novice PASCAL programs,  many programs were 
encountered where syntactic constructs were either used inappropriately or 
were misused. Here  are some other  examples: 

-begin-end pairs are sometimes inappropriately used to indicate the boun- 
daries of loops. They appear  lexically outside of the loop, rather  than 
inside. 

-begin-end pairs are sometimes omit ted entirely. 
- Extra repeat s tatements sometimes appear  at the end of a program,  as if to 

indicate that control should branch back from that point, as in a BASIC next 
statement.  

In order  to interpret programs with bugs such as these, one needs to know 
exactly which syntactic keywords were used in the program,  and where. Thus 
the relevant syntactic keywords were built into the plan templates.  If a 
syntactic keyword is being used inappropriately,  the plan will fail to match. 
Plan difference rules, as ment ioned in Section 1.2.3, can then react to and 
explain the incorrect keyword usage in the context of the plan. If one were to 
use a more abstract plan calculus representat ion for plans, one would then 
have to maintain two different representat ions of the same program,  one used 
for plan analysis and another  for bug analysis. 
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Each significant statement or subgoal in a PROUST plan has a label attached 
to it. In the SENTINEL READ-PROCESS REPEAT PLAN, the repeat statement is 
labeled Mainloop, the Input subgoal is labeled Next, and the Sentinel Guard 
subgoal is labeled Internalguard. These labels are used to characterize the 
function of each component  of the plan. There is a fixed, predefined set of plan 
labels which are used to annotate all plans in the knowledge base. Mainloop 
labels, for example, are always associated with the looping statements of plans. 
Plan labels differ from subgoals in that instead of characterizing the function of 
each plan component  separately, they characterize the role that the component  
plays within the overall plan. For example, Input subgoals can be used either to 
initialize variables or to obtain successive values for variables. Because the 
Input subgoal in the SENTINEL READ-PROCESS REPEAT PLAN is labeled Next, 
rather than Init, PROUST can tell that the Input subgoal does not initialize ?New, 
but instead obtains successive values of ?New. 

Not all subgoals of plans must be implemented in a specific place in the 
program, as the Input and Sentinel Guard subgoals of the SENT1NEL READ- 
PROCESS REPEAT PLAN must be. Some plans leave the location of subgoal 
implementations unspecified. The AVERAGE PLAN, the ordinary plan for com- 
puting the average of a sequence of values, is an example of a plan which does 
not specify where subgoals should be found. The AVERAGE PLAN appears in 
Fig. 10. This plan computes the average by dividing the sum of a sequence of 
values by the count of the number of values in the sequence. The sequence of 
values is represented by the pattern variable ?New. The goal of computing the 
sum of a sequence of values is called Sum: the goal of counting the number of 
values is called Count. It does not matter where the sum and count are 
computed, as long as they are computed before the AVERAGE PLAN is invoked. 
Therefore  the Sum and the Count goals are not specified as plan components;  
instead, they are listed as "posterior goals," i.e., goals that should be added to 

AVERAGE PLAN 

Variables: ?Avg, ?Sum, ?Count, ?New 
Posterior Goals: 

Count(?New, ?Count) 
Sum(?New, ?Sum) 
Guard Exception(component Update of goal Average, 

((?Count from goal Count) = 0)) 
Exception Condition: 

(?Count from goal Count) - 0 
Template: (component Mainloop of goal Read & Process) 

followed by: 
Update: ?Avg:= ?Sum/?Count 

Fig. 10. A plan with two different kinds of subgoals. 
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the goal decomposition, but which are not subcomponents of the plan. 2 The 
third posterior goal, Guard Exception, requires that the average computation 
not be performed if the count of data items is zero. The Exception Condition slot 
supplies the conditions under which the results of the plan are undefined, i.e., 
when the count of data items is zero. 

3.2.3. Goal reformulations 

Suppose that a student fails to follow the problem requirements strictly, and 
writes a program which reads a fixed number of inputs, rather than reading 
until 99999 is typed. Such slight deviations in program goals occur with some 
regularity in programs written by novices. In order  to understand such a 
program, PROUST much recognize that the student's goals deviate from the 
problem description. Goal reformulations are used to predict and characterize 
such deviations. 

In general, goal reformulations substitute one set of goals for another set of 
goals. The new goals may or may not be equivalent to the old goals. PROUST'S 
goal for reading and processing a fixed number of inputs is called Counter- 
Controlled Input Sequence, reflecting the fact that a counter-variable is used as 
the loop control variable in such cases. PROUST reformulates its Sentinel- 
Controlled Input Sequence goal into a Counter-Controlled Input Sequence goal 
in order  to construct an accurate goal decomposition for the student's program. 
Since the student's goal is inappropriate for the problem the goal decomposi- 
tion must be marked as buggy. 

Goal reformulations such as the one going from Sentinel-Controlled Input 
Sequence to Counter-Controlled Input Sequence are stored in PROUST's knowl- 
edge base as goal reformulation frames. Two of the six implementations for 
Sentinel-Controlled Input Sequence, B O G U S  YES-NO L O O P  and B O G U S  C O U N T E R -  

CONTROLLED LOOP, are goal reformulation frames. Figure 11 shows one of 

BOGUS COUNTER-CONTROLLED LOOP 

Form: 
BOGUS COUNTER-CONTROLLED LOOP(?New, ?Stop) 

Component Goals: 
Counter-Controlled Input Sequence(?Cnt, ?New, ?Max) 

Bugs: 
Implements Wrong Goal((Lisp code for further describing bug)) 

Fig. 11. A buggy reformulat ion of Sentinel-Controlled Input Sequence. 

2 The word " 'posterior" is used because the goals are added to the goal decomposit ion after the 
plan template  has been matched.  This is an efficiency consideration,  to ensure that no further 
development  of the goal decomposit ion is per formed until PROUST has determined that the 
current  plan template matches  the code. 
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these, the BOGUS COUNTER-CONTROLLED LOOP reformulation. The reformula- 
tion frame contains two principal slots: a Component Goals slot, which lists the 
goals which will replace the old goals, and a Buos slot, which describes the bug 
associated with this goal reformulation. The bug description indicates that the 
student is implementing the wrong goal; the details of the bug description are 
provided by a piece of LISP code that is not shown here. Such goal reformula- 
tion frames are examples of buggy novice "knowledge" about programming, 
used to characterize common flaws in novice goal decompositions. 

Another example of goal reformulation appeared in the goal decomposition 
of the program in Fig. 1. There the goals Input and Input Validation were 
combined into single goal, implemented using the VALIDATED PROCESS-READ 
WHILE INPUT PLAN. This is done by first reformulating the two goals into a 
single goal, called Validated Input, and then looking for a plan to implement 
that goal. To handle cases such as this, reformulation rules are associated with 
goals such as Input and Input Validation in the knowledge base. Such rules fire 
when a goal is being decomposed while other related goals are active, 
suggesting ways of regrouping the goals. 

3.3. Constructing and matching goal decompositions 

The discussion will now turn from the knowledge used in goal decompositions 
to the process of constructing goal decompositions and matching them against 
the student's code. This process involves searching a state space called the 
interpretation space. The term "interpretation" will be used in this article to 
refer to the entire body of information gained when analyzing a student's 
program. The current discussion focuses on two parts of interpretations, goal 
decompositions and the mapping between goal decompositions and the stu- 
dents' code. 

Each state in the interpretation space includes three things: 

- a n  agenda of goals whose implementation in the program has yet to be 
determined, 

- a  partial goal decomposition, 
- matches between the plans in the partial goal decomposition and the code. 

In the initial state, the goal agenda is exactly those goals which are listed in the 
problem description, and the partial goal decomposition is empty. In the final 
state, the goal agenda is empty, and the goal decomposition is completely 
specified. As PROUST traverses the state space, it incrementally elaborates the 
goal decomposition and matches the plans in the goal decomposition against 
the program. 

The following types of transitions are performed between states: 

-goal  selection: a goal is selected from the goal agenda; 
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- goal reformulation: the selected goal, possibly together with other goals, is 
reformulated; 

- plan selection and matching: the selected goal is implemented using a plan, 
and the plan is matched against the program. Any subgoals in the plan are 
added onto the goal agenda. 

