ARTIFICIAL INTELLIGENCE 75

LAURA, A System to Debug
Student Programs

Anne Adam and Jean-Pierre Laurent
University of Caen, 14032—Caen Cedex, France

Recommended by Patrick J. Hayes

ABSTRACT

An effort to automate the debugging of real programs is presented. We discuss possible choices in
conceiving a debugging system. In order to detect all the semantic errors, it must have a knowledge of
what the program is intended to achieve. Strategies and results are very dependent on the way of
giving this knowledge. In the LAURA system that we have designed, the program’s task is given by
means of a ‘program model’. Automatic debugging is then viewed as a comparison of programs. The
main characteristics of LAURA are the representation of programs by graphs, which gets rid of many
syntactical variations, the use of program transformations, realized on the graphs, and its heuristic
strategy to identify step by step the elements of the graphs. It has been tested with about a hundred
programs written by students to solve eight different problems in various fields. It is able to recognize
correct programs even if their structures are very different from the structure of the program model. It is
also able 1o express exact diagnostics of errors, or at least to localize them. It could be an effective tool
for students programmers.

0. Introduction

Programming is now the subject of numerous studies. Methodology of Pro-
gramming, Optimization, Synthesis of Programs, Automatic Verification and
Debugging, Transformations of Programs are existing fields of research, the
common goal of which is to make the production of correct and efficient
programs easier.

In order to write correct programs, attempts have been made to impose
constraints on their structure. The works on Structured Programming [5, 14, 19,
27] are the first basis of a real methodology of Programming. ‘Well structured’
programs become objects easier to deal with. In particular it will be easier to
prove that they are correct, the ideal method being to write and prove a
program simultaneously. The use of recursive languages may be an efficient
way to achieve this goal. As a matter of fact, if enough recursivity and calls of
procedures are used, it is possible to write programs without loops. Their

Artificial Intelligence 15 (1980), 75-122
Copyright © 1980 by North-Holland Publishing Company

76 A. ADAM AND J.-P. LAURENT

structure is more simple and particular techniques may be used for their
verification [9, 10].

We are concerned with a slightly different problem, that is to debug
programs that have already been written. If an iterative language has been
used, these programs may contain loops and have a complex structure. Then,
the debugging needs other methods. Henceforward, by Automatic Verification
of Programs we understand the following problem: to establish whether a given
program is correct or not, and if not, to obtain enough elements of information so
that the necessary rectifications can be made. It is a difficult task, especially since
the grossest errors are sometimes the most difficult to find. The implementation
of a correct algorithm, well appropriated to the problem that must be solved,
often gives rise to an incorrect program. Using a good compiler, it is easy to
eliminate the errors concerning the syntax of the programming language used.
But often, the obtained program, though syntactically correct, still contains
semantic errors. These alter the meaning of the program and prevent it from
giving the expected results.

Various methods for automatic verification have been considered ([6, 12, 16,
18, 23, 24, 33, 41] etc.). Some have a great theoretical interest but they often
need very heavy proofs of theorems and thus are difficult to automate. So, few
of these methods have been put into practice. Moreover, these methods are
especially useful to prove the correctness of a program. If it is incorrect, they
seldom give information about the nature of the errors. In this respect, the
most interesting work, of which the main goal is to discover errors, is probably
the system of Ruth [39]. But its performances are also limited, we shall see why
later.

The goal of this paper is to present the LAURA system, that we have built
up in order to pin-point the semantic errors, or at least to localize them. It has
been tested with real programs written by student programmers on various
subjects. It recognized those that were correct and expressed diagnostics of
errors in the others.

In order to debug a program it is absolutely necessary to have information
on what it is intended to achieve. This information is given to our system by
means of an implementation of the algorithm to be used. This implementation
is supposed to be correct and we call it the program model. The program that
the system has to debug is an implementation of the same algorithm, syntactic-
ally correct, but which may contain semantic errors. The system will compare
the two implementations.