PROUST goes through a cycle of these transitions, alternately selecting goals 
and either selecting and matching plans or reformulating goals. The set of 
states that PROUST passes through, together with the transitions between them, 
constitute a tree, called the interpretation tree. The interpretation tree is 
implemented literally in PROUST as a tree of nodes, each representing a 
different state in the interpretation space. 

The construction of the interpretation tree for the Rainfall Problem begins as 
follows. PROUST starts by selecting the goal Sentinel-Controlled Input Sequence. 
Then possible goal decompositions involving Sentinel-Controlled Input Se- 
quence are identified. From the goal frame for Sentinel-Controlled Input 
Sequence shown in Fig. 8, PROUST finds that there are four possible plans: 
SENTINEL PROCESS-READ WHILE, SENTINEL PROCESS-READ WHILE, SENTINEL 

READ-PROCESS REPEAT, and SENTINEL PROCESS-READ REPEAT. There are also 
two possible buggy goal reformulations: BOGUS YES-NO LOOP and BOGUS 
COUNTER-CONTROLLED LOOP. PROUST therefore constructs six new interpreta- 
tion states, four for the plans and two for the reformulations, and links them to 
the current state. Each state includes an agenda of goals remaining to be 
processed. In the case of the plan selection states, the goal agenda is the 
original goal agenda minus Sentinel-Controlled Input Sequence. For the goal 
reformulation states, the agenda also includes the new goals added as a result 
of the goal reformulation. In the case of the BOGUS COUNTER-CONTROLLED 
LOOP state, for example, the goal agenda contains the added goal Counter- 
Controlled Input Sequence, which is supposed to be implemented in place of 
Sentinel-Controlled Input Sequence. 

The interpretation tree must be expanded until PROUST has identified 
alternative plans to match against the program. It is through matching the 
plans that PROUST determines whether  or not a particular interpretation fits the 
student's program. Therefore  the goal reformulation states must be expanded, 
using the same procedure of goal selection, goal reformulation, and plan 
selection. In the case of the BOGUS COUNTER-CONTROLLED LOOP state, the 
new goal Counter-Controlled Input Sequence is selected. Plans implementing 
this goal are retrieved. This expansion process continues until every leaf in the 
interpretation tree is a plan selection state. 

Once a set of alternative plans are selected, each plan is matched against the 
program. Information is added to each interpretation tree node indicating 
where the plan matched the program, and whether there were any matching 
errors. At most one match is recorded for each plan. This means that if a plan 
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matches the program in two places, the node in the tree for that plan must first 
be copied. Each copy is then annotated to indicate what part of the program it 
was matched against. When matching the example in Fig. 7, SENTINEL 
READ-PROCESS REPEAT is one of the plans that is matchable. As was shown in 
Fig. 9, the matchable part of the plan is the repeat loop; it matches just one 
statement, the repeat statement at line 8. No node splitting is necessary. In 
order to complete matching the plan, however, the plan subgoals must be 
interpreted as well. The interpretation tree expansion therefore continues, this 
time for each subgoal of the plans that have matched successfully. 

Once PROUST has tried each of the alternative plan matches, there will 
usually be a single plan that matches better than the alternatives. Deciding 
which match is best is an involved process, which will be described in detail in 
Section 5. For now let it suffice to say that the goodness of match depends 
upon how close the match is, whether or not the mismatches can be explained 
as bugs, and whether the plans' subgoals were interpreted successfully. Then 
the node describing the best match is selected for further expansion; a new goal 
is selected, and the process repeats. If PROUST is unable to choose between two 
alternatives, it will try to back up and select a different goal. In the example in 
Fig. 9, no backup is necessary; the SENTINEL READ-PROCESS REPEAT PLAN 
matches better than any of its alternatives. Therefore  expansion continues from 
the point in the tree where the matching of SENTINEL READ-PROCESS REPEAT 
and its subgoals was completed. 

3.4. Goal selection and the ambiguity problem 

When PROUST constructs goal decompositions it must be sensitive to problems 
that the plan matcher may have in matching the plans in the goal decomposi- 
tion against the code. If a plan is matched without any knowledge of where in 
the program it should match, there is risk of ambiguous matching. The plan 
may match more than one section of the program, and PROUST will have no 
way of knowing which match is the right one. Some simple examples are plans 
for inputting and outputting data. All input statements and output statements 
look much alike. PROUST does not attempt to parse variable names or interpret 
output messages in order to determine what data a given input or output 
statement is manipulating. Therefore  PROUST avoids matching input and 
output plans until it knows what data the variables in the program refer to. 

Match ambiguity results in excessive search of the space of interpretations; 
since PROUST cannot tell which is the correct match for a plan, it must explore 
all possibilities. PROUST's plan matcher is designed to take advantage of 
information gained in interpreting one part of a program when matching plans 
in other parts of the program. PROUST orders the selection of goals to allow the 
plan matcher to take maximal advantage of available information about the 
program, thus minimizing the problem of ambiguity. 
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3.4.1. Using context to reduce ambiguity 

Contextual information is supplied to the plan matcher in two ways. First, 
plans can refer to labeled components  of other plans. Second, parameters of 
goals can be used to bind pattern variables in the plans that implement the 
goal. The COUNTER PLAN in Fig. 12 can make use of both kinds of contextual 
information. This plan is the common method for implementing the goal of 
counting a sequence of values, called Count. The template in this plan refers to 
the component  labeled Process of a Read & Process goal. The Process 
component  of a Read & Process goal is the part of the plan where the data is 
processed. The COUNTER PLAN states that the counter  update must lie inside 
the Process part of the loop, thus restricting where the plan matcher must look 
for matches. The COUNTER PLAN has one pattern variable ?Count; this stands 
for the counter variable. The goal of counting values, Count, has two parame- 
ters, ?New, which is the quality being counted,  and ?Count, which is the 
resulting count. The parameter  bindings in the goal are passed on to the plan. 
Therefore  if PROUST believes that the counter  variable is represented by a 
specific PASCAL variable, say Days, this variable is supplied as a parameter  to 
the goal, e.g., the goal might read Count(Rain, Days). The binding of ?Count to 
days is passed on to the plan, so the statement pattern ?Count:= ?Count + 1 
becomes Days := Days + 1. 

The degree of ambiguity in matching a plan thus depends crucially upon 
whether or not bindings for plan variables are known beforehand. In the 
COUNTER PLAN example, the scope of search through the program can be 
reduced if we know where the Read & Process goal is implemented. The 
counter  update can be spotted if we know beforehand what the counter  
variable is. Otherwise the plan would match any increment statement any- 
where in the program. 

The ambiguous match of the COUNTER PLAN can be avoided if the plan is 
matched after the Sentinel-Controlled Input Sequence and Average goals are 
analyzed. The Sentinel-Controlled Input Sequence goal is a Read & Process 
plan, so once a plan implementing it is matched, the plan matcher can locate 
the counter  update in the body of the loop. The analysis of the Average goal 
provides a binding for the pattern variable ?Count. When PROUST analyzes the 
average computation,  say Averain:=Totalrain/Days, it matches it against the 

Variables: ?Count 

Template: 
Init: 

Update: 

?Count := 0 

(in component Process of goal Read & Process) 
?Count := ?Count + 1 

Fig. 12. The COUNTER PLAN. 
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pattern ?Avg := ?Sum/?Count in the AVERAGE PLAN, shown in Fig. 10. Each of 
the pattern variables in this pattern is bound; in particular, ?Count is bound to 
Days. The plan indicates that the binding of ?Count should subsequently be 
used when matching the Count goal. Thus when the Count goal is analyzed 
later on, the possibility of ambiguous plan matching is reduced. 

3.4.2. Goal selection strategies to reduce ambiguity 

The success of PROUST in reducing match ambiguity depends upon whether or 
not it can select goals for analysis in an order so as to take maximal advantage 
of previous match bindings. It employs the following strategies: 

(1) select first those goals which are implemented using large plans, 
(2) try to select goals whose parameters are all bound, 
(3) try to select goals which do not have potential plan-matching conflicts 

with other goals on the agenda. 

The first of these strategies is responsible for PROUST selecting Sentinel- 
Controlled Input Sequence first for decomposition. The goal frame for Sentinel- 
Controlled Input Sequence indicates that the goal is an outer control goal, i.e., 
it should match a major control structure in the program, such as a loop. Such 
major control structures are more likely to appear uniquely in the program, so 
ambiguity is less of a concern with them. The second and third strategies 
ensure that the Count goal is not selected until the parameters of the goal arc 
all bound. The problem description contains two goals, Count and Guarded- 
Count, which are similar to each other,  in that they both update counters. 
Therefore there are potential plan-matching conflicts between these two goals: 
a plan implementing one goal might match code implementing the other goal. 
The Average goal, however, has no such potential for conflict; plans for 
implementing the goal are clearly distinct from plans for implementing the 
other goals. Therefore  PROUST favors selection of the Average goal over 
selection of either the Count goal or the CountPositives goal. Once the Average 
goal has been matched, the parameters of the Count goal are all bound to 
variables in the student's program, so it is now possible to select that goal 
without worrying about ambiguous matches. 

4. Analyzing Plan Differences 

If all goes well, the goal decomposition construction process outlined above 
will succeed in matching a goal decomposition against the student's program. 
Usually, however, none of PROUST's proposed goal decompositions matches 
exactly. The match failure can be due to an unexpected bug, or due to an 
unexpected variant of a plan. The differences between an expected plan and 
the actual code are called plan differences. Most of PROUST's ability to 
diagnose bugs comes from knowledge of how to explain these plan differences. 
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In what follows, PROUST'S knowledge about plan differences, in the form of 
plan-difference rules, will be described, together with the mechanism that 
PROUST u s e s  t o  invoke plan-difference rules. 

4.1. Why plan-difference analysis is needed 

Plan differences can arise for the following reasons. 

- A  goal was improperly implemented, resulting in a bug. 
- A  goal was implemented in an unusual way, but correctly. 

In PROUST, plan-difference rules are used to account for both kinds of plan 
differences. Some rules simply recognize common plan differences, and de- 
scribe the bugs or misconceptions that would cause them. Others transform the 
matched plan into a form that corresponds more closely to the student's 
implementation, or transform the student's code to make the underlying goal 
decomposition clearer. PROUST applies plan-difference rules in succession until 
all plan differences are accounted for. The catalogue of plan-difference rules 
was constructed as a result of hand analysis of numerous novice PASCAL 
programs, as described in [19]. 

We have already seen an example of a plan-difference rule that applies to 
recognize an improper implementation: the while-for-if bug rule in Fig. 6. 
Figure 13 shows an example of a correct, but unusual, implementation, which 
results in a plan difference. In this example, the plans for computing the 
maximum and the sum have been combined: the sum update is embedded 
inside the if statement in the maximum computation. This sort of combination 
of plans occurs fairly frequently in novice programs. When PROUST tries to 
analyze this code, its plan predictions will fail. PROUST needs to recognize that 
its plans for computing the maximum and the sum are really applicable here,  
although they have been combined in an unusual way. PROUST also must 
recognize that the code is correct,  albeit stylistically dubious. 

The plan-difference rule in this case is called the Distribution Transforma- 
tion Rule. It extracts the update statements out of the if statement and 
combines them into a single statement. The mechanism for doing this is as 
follows. As described in Section 3.3, PROUST constructs a tree of interpretation 
of the program. This tree serves as a database context mechanism. PROUST can 

if Max > New then 

begin 

Max : -  New; 

Sum: S u m + N e w  
end else 

Sum := Sum + New; 

Fig. 13. A variant computation of the sum and maximum of a variable. 
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While (New < 9999) and (New < = 0 )  do 
begin 

Count := Count + 1 ; 
Sum : -  Sum + New; 

if 0 < New then 

Rainy := Rainy + 1 ; 
if New > Max then 

Max := New; 

Writeln('Next value please:'); 
Read( New); 

end 

Fig. 14. Buggy code subject to various possible rule applications. 

add assertions about the program to a given node in the tree; these assertions 
will only be retrievable from that node or one of its descendents. The structure 
of the program itself is represented as a collection of facts about each 
statement in the program, facts which can be superceded by subsequent 
assertions. The Distribution Transformation Rule simply asserts that the two 
running total statements are below the if statement. It also deletes one of the 
two statements from the list of statements remaining to be interpreted in the 
program. Then when the plan is rematched, it matches only one running total 
update, which now appears in the right position. 

Finally, consider a more complex example, the buggy loop in Fig. 14. The 
while loop here has three bugs: 

(1) it uses 9999 rather than 99999 as the sentinel value, 
(2) it tries to validate the input and perform an exit test at the same time, 
(3) its input validation test is incorrect; it throws out positive data rather 

than throwing out negative data. 

The solution also has a legal variant on the predicted plan: it treats any value 
greater than or equal to 99999 as a sentinel value. In the predicted plan, 99999 
must be typed exactly for the loop to terminate, but the sentinel test in this 
example is still considered to be satisfactory. PROUST can successfully analyze 
this code by applying a series of plan-difference rules, one for each observed 
difference between the predicted plan and the code. 

4.2. Plan-difference rules 

Plan-difference rules are test-action pairs. The test part matches a plan 
difference, as well as the context in which the plan difference occurred. The 
action part accounts for the difference in terms of bugs, plan variants, and 
misconceptions. 

Figure 15 shows one of PROUST's plan-difference rules, the rule for detecting 
typographical errors in numbers. This rule is trivial in comparison to other 
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Number Spelling Error  Rule 

Error Patterns: ((* Const * . * Const*)) 
Test Code: (SpellCorrectible (ErrorPattern) (ErrorMatched)) 
Bug: (Typo (FoundStmt., (Match-Node (BuggyMatch))) 

(ExpectedExpr., (ErrorPattem)) 
(FoundExpr., (ErrorMatched)) 
(InterpNode., * InterpNode*))) 

Fig. 15. A rule for identifying typographical errors. 

rules such as the Distribution Transformation Rule; its simplicity makes it that 
much easier to explain. The rule is represented in a frame-like manner,  where 
some slots describe tests to be performed,  and some slots describe actions to be 
performed.  A variety of slots are specifiable as parts of plan-difference rules; 
this particular rule has only three slots. The Error Patterns slot characterizes the 
plan difference that the rule applies to. The plan difference is described as a 
dotted pair, where the car of the pair is what the plan predicted, and the cdr is 
what was actually found. Here  the error  pattern refers to a plan difference in 
which a constant was expected, e.g.,  99999, and a different constant was found, 
e.g., 9999. The Test Code slot is a fragment of LISP code to further test 
applicability of the rule; this test code fragment checks whether the found 
constant is plausibly a typographical error. The Bug slot is part of the action 
part of the rule: it contains a pattern for the bug description to be generated to 
account for the plan difference. The pattern contains fragments of LISP code 
which are evaluated at the time when the rule fires; values that are generated 
become slot fillers for the new bug description. 

Rules such as the one in Fig. 15 are so simple because their role is only to 
acknowledge that the bug is a known bug. The hard work has already been 
done in the goal decomposition and plan matching. The more complex rules 
are the ones that transform the code, such as the Distribution Transformation 
Rule. In these cases, however,  the action part of the rule is represented 
procedurally; a LISP procedure modifies the plan, or makes local assertions 
about the structure of the program. It would be desirable to implement a more 
declarative formalism for describing these rule actions. 

4.2.1. Test parts of  plan-difference rules 

The plan differences themselves are actually only a small part of what 
plan-difference rules test for. Altogether,  the following kinds of information 
are used by plan-difference rules: 

- plan differences, 
- t h e  plan component  being matched, 
- t h e  plan and goal currently being analyzed, as well as those which have 

been analyzed previously, 
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-the structure of the code being matched, or its intended structure, 
-bugs and misconceptions which have so far been identified. 

Rules can examine the context of the plan in the program, and examine 
other bugs which have so far been found, in order to select the best interpreta- 
tion of the plan difference. In general, plan-difference rules need to make use 
of any information which might shed light on the student's intentions and likely 
bugs. 