In this context, the ability to apply program transformations, either sys-
tematically or according to heuristics, is a determining factor. It makes it
possible to recognize that a certain part of one program calculates the same
functions as a certain part of the other. These parts then can be identified. If a
total identification is possible, the student program must be declared correct.
Otherwise, the errors are limited to the unidentified parts. The system may

LAURA: A SYSTEM TO DEBUG PROGRAMS 77

recognize an error, express a diagnostic and correct the errors by itself in order
to carry on with identifications.

But let us point out that a difference may reveal an error or only a variation.
The interpretation of differences is very difficult. It needs not only an exact
knowledge of the problem the program has to solve but also a thorough
knowledge of the field in which the problem has a meaning.

The LAURA system may determine that two programs calculate the same
functions, which means that they will produce the same results with round-off
errors (this is a particular form of equivalence). Thus our work also concerns
the problem of automatic checking for the equivalence of two programs. It also
makes obvious the great power of program transformations due to their
application and especially their activation by an automatic system. This is only
possible if the goal is clearly expressed. This is the case for LAURA since it
considers debugging from the angle of a comparison between two programs,
the model and the candidate.

1. What is useful for debugging?

This section attempts to abstract the ideas that led us in conceiving our system
of debugging. Other possibilities are mentioned and discussed. The solutions
selected by LAURA are explained.

1.1. Knowledge and debugging

We examine which knowledge a system may use in order to determine if a
given program contains semantic errors.

1.1.1. A priori detection of errors

In some cases, it is possible to detect errors in a program without any
knowledge of its intentions. These errors concern the dynamical logic of
programs and are independent of the particular problem to be solved.

For example, it is possible to recognize that one variable is used which is not
always defined, or on the contrary to recognize that one definition of a variable
is never used. Also, it is possible to discover that no instruction in a loop
defines a new value for any variable used in an output test

These kinds of errors were studied in FORTRAN programs by Flavigny [17],
who called them ‘anomalies’ and later in Lisp programs by Wertz [43] who
called them ‘inconsistencies’. The methods that they used are not suitable if the
system must find all the semantic errors in a program. Many are too tightly
related to the task the program has to perform. The program may be free of
‘anomalies’ without performing the task at all.

If we hope that a system will be able to determine whether or not a program
executes the expected work, and to discover each semantic error, it is ab-
solutely necessary to give it a certain knowledge of the goal.

78 A. ADAM AND J.-P. LAURENT

Yet, searching for a priori errors with simple and direct methods may be a
first and efficient step when debugging programs. When it constructs the graph
(see Section 1.2) and when it applies systematic transformations (see Section
2.1) LAURA can easily detect many errors of this kind.

1.1.2. Static description of the program’s task

The description of the program’s task may consist of sets of assertions. The
final results expected from the program are expressed by means of one set of
output assertions. One set of input assertions corresponds to the data proper-
ties. Then it must be proven that the program holds through from input
assertions to output assertions. Floyd [18], Naur [36] and Hoare [22], were the
first to consider and to formalize this method that has since been developed by
many researchers. We shall no longer describe the methods of program
verification that use assertions. They are now classic in Artificial Intelligence.
We are only going to discuss the main objections that may be made to these
methods and that have led us to try another approach.

(1) Firstly, it is very difficult to give complete sets of assertions that describe
the problem entirely. Let us consider for example the problem: “find the
greatest element of an array A of N numbers”. In order to describe the goal to
achieve, Waldinger and Levitt [41] propose the following set of output asser-
tions:

A(0)<MAX, A()<MAX,...,A(N)<MAX
0<LOC=<N

They use this set in order to prove the correctness of their program. Yet, we
can easily imagine programs that satisfy the same set of output assertions, even
though the required task has not been performed at all. Such is the following
program:

A@0)=0; A()=1; ...; A(N)=N; MAX=N; LOC=N;

The suggested set of output assertions is thus insufficient. In addition, it is
necessary to give assertions which state that each value in the initial array must
still be in the final array, with the same number of occurrences.... This
example of a very trivial problem illustrates how difficult it is to construct
suitable sets of assertions to describe a program’s task.