The term patterns of plan-difference rules are written primarily in a declara- 
tive form. The plan difference, the plan component  being matched, and the 
plan and goal being analyzed all go into the declarative pattern. However,  
since such a wide range of information must be tested in plan-difference rules, 
the declarative test-pattern language cannot be used to describe all tests that 
may be needed. Therefore  LISP procedures are also required to perform some 
of the special-purpose tests, such as the test to see whether a plan difference is 
a plausible typographical error. 

4.2.2. Action parts of plan-difference rules 

The action parts of plan-difference rules do three kinds of things: 

- sugges t  bugs and misconceptions, 
- m o d i f y  the current plan to make it fit the student's code better, 
- indicate how the code should be rephrased to make the student's intentions 

clearer. 

When bugs and misconceptions are suggested, they are added as assertions 
to PROUST's interpretation tree. PROUST can then see for each goal and plan 
what bugs and misconceptions arose in their implementation. When it is ready 
to describe the bugs to the student, PROUST traverses the interpretation tree 
from the leaf to the root, collecting all of the bug and misconception assertions 
that it finds there. It then can generate explanations for each bug and 
misconception to present to the student. 

If a rule suggests that the student's plan is a variant on PROUST'S plan, the 
plan-difference rule modifies PROUST's plan to fit the student's code better. For 
example, consider the test in the maximum computation in Fig. 13: 

if New > Max t h e n . . .  

The test which appears in PROUST's MAXIMUM PLAN is slightly different: 

if ?Max < ?New t h e n . . .  

The test predicate is reversed from what PROUST expected. A plan-difference 
rule is required to explain the difference. The rule which applies in this case is 
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a rule to invert relational expressions, turning expressions of the form ?x < ?y 
into-expressions of the form ?y > ?x. This rule is applied to the plan being 
matched, the MAXIMUM PLAN, changing the expected test in the plan. The plan 
is then matched a second time; the second time the plan matches. 

Plan-difference rules sometimes suggest ways of rephrasing in the student's 
code to make the underlying intentions clearer. The while-for-if bug in Fig. 1 
requires such a rephrasing. Once PROUST determines that the student intended 
the effect of an if statement,  it must make an assertion in the interpretation tree 
indicating that the while statement should be interpreted as if it were an if 
statement. Then the analysis of the remaining code in the loop will not be 
thrown off by the extra while statement. The same mechanism is used by the 
Distribution Transformation Rule to handle the merged maximum and running 
total plans in Fig. 13. 

4.3. Application of plan-difference rules 

PROUST's plan-difference rule application mechanism must apply those rules 
which help explain plan differences, and avoid rules which do not contribute to 
an explanation. It must be able to chain rules and consider alternative rules to 
apply, but avoid blind application of rules. The example in Fig. 14 will be used 
to illustrate the kinds of rule application that must be permitted and the kinds 
that should be avoided. As indicated earlier, the loop exit test, (New < 9900) 
AND (New<=0),  has multiple bugs. Several plan-difference rules must be 
applied together in order  to account for the plan differences. Suppose that one 
of the while loop plans implementing Sentinel-Controlled Input Sequence is 
being matched, so that a test such as New<>09000 is expected. First, a rule 
called the conjoined Loop Bug Rule applies, which suggests that the exit test of 
the loop is performing two tests at once, which are combined using an AND 
operator.  The actual sentinel-control test should be one of the two clauses of 
the AND expression. It is not possible for the rule to tell which clause is the 
desired one, since there are other plan differences involved. Therefore  the rule 
proposes two ways of rephrasing the test in the plan, ((New<> 99900) and ??) 
and (?? anct (New<>00000)))  The plan-difference rule applier then tries 
matching these new patterns against the code. 

When each of the new plan patterns are matched, new plan differences arise. 
The first pattern fails to match because New<0090 was found instead of 
New <>  99999. The second pattern fails to match because New <=0 was found 
instead of New<>00000. The second of these matches is a dead end; there is 
no rule that can relate New<=0 to New<>00990.  Rules can be applied to 
explain the plan difference of the other pattern, however. A rule called the 
Sloppy Sentinel Guard Bug Rule applies which suggests that the student may 
be testing for any value greater than or equal to the sentinel value, rather than 

" ?? in these patterns is a wild-card pattern variable, matching an arbitrary expression. 
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testing for the exact sentinel value. The Number Spelling Error  Rule explains 
the difference between the expected 99999 and the actual 9999 as a typographi- 
cal error. The plan differences are now all accounted for, so the bugs that were 
found are recorded in the interpretation tree. If any of the plan differences had 
been left unaccounted for, the entire plan-difference analysis would be scrap- 
ped, and PROUST would have to try matching a different plan against the 
program. 

We see in this example that PROUST sometimes has to apply multiple 
plan-difference rules in succession, yet it cannot be certain that a given rule is 
applicable until the plan-difference analysis as a whole succeeds. When the 
Conjoined Loop Bug Rule applies, it can suggest that one of the conjuncts of 
the and clause is the sentinel test, but it cannot determine which one is the 
sentinel test. If too many rules suggested too many patterns to try, there would 
be a multitude of blind alleys in the plan-difference analysis. Such blind 
application of rules must be avoided if PROUST is to complete its analysis in a 
reasonable amount of time. 

In order to restrict unnecessary rule application, PROUST's rule application 
mechanism implements the following policies. First, a constraint relaxation 
approach is used. Each rule is given a ranking. This ranking takes into account 
whether or not the rule identifies bugs, and the severity of the misconceptions 
that cause the bugs. It also takes into account whether the rule attempts to 
explain the plan differences in a statement which has already been matched, or 
whether it causes the plan marcher to search elsewhere in the program for 
possible matches. Those rules which do not presume bugs and which apply to 
existing partial matches are attempted first; then if necessary rules involving 
progressively more serious bugs and which involve greater amounts of search 
of the program are considered. Thus the constraints on rule application are 
progressively lifted until a suitable explanation is found. Similar constraint 
relaxation schemes have been employed in other debugging systems such as 
Davis' [7]. 

The other policy which PROUST's plan-difference rule application mechanism 
follows is to apply only those rules which appear to help explain the plan 
differences. PROUST counts the number of syntactic differences between the 
pattern and the matched statement, and applies only those rules which reduce 
this number. The rule may still be inappropriate, because the new plan 
differences are unexplainable; if so, then backtracking will be necessary. 
Nevertheless, most unnecessary rule applications are avoided by means of this 
restriction. 

Constraining rule application in the manner described above has a price, in 
terms of missed bug diagnoses. The correct diagnosis is not always the most 
constrained one, and the correct rule to apply does not always produce an 
immediate improvement in the plan differences. PROUST may ultimately be 
forced to apply a wider range of rules in order to achieve greater diagnostic 
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accuracy. The author has experimented with an alternative approach to rule 
application, which terminates rule application only when loops appear in the 
sequence of rules. This approach appears to do a significantly better  job of 
finding valid explanations for plan differences, without substantially increasing 
the number of unnecessary rule applications. 

4.4. Bug descriptions 

When a plan-difference rule identifies a bug, it generates a bug description 
characterizing what kind of bug or misconception it is, and the context in which 
it occurred. These bug descriptions are subsequently used to generate diagnos- 
tic explanations for the student. A pattern for a bug description appeared in 
the plan-difference rule shown in Fig. 15. There  are two types of representa- 
tions which PROUST uses for describing bugs. Superficial representations are 
used when PROUST is able to locate and characterize the plan difference, but 
cannot identify the cause simply by looking at the code. Deeper  representa- 
tions are used when PROUST can describe the bug as an error  in the student's 
goal decomposition, or as a misconception. 

4.4.1. Superficial bug descriptions 

Superficial bug descriptions in PROUST use the notations in "Bug collection I" 
[19] for describing bugs. In this system, the bugs are classified as being either 
missing plan components,  spurious plan components,  misplaced plan compo- 
nents, or malformed plan components.  The plan components  themselves are 
characterized according to the fucntion that they perform, i.e., initialization, 
input, output,  update,  guard, or nonexecutable statement. The function of the 
plan component  comes from the label assigned to that component  in the plan, 
as described in Section 3.2.2. 

If PROUST describes a bug using this superficial categorization, it cannot give 
a very insightful description of the bug to the student. However,  the categori- 
zation is still useful to PROUST when PROUST compares bugs. For example, 
when PROUST finds that an initialization is missing, it checks to see whether 
other initializations are missing. If all initializations are found to be missing, 
then PROUST can suggest a misconception to the student which explains all of 
the missing initializations at once. This allows PROUST to generate diagnostic 
text such as the following: 

You left out the initializations for the variables Highrain, Drydays, 
Raindays, and Totalrain. Programs should not fetch values from 
uninitialized variables! If you don' t  initialize these variables to the 
values that you want, you will have no way of knowing what values 
they will be initialized to. 
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4.4.2. Deeper bug descriptions 

If a likely explanation for a bug can be found, PROUST describes the bug in 
terms of that explanation. The following explanatory descriptions of bugs are 
used: 

- Implements Wrong Goal: Some goal was implemented in the program other 
than the one required by the problem statement. For example, if a student 
writes a counter-controlled loop instead of a sentinel-controlled loop, this is 
classified as an Implements Wron9 Goal bug. 

- W r o n g  Plan for Goal: The student's plan for implementing a goal is not a 
recommended one. For example, it may have an unwanted side-effect, such as 
clobbering a variable which is used later on in the program. 

-Misconception:  The student's code indicates the presence of a specific 
misconception. There has to be evidence of a misconception in more than one 
place in the program for PROUST to classify it as a misconception. This category 
is further subcategorized according to type of misconception involved. The 
misconceptions that PROUST can recognize are described in [16]. Examples of 
the kind of misconceptions that PROUST recognizes are misconceptions about 
how control flows through while loops, and misconceptions about when vari- 
ables must be initialized. 

- I m p l e m e n t s  Wrong Goal Argument: A goal is implemented in the student's 
code, but one of the parameters of the goal is incorrect. For example, an Input 
Validation goal might perform the wrong validity test on the input data. 

- Improper Contingent Goal: A goal was implemented contingently, and this 
resulted in a bug, because one or more cases were overlooked where the goal 
needed to be implemented. Contingent goal realization is described in [16]. 

-Wrong  Component for Plan: The student's plan for implementing a goal 
contains a component  which is appropriate to a different plan. For example, 
the student might write a counter-update instead of a running total update. 

-Mistransformed Code: The student at tempted to transform a plan, e.g., 
merge a RUNNING-TOTAL PLAN and a MAXIMUM PLAN as in Fig. 13. If the 
merged code does not work correctly, it is described as mistransformed code. 

-Typo:  The student made a typographical error. 

4.4.3. Reporting bug descriptions 

After the analysis of a program is complete, the bug descriptions which were 
created during analysis are collected and reported to the student. First, the bug 
descriptions are sorted according to the severity of the bug, and the part of the 
program in which the bug occurs. Then for each bug, an English description is 
generated. The English is generated using an ordinary phrasal generator,  which 
selects a phrase to generate based upon the type of the bug and the slot fillers 
of the bug. Blank fields in the phrase are filled in with the names of goals, the 
line numbers at which statements occur, the names of variables, and other 
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information which might supply context for the bug. We are also experimenting 
with other,  nontextual methods for describing bugs, e.g., presenting test data 
which will cause the bug to manifest itself as invalid input-output behavior. 

4 . 5 .  F a c t o r s  i n f l u e n c i n g  the  f o r m  o f  PROUST'S i n t e r p r e t a t i o n s  

We have now examined each component  of the interpretations that PROUST 
constructs for programs. These interpretations contain a variety of information; 
altogether, they may include the following: 

- a  goal decomposition, 
- matches of the plans in the goal decomposition against the code, 
- bugs, 
- differences between the intended function of individual statements and the 

actual function of these statements, 
- possible misconceptions. 

This information fits into the following general categories: 

- w h a t  the programmer did in solving the problem, 
- w h a t  the programmer was trying to do, 
- f laws  in his /her  knowledge which resulted in problem-solving errors. 

These same types of information are found in the student models that many 
intelligent computer-aided instruction ( ICAI)  systems generate. All iCAI 
systems to varying degrees attempt to characterize the student's program- 
solving process, and the knowledge that underlies this process. ICAI systems 
tend to differ, however, in how they describe student's knowledge and problem 
solving. The following will point out some of the differences between PROUST's 
program interpretations and student models in other systems, and will show 
how these differences result from characteristics of PROUST's domain. 

One major difference between PROUST's diagnostic task and that of other 
ICAI systems is that PROUST must derive its model of the student from a single 
program. Systems in the subtraction domain, such as DEBUGGY [5], and in the 
algebra domain, such as PI×IE [28], tend to work off of a series of student 
solutions. When multiple problems are analyzed in succession, bug hypotheses 
derived from one problem can be tested by assigning the student another 
related problem. The system can then check whether the student solves the 
new problem as the bug hypothesis would predict. In PROUST's domain, 
however, it is not practical to assign multiple problems to students and then 
analyze the bugs afterwards. Each programming problem requires substantial 
effort on the part of the programmer,  and programmers want immediate 
feedback concerning their program before starting a new one. Thus it is 
incumbent upon PROUST to analyze the student's errors and give feedback as 
soon as possible, even if the underlying causes of the bugs are not yet clear to 
PROUST. 
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One consequence of the fact that PROUST models the intentions underlying a 
single program is that it often cannot distinguish what the p rogrammer  does in 
the specific case from what the p rogrammer  does in general. If  a program has a 
bug, it may result f rom an accidental error  such as a typographical error,  or it 
may result f rom a deep-seated misconception. Distinguishing the two explana- 
tions requires looking for repeated occurrences of the same bug. If a bug 
occurs just once, it is likely to be an accidental error; if it occurs consistently, a 
misconception may be implicated. 

PROUST does have one means for checking whether  bugs occur systematical- 
ly; it can check whether  the same bug occurs more than once in the same 
program. The programming problems that we assign students tend to have 
multiple goals; PROUST can compare  the implementat ion of similar goals to 
look for systematic errors. If, for example,  all initializations are missing from a 
program,  then there is strong evidence that the p rogrammer  has a misconcep- 
tion about  initializing variables. In simpler domains such as subtraction or 
algebra there is less opportunity for the same bug to occur more than once 
within the same problem solution. Thus systematicity of errors within a single 
program can compensate  in part  for the lack of a suite of problems to analyze. 

When ICAI  systems try to model student behavior,  they either trace student 
errors to incorrect problem-solving procedures or to factual misconceptions 
about the domain. Subtraction systems such as DEBUGGY are good examples of 
systems that identify incorrect problem-solving procedures.  Genesere th ' s  MAC- 

SYMA advisor [11] and Clancey's proposed GUIDON-2 system are examples of 
systems which focus on factual misconceptions. The systems that focus on 
factual misconceptions, unlike PROUST or DEBUGGY, make strong simplifying 
assumptions about the student 's  problem-solving ability. The MACSYMA ad- 
visor is a case in point. In the MACSYMA advisor, there is an explicit model of a 
student problem solver, called MUSER; this same problem solver is used both to 
solve problems and to model the student solving problems. The advisor 
assumes that if a student uses MACSYMA incorrectly, it can only be because the 
student 's  factual knowledge about  how individual MACSYMA commands  work is 
incorrect. The appropriateness of this assumption cannot be assessed without 
empirical analyses of how novice MACSYMA users actually behave;  the advisor 
appears  to be based upon observations of only a handful of students. 

In contrast to the MACSYMA advisor and GUIDON-2, PROUST makes  fewer 
assumptions about the student 's  problem-solving procedure.  PROUST assumes 
that the student 's  program can be analyzed in terms of goals, but there is no 
requirement that the goals be decomposed as an expert would. A student 
might not realize that p rogrammers  have to worry about boundary conditions, 
for example,  and still produce a program with a recognizable goal decomposi-  
tion. Such a student cannot be said to have the same problem-solving proce- 
dure as expert programmers ,  since part  of what an expert does is to check 
systematically for boundary conditions. 
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This weakening of the assumptions about the student's problem-solving 
behavior has serious repercussions for error  diagnosis. It means that it is not 
always possible to trace bugs back to the student's factual knowledge. Any 
given bug may be caused by a factual misconception, a flaw in the student's 
problem-solving procedure,  a failure to follow the problem requirements 
strictly, or an accidental error.  For this reason, bugs must often be described 
superficially, without reference to underlying cause. 