(2) Secondly, the methods based on assertions need many complex proofs to
get invariants and to establish that a sequence holds through from one
invariant to another.

In order to prove the correctness of the whole program, it must be cut into
sections which are simple paths. At each extremity, it needs to have one set of
internal assertions. In particular, invariants of loops are necessary. The for-
mulation of invariants may be confided to the programmer. This would be

[MAX = A(LOC)

LAURA: A SYSTEM TO DEBUG PROGRAMS 79

paradoxical, because the formulation of suitable internal assertions quickly
becomes a more difficult problem than writing a correct program. As for the
automatic generation of invariants, several heuristic methods have been con-
sidered, for example by Katz and Manna [25], but they are still far from being
totally efficient. The principal difficulties are that the system must generate a
reasonable number of candidate formulas, and that the proofs that they are
really invariants are generally complicated.

It is the same thing in proving that the instructions of a simple path lead to
the extremity assertions from the origin assertions. It is usual to find papers
where a long and very laborious proof is given manually to establish the
correctness of a small program. For instance, in a paper called “Program
proving without tears” (?) Ashcroft [6] establishes the correctness of one
program of ten instructions. The proof needs six steps and one of them is itself
made of twenty four steps....

It is doubtful that all these proofs can be automated, at least considering the
actual power of formal calculus programs (Macsyma [32], rebuce [21]) and of
automatic theorem provers [7, 8, 31, 37]. It would be all the more difficult since
the system would be used to deal with real programs of medium size, for
instance fifty instructions.

(3) Last but not least, the methods of program verification which are based
on assertions are only used to determine whether the program is correct or
incorrect. They give a boolean answer and if the program is incorrect, they do
not make any constructive criticism to show what errors have been made.
There is the same deficiency if the system does not succeed in proving the
correctness of the program nor its incorrectness.

For all the reasons just put forward we think that assertions are not the most
adequate and useful knowledge that a system must have in order to debug a
program.

1.1.3. Dynamic description of the program’s task

There is another way of giving the knowledge of the program’s task to the
system. Instead of describing what the program has to achieve one may give
information about how it must proceed. In other terms one may give the
system the algorithm needed to attain the goals rather than the goals them-
selves.

In order to give the algorithm, it is possible to use a specific language of
algorithm description, such as the language ‘lucid’ used by Ashcroft [6] or the
language used by Ruth [39]. The system of Ruth has to debug a student
program which is written in a language without labels and appears as a list of
actions. A Program Generation Model (PGM) is also given to the system, that
also appears as a list of actions. From each action of the PGM, the system of
Ruth may generate actions in the student program language, considering many
possible syntactical choices. If the student program is derivable from the PGM

80 A. ADAM AND J.-P. LAURENT

it is assumed to be correct. Otherwise if an action cannot be derived, a
diagnostic of error is made. In the system of Ruth, debugging is viewed from
the angle of Program Synthesis.

We have selected another way to give the algorithm to the LAURA system:
an implementation (in any classic iterative language) is given, which is assumed
to be correct. From this program, the system constructs an internal represen-
tation of the corresponding calculus process (see Section 1.2). The represen-
tation of the calculus process implied by the student program is also con-
structed. So, LAURA considers debugging from the angle of the comparison of
two calculus processes. Exact diagnostics can then be made in considering the
non-recoverable differences.

The system of Ruth and the LAURA system have detected many errors in
real programs. Both know the algorithm to be implemented and it is a
determining factor to pin-point errors when the program is incorrect.

1.2. Representation and debugging

As we try to debug a program by comparing it with a program model, it is
desirable to have a representation of programs, which is as independent as
possible of the syntactic choices made by the programmers inside of the used
programming language.

The ideal solution would be to get not a representation of a particular
program but a representation of the calculus process that this program implies.
Besides, it would be even more interesting to manipulate objects that would be
totally independent of the language in which the program was given. It would
only need to build a source-to-graph translator for each language.