5. Finding the Best Interpretation 

The previous sections have described how PROUST generates interpretations for 
programs. However ,  PROUST must not only construct interpretations, it must 
select from among rival interpretations. As we saw in Section 3.3, when 
PROUST constructs goal decompositions for a program, it constructs a tree of 
alternative goal decompositions. After  the plans are matched, PROUST decides 
which goal decompositions to explore further. Actually, that is not quite 
correct; the choice of goal decomposition depends not only upon which plans 
match, but also how the mismatches are explained in terms of bugs. PROUST is 
thus comparing program interpretations, not just plan matches. This section 
describes how PROUST attempts to arrive at the best available interpretation for 
each program. 

Three things are required in order  to make sure that PROUST finds the best 
possible interpretation. First, goals must be selected for decomposition in an 
order  such that interpretation choices are not simply the result of ambiguous 
plan matches; the methods for selecting goals were described earlier in Section 
3.4. Second, evaluation criteria are needed to make sure that each interpreta- 
tion makes sense. Third, heuristics are required for comparing different 
interpretations. The discussion in this section will focus on the latter two issues. 

5.1. An example of selection among interpretations 

In order  to show how alternative interpretations for programs can arise, let us 
return to the example of the Rainfall Problem that was introduced in Fig. 1. 
The loop from this example is repeated in Fig. 16. One goal decomposition for 
this loop was discussed in Section 3.1. Now let us consider an alternative goal 
decomposition for Sentinel-Controlled Input Sequence, and see how the pro- 
gram interpretations based upon these two goal decompositions can be com- 
pared. 

Recall that PROUST knows about four different plans for implementing the 
goal Sentinel-Controlled Input Sequence. Up to now the discussion has focused 
on one of these plans, the SENTINEL READ-PROCESS REPEAT PLAN. Now let us 
consider what happens when one of the other  plans, the SENTINEL PROCESS- 
READ WHILE PLAN, is matched against the program. This plan is shown in Fig. 
17. In this plan, the first value is input before the main loop is entered; this 
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8 repeat 

9 writeln ('Enter rainfall'); 

10 readtn; 

11 read (Rain); 
12 while Rain < 0  do 

13 begin 
14 Writeln (Rain:0:2, 'is not possible, try again'); 

15 readln; 

16 read (Rain) 

17 end; 

18 
19 while Rain < > 9 9 9 9 9  do 
20 begin 

21 if Rain = 0 then 

22 Drydays : Drydays + 1 ; 
23 Totalrain : -  Totalrain + Rain; 

24 if Rain > 0 then 
25 Raindays : -  Raindays + 1 ; 

26 if Highrain < Rain then 

27 Highrain := Rain 
28 end; 

29 until Rain = 99999; 

Fig. 16. The loop in the example in Fig. 1. 

input serves to initialize the variable ?New. The loop itself uses a while 
statement  instead of a repeat statement.  The Next step of the loop, which reads 
in the successive values of ?New, is at the bot tom of the loop, instead of at the 
top, unlike the SENTINEL READ-PROCESS REPEAT PLAN. The part  of the loop 
where the data is processed, labeled Process, is above the Next step. Because 
the processing step is above the next input step in the loop, no additional 
Sentinel Guard subgoal is required to break out of the loop. In what follows, 
the SENTINEL P R O C E S S - R E A D  W H I L E  PLAN will be abbreviated a s  s P-R W P L A N ,  

and the SENTINEL R E A D - P R O C E S S  R E P E A T  PLAN will be abbreviated as SR- 
P R PLAN.  

The s P-R W PLAN can match the program at least partially, since the program 

SENTINEL PROCESS-READ WHILE PLAN 

Constants:  ?Stop 
Variables: ?New 
Template: 

Initinput: subgoal lnput(?New) 
Mainloop: while (?New < >  ?Stop) do 

begin 
Process: ? * 
Next: subgoal Input(?New) 

end 

Fig. 17. Ano the r  plan for inplementing Sentinel-Controlled Input Sequence. 
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has a while statement at line 19 which matches the while statement pattern in 
the plan. Using this plan as a starting point, an interpretation of the loop can 
be constructed. This interpretation is as follows. 

The while statement in the S P-RWPLAN matches line 19 in the 
program. The begin-end pair matches lines 20 and 28. The initial 
Input subgoal is combined with the Input Validation goal in the 
problem description, yielding the composite goal Validated Input. 
The VALIDATED PROCESS-READ WHILE INPUT PLAN is a possible 
implementation of this goal, and it matches lines 10 through 17. 
The Input subgoal in the Next step of the s P-RW PLAN cannot be 
matched against the program. The student must have omitted 
implementation of this subgoal. The probable cause is a misconcep- 
tion about iterative inputs; the student may have thought that 
successive input values would be read in automatically. 

The principal differences between the interpretation based upon the s R- 
P RPLAN and the one based upon the S P-RWPLAN are as follows. The 
S R-PRPLAN interpretation makes the repeat loop at line 8 the main loop; the 
s P-RW PLAN makes the while loop at line 19 the main loop. The s R-P R PLAN 
interpretation regards the input and validation code at lines 10 through 17 as a 
Next step in the loop; the other interpretation views it as an initialization step. 
The S P-RWPLAN interpretation gives no interpretation whatsoever to the 
repeat loop. The s P-R W PLAN interpretation has a missing-input bug, whereas 
the other  interpretation has a while-for-if bug. 

Of the various differences mentioned above, the key ones are that the 
s R-PRPLAN matches more of the program, and does not have any plan 
components missing. PROUST has an interpretation evaluation heuristic that is 
relevant to this case: 

Avoid interpretations that leave significant parts of the program 
uninterpreted. 

The rationale for this heuristic is as follows. Each statement is presumed to 
have a purpose, so if no purpose can be found for a statement,  PROUST's goal 
decomposition may be incorrect. When one interpretation assigns a goal to 
every statement,  and the other interpretation leaves statements without goals, 
the interpretation which leaves statements without goals is almost certainly 
incorrect. 

The problem with the above evaluation heuristic is that it cannot be applied 
until the entire goal decomposition is constructed and matched against the 
program. If PROUST were unable to evaluate interpretations until after they are 
complete,  it would construct large numbers of interpretations, only to find that 
nearly all of them are wrong. PROUST therefore applies the above heuristic 
only as a last resort. Instead, it applies other heuristics to detect bad interpreta- 
tions before the analysis goes too far. The actual heuristic which is applied in 
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this case is the following: 

Favor interpretations that match more of the program, and have 
fewer missing plan components.  

If this heuristic is applied consistently, PROUST will usually end up with an 
interpretation which assigns a purpose to as many statements in the program as 
possible. The heuristic favors the SENTINEL PROCESS-READ REPEAT interpreta- 
tion because it both matches more of the code and has no missing plan 
components. 

This example illustrates the two kinds of interpretation evaluation processes 
in PROUST. One kind of evaluation compares one interpretation against other 
competing interpretations; this is called differential evaluation of interpreta- 
tions. The other kind of evaluation examines the interpretation in isolation, 
usually after the interpretation is complete; this is called interpretation assess- 
ment.  Both kinds of interpretation will be discussed below. 

5.2.  Differential  evaluat ion of  interpretat ions  

Differentiating program interpretations is closely related to the notion of 
differential diagnosis in medicine. In performing differential diagnosis a physi- 
cian compiles a set of etiologies, or causes, which might be relevant to the 
patient's symptoms. This set of etiologies is called a differential. The physician 
then tries to narrow down the differential by comparing etiologies against each 
other, and looking for evidence which confirms one subset of etiologies and 
disconfirms the others. Eventually the differential is narrowed down to a single 
diagnosis, the diagnosis which wins out at the end will be demonstrably 
superior to the alternatives. If, on the other hand, the diagnostician cannot 
distinguish between competing etiologies, the diagnosis must be considered 
inconclusive. 

The intention-based approach to program analysis lends itself naturally to 
differential diagnosis. When a goal is selected for analysis, different im- 
plementations of the goal are suggested. The set of candidate implementations 
forms a differential. PROUST then decides which among these implementations 
fits the program best. Differentiation leads to more robust bug analysis because 
it allows PROUST to find a wide range of uncommon bugs, bugs which out of 
context could not be assumed to be present. For example, the while-for-if bugs 
are hard to identify out of context. Most novice programmers understand the 
difference between while and if, so PROUST could not presume a while-if 
confusion without independent evidence. If the while-for-if bug is part of an 
interpretation that is better than any other interpretation, then the while-for-if 
diagnosis can be given with more confidence. 

Although differential evaluation is desirable, generation of numerous alter- 
native interpretations is undesirable, as it will slow the system down. There  are 
two ways to get around this problem. 
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-Differentially evaluate partial interpretations. 
- Genera te  just one interpretation; then when the interpretation is complete,  

perform the differential evaluation, and change the interpretation to reflect 
the result of the differential evaluation. 

The former approach was used in the while-for-if example to determine which 
plan is used to implement the Sentinel-Controlled Input Sequence goal. The 
latter approach is commonly used in determining whether misconceptions are 
present. For example, suppose that PROUST finds that an initialization is 
missing. It can either describe the missing initialization as an accidental bug, or 
as a manifestation of a misconception about initializations. The two interpreta- 
tions can be differentiated by checking whether or not initializations were 
systematically omitted; but such a check cannot be performed until after the 
interpretation is completed. What PROUST does in this case is to describe the 
missing initialization independent  of cause, and wait until after the interpreta- 
tion is complete to decide what the cause is likely to be. If it turns out that the 
initialization bug is systematic, then the bug descriptions of all the missing 
initializations are changed to indicate a possible misconception. 

Differential evaluation of complete interpretations is straightforward, since a 
substantial amount of information is available for use in comparing interpreta- 
tions. For example, once the entire program is analyzed, PROUST can check 
whether or not goals were assigned to every part of the program. Differential 
evaluation of partial interpretations, on the other hand, is much trickier. The 
differential interpretation in the previous section is a case in point. When 
PROUST tries to designate the while statement as the main loop, it is leaving the 
repeat statement uninterpreted. At this point it is not known whether or not 
there is some other goal pending on the goal agenda that might account for 
repeat statement. PROUST is thus making the differentiation on the basis of 
incomplete information, and must rely upon heuristic comparisons of the 
partial interpretations. The following discussion will focus on differential 
evaluation of partial interpretations, and show why PROUST's heuristic ap- 
proach is usually successful. 

5.2.1. Differential evaluation of partial interpretations 

Differential evaluation of partial interpretations is performed at each branch 
point in the interpretation tree where plans are selected. As described earlier, 
whenever a goal is selected for decomposition a number of branches of the tree 
are constructed, each branch ending in a plan. The plans are then matched in 
parallel. If some of the plans have mismatches, plan-difference rules are 
applied to explain the mismatches. If a mismatch cannot be explained, the 
offending plan component  is presumed to be missing from the program. Once 
plan matching and plan-difference analysis is complete,  the differential evalua- 
tion process can begin. 
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The first step in choosing among plans is to filter out those which have 
implausibly many components missing. We consider it plausible that a compo- 
nent be missing if in our empirical studies of novice programs we observe that 
novice programmers occasionally leave the component out. For example, it is 
plausible for the initialization component  of any plan to be missing. There 
exists a set of rules in PROUST's knowledge base, similar to plan-difference 
rules, which trigger when plan components are found to be missing, and 
indicate what bugs might cause them. If no rules can account for why a plan 
has missing components,  the plan is thrown OUt. 4 All that remain are plans that 
can be mapped onto the code in some plausible way. If all plans for a given 
goal are thrown out, then PROUST concludes that the program does not 
implement the goal. 

The second step in choosing a plan is to count the number of components 
that matched in each plan, and select those with the greatest number of 
matched components. In other words, PROUST selects the greediest match. It is 
this criterion which determines that the repeat loop is the main loop in the 
program in Fig. 16. Greedy selection works for two reasons. First, not many 
large plans pass the first selection step; those which remain are probably the 
right matches. Second, if greedy selection picks the wrong plan, the selection 
error will probably be discovered later, when a plan implementing a different 
goal is found to match the same code. When two plans implementing different 
goals match the same code, one or the other of the two plans is likely to be 
matched incorrectly. Our ultimate aim is to give PROUST the capability of then 
deciding between the two matches to the same code, and choosing different 
plans to remove the conflict. 

If two plans have the same number of matching components,  they are 
further differentiated by counting the number of misconceptions that are 
suggested by the plan-difference rules. Interpretations which do not suggest 
misconceptions are favored over those which do. 

If these criteria fail to identify a unique interpretation as the best match, 
PROUST puts the analysis of the goal aside, and selects a different goal for 
decomposition. PROUST will then reconsider the analysis of the goal later, after 
other goals have been analyzed. This allows PROUST to rely upon Occam's 
razor in selecting interpretations. PROUST assumes that each part of the 
program serves a unique purpose, unless the goal decomposition explicitly 
dictates that two goals are being combined. If part of the program clearly 
implements a particular goal, then it can be assumed that it does not match any 
other goals. Interpretations of the other goals are restricted to those parts of 
the program which have not previously been interpreted. The following 

These missing-component rules were first introduced before PROUST's differential evaluation 
mechanism was in place. It now appears that these rules can be replaced by more general heuristics 
that can be incorporated into the differential evaluation mechanism. 
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example serves to illustrate. Suppose that a student confuses running total 
updates and counter  updates, writing Sum := Sum + 1 instead of Sum := Sum + 
New. In such cases it may be hard to tell which update is supposed to be the 
running total update,  since there may be several increment statements in the 
program. If PROUST postpones the decision and matches the Count goals 
instead, then through a process of elimination PROUST can eventually identify 
the buggy running total update. 

5.3. Interpretation assessment 

In spite of PROUST'S attempts to select the best interpretation for programs, it 
sometimes makes mistakes. Programs sometimes have bugs that PROUST'S 
plan-difference rules cannot recognize. The programmer may use variables in 
inconsistent ways, giving PROUST false expectations about the bindings of 
pattern variables in plans. In order  to make sure that no mistake was made in 
interpreting the program, PROUST examines the program interpretation as a 
whole once analysis is complete,  looking for evidence that the interpretation is 
incorrect. If such evidence is found, questionable parts of the interpretation are 
deleted, to guard against giving an incorrect bug report  to the student. 

The most obvious indication of interpretation failure is that very few of the 
goals in the problem description were successfully mapped onto the student's 
code. PROUST requires that interpretations be found for a significant fraction of 
the goals in the problem description. If this fails to happen, the analysis is 
aborted, and no bugs are reported to the student. 

Even if most of the goals are mapped onto the code, the analysis is possibly 
flawed if some of the code could not be analyzed, and some of the goals could 
not be mapped onto the code. When this happens, PROUST performs bottom- 
up analysis on the interpreted code, to see what kind of function it performs, 
and then compares this against the outstanding goals. If the function of some of 
the code is close to one or more of the outstanding goals, then the interpreta- 
tion is probably in error.  The interpretation is classified by PROUST as a partial 
analysis. Bugs which may be in error  because of the misinterpretation, such as 
complaints about unimplemented goals, are deleted from the bug report  that is 
presented to the student. This process is described in more detail in [16]. 

6. Empirical Evaluation of PROUST 

The bottom-line issue in evaluating the work that has gone into PROUST is 
whether or not it has resulted in an effective tool for finding novice bugs. This 
cannot be determined by observing PROUST's behavior on a few student 
programs; instead, PROUST must be tested on hundreds of student programs, in 
a variety of situations. The results of some of these empirical tests are 
presented below. Further results are published elsewhere [16]. 
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6.1.  Results on the Rainfal l  Problem 

Table 1 shows the results of running PROUST off-line on a corpus of 206 
different solutions of the Rainfall Problem. The percentage of programs which 
are analyzed completely is 81%. PROUST's analysis is complete if a complete 
interpretation was generated,  in which interpretation assessment could not find 
any inconsistencies. 15% of the programs were analyzed partially, meaning 
that a substantial part  of the program was analyzed, but the interpretation was 
incomplete or inconsistent. In 4% of the cases the analysis was aborted,  either 
because hardly any goals were successfully analyzed or because some construct 
such as 9oto, which PROUST is not prepared to analyze, appears  in the program. 
When PROUST analyzes programs completely,  it identifies 94% of the bugs, as 
determined by hand analyses of the same programs.  Note that these were not 
94% of the bugs that we expected PROUST to detect; they were 94% of all 
semantic and logical errors. At the same time there are a certain number  of 
false alarms, i.e., cases where PROUST either misinterpreted a bug or flagged a 
bug which did not really exist. Most of these false alarms result f rom 
misinterpretations of the programs '  goal decomposit ions,  often because an 
unusual plan or bug was present. Further extension and generalization of 
PROUST's knowledge base would be required in order to reduce the occurrence 
of false alarms. The Rainfall Problem was subsequently assigned to another  
PASCAL class, and was tested on line. The subsequent results were comparable ,  
with 70% of the programs receiving full analysis, and 98% of the bugs in these 
programs correctly recognized. 

Table 1 
Results of running PROUST on the Rainfall Problem 

Total number of programs: 206 
Number of programs with bugs: 183 (89%) 
Number of programs without bugs: 23 
Total number of bugs: 795 

Number of programs receiving full analyses: 167 (81%) 
Total number of bugs: 598 (75%) 
Bugs recognized correctly: 562 (94%) 
Bugs not recognized: 36 (6%) 
False alarms: 66 

Number of programs receiving partial analyses: 31 (15%) 
Total number of bugs: 167 (21%) 
Bugs recognized correctly: 61 (37%) 
Bugs not reported: 106 (63%) 
False alarms: 20 

Number of programs PROUST did not analyze: 9 (4%) 
Total number of bugs: 32 (4%) 
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6.1.1. Results on a different problem 

In a further test, PROUST was tested on a different programming problem, 
called the Bank Problem. 

Bank Problem. Write a PASCAL program that processes three types of bank 
transactions: withdrawals, deposits, and a special transaction that says: no 
more transactions are to follow. Your program should start by asking the user 
to input his /her  account id and his/her  initial balance. Then your program 
should prompt the user to input 

(1) the transaction type, 
(2) if it is an END-PROCESSING transaction, the program should print out (a) 

the final balance of the user's account, (b) the total number  of transactions, (c) 
the total number of each type of transaction, and (d) the total amount of the 
service charges, and stop; 

(3) if it is a DEPOSIT or a WITHDRAWAL, the program should ask for the 
amount  of the transaction and then post it appropriately. 

Use a variable of type CHAR to encode the transaction types. To encourage 
saving, charge the user 20 cents per withdrawal, but nothing for a deposit. 

In this problem, the students are required to write a program which behaves 
similarly to an automatic bank teller machine. The program is supposed to 
input a series of deposit and withdrawal commands, followed by an end- 
processing command. The user's account balance is updated according to the 
amount of each deposit and withdrawal. At the end of the program a summary 
of the transactions is printed. 

Table 2 shows PROUST's current performance on the Bank Problem. The 
frequency of completed analyses is much lower than in the case of the Rainfall 
Problem; it analyzed 50% of the programs, as opposed to 81% on the Rainfall 
Problem. PROUST's performance on the completely analyzed programs is 
almost as good as it is on completely analyzed solutions of the Rainfall 
Problem. 91% of the bugs in the Bank Problem solutions were correctly 
identified, compared with 94% of the bugs in the Rainfall Problem solutions. 
The incidence of false alarms, however,  is relatively high; there were 41 false 
alarms in the completely analyzed Bank Problem solutions, compared with 211 
total bugs in the same group of programs. Four programs were omitted from 
analysis because they were very far removed from an expected solution, to 
such an extent that they were not considered a fair test of PROUST. 

There  appear to be several reasons why PROUST's performance on the Bank 
Problem is less than that on the Rainfall Problem. First, the problem requires 
that more goals be satisfied than the Rainfall Problem requires; this was an 
intended feature of the problem. Other  problems with the Bank Problem, 
however,  were unanticipated. For one thing, many more of the goals of the 
Bank Problem were left implicit. For example, the problem statement says 



94 W.L. JOHNSON 

Table 2 
Results of running PROUST on the Bank Problem 

Total number of programs analyzed: 64 
Total numbers of bugs 420 

Number of programs receiving full analyses: 32 (50%) 
Total number of bugs: 211 (50%) 
Bugs recognized correctly: 191 (91%) 
Bugs not reported: 20 (9%) 
False alarms: 41 

Number of programs receiving partial analyses: 26 (41%) 
Total number of bugs: 168 (40%) 
Bugs recognized correctly: 56 (33%) 
Bugs not reported: 112 (67%) 
False alarms: 24 

Number of programs PROUST did not analyze: 6 (9%) 
Total number of bugs: 41 (10%) 

Number of programs omitted from analysis: 4 

nothing about what to do if the balance becomes less than zero. Some solutions 
had no checks for negative balance, some checked the balance only after the 
last transaction is complete, and some checked the balance after each transac- 
tion. PROUST did not generate all of these different goal decompositions, so it 
failed to interpret some programs. Another  difference between the two 
problems is that the Bank Problem provides no explicit cues to disambiguate 
plan matching. The Rainfall Problem states explicitly that the sentinel value is 
99999; the plans for matching Sentinel-Controlled Input Sequence therefore 
usually match unambiguously, since there is only one loop in a given solution 
which tests for 99999. The Bank Problem, on the other hand, does not state 
specifically which commands are to be used to indicate deposit, withdrawal, or 
end-processing transactions. There is therefore a much greater risk of ambigu- 
ous matches, and consequently of misinterpretations of the program. It appears 
likely that a more detailed problem statement, in which the transaction 
commands were listed explicitly, would have improved PROUST's performance. 

7. Concluding Remarks and Future Directions 

This article has claimed that accurate debugging of novice programs requires 
an understanding of the intentions underlying programs. Without an under- 
standing of the programmer's  intentions, many bugs cannot be detected, and 
those that can be detected cannot be localized and explained. In order to 
diagnose bugs effectively, one needs knowledge both of what the program is 
intended to do and how it is intended to do it. Since the intentions underlying 
each program may be different, the precise intentions of the programmer must 
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be inferred from the buggy program as it is being analyzed. The key to doing 
this is to start with a description of the problem being solved, and to use 
programming knowledge to predict possible ways in which the problem might 
be solved. In most cases the p rogrammer ' s  intentions can be related to the 
predictions. A program called PROUST was built which uses this approach to 
diagnose bugs in novice programs.  

Although significant results have been achieved so far with PROUST, much 
more work remains to be done. One of the most immediate  needs at this time 
is to test PROUST on a wider range of programming problems.  Now that an 
acceptable level of per formance  has been achieved on two programming 
problems,  the time has come to try to generalize and extend PROUST'S 
knowledge. In addition, detailed feedback from novice users would be helpful, 
to ensure that PROUST'S goal decomposit ions accurately reflect the novices'  
intentions. 

Until PROUST is coupled with a tutoring module,  PROUST's ability to 
diagnose programming errors will remain limited to the information that is 
extractable from the buggy programs themselves. A tutoring component  would 
be able to ask students questions in order  to select between alternative 
explanations of bugs. It would allow PROUST to refine its model of the student 's  
abilities, to make more explicit its model of the student 's  knowledge and 
problem-solving skills. This in turn would allow PROUST to make more 
accurate predictions about  the students '  intentions, and derive a deeper  
understanding of the students '  bugs. Such a tutor is currently in the process of 
being developed [20, 22]. 

A version of PROUST should be developed for a different programming 
language, such as ADA or LISP. Building such a system would help determine 
the generality of PROUST's approach,  and would provide further insights into 
the kinds of knowledge that p rogrammers  use in solving problems.  It would 
also be useful to apply PROUST'S approach to other domains,  in order  to 
demonstra te  the generality of intention-based analysis as a means for identify- 
ing and correcting bugs. There  are already some promising results in this 
direction: Sebrechts has taken a str ipped-down version of PROUST, called 
M1CRO-PROUST [18], and adapted it to the domain of statistics. The resulting 
system, G1DE, has undergone preliminary tests with statistics students [24]. 
PROUST's approach should be useful in a variety of domains where students are 
given sets of goals to solve, and must combine plans in order  to construct a 
solution which achieves these goals. 
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