In our system, a graph is built up from a program, which is a representation
of the calculus process implied by the program. In the graph, the nodes
represent the various operations of the calculus process (assignments, tests,
inputs, outputs) and the arcs represent the flow-graph defined on these opera-
tions.

Example. Let us consider several sequences in different languages:

in FORTRAN: DO 1I=1 N
1 IF(MAX.LT. A(I)) MAX=A()

or: I=1

IF MAX-A(I))4,5,5

I=I+1

IF(I-N)6,6,7

4 MAX=A()
GOTO 5

N

LAURA: A SYSTEM TO DEBUG PROGRAMS 81

in EXEL:
I<1;{MAX<AI)?MAX <A ¢ I«<I+1L,ISNN (Y.

in aLgoL: I:=1; »
TEST: IF MAX < A(I) THEN MAX := A(I);
I:=1+1,
IF I < N THEN GOTO TEST;

All of these sequences are translated into the same graph (see Fig. 1).

The use of graphs has another advantage: it is easy to find the predecessors
of one node. Then, following the graph bottom-up is as easy as following it
top-down. This property allows non-linear strategies that would not be possible
if using linear representations.

Moreover, it is very convenient in a graph to apply program transformations.
In particular, many syntactical transformations which are distinct in a linear
algebraic language correspond to one and the same transformation in the
graph.

The difference of structure between the graphs used by LAURA and the
linear languages, as for instance the language used by Ruth, implies a fun-
damental difference of strategy:

—The system of Ruth uses a top-down analysis, matching two by two the
actions of the PGM and of the student program (both are lists of actions). Then
if it finds an important (‘non-recoverable’) difference, it does not deal any
further with the rest of the student program. Firstly, this difference would
perhaps be reducible using program transformations, but these are difficult to
formalize and to activate in a linear language, especially since they are too
numerous. So very few are used. Secondly, no information is obtained about
the rest of the program.

—On the contrary the LAURA system may compare a region of one graph
with any region of the other. Then it may identify several pairs of regions that

FiG. 1. The graph obtained from the sequences of Section 1.2,

82 A. ADAM AND J.-P. LAURENT

calculate the same functions. Considering the regions that are unidentified, it
may have information enough to apply powerful transformations advisedly, in
order to make new identifications. At the end, the system is in a position to try
to make several diagnostics of errors if several regions remain unidentified.

1.3. Program transformations

The comparison of programs may only be a possible way of debugging if the
system can apply transformations when the structures of the two considered
programs are different. In Section 1.2 we have explained why program trans-
formations are easy to handle on a graph which represents a calculus process.
The transformations that may be used in LAURA are divided into two
groups:
—The first ones are systematically applied to each graph in an attitude of
standardization. These transformations may change the number of variables
(some are added, some are removed). They may change the arithmetic expres-
sions associated with nodes. They may change the structure of the graph. They
may also correspond to a local analysis of the task that a subgraph makes, such
as the resolution of induction equations (see Section 2.1). The object of these
transformations is to increase the class of programs that a graph may represent.
—The second ones are used as the two graphs are matched. They are only
applied in a blocked situation, if it makes new identifications possible. It would
be harmful to apply these transformations systematically, either because they
can be indefinitely applied (node splitting) or because the opposite trans-
formation can also be applied (permutation, crossing over tests). So they are
only activated by LAURA if heuristic conditions described in the second
section are satisfied.

2. Description of the LAURA system
2.0. One current example

All along the description of the LAURA system we are going to follow one
particular example. In order to make the work of the system easy to under-
stand, it is a simple example, which does not represent a boundary for the
system possibilities.

The exercise proposed is:

“A perfect number is a positive integer k which is equal to the sum of its
divisors, 1 included and not k. Print out each perfect number less than or equal
to 1000.”

LAURA: A SYSTEM TO DEBUG PROGRAMS 83

The programs given to the system are:

Program model Student Program
00 30 M=6,1000 00 60 N=3,1000
1$=1 1=2
1=2 L=1

20 IF(M_NE.M/I+I)GOYO 21 1 IF(N=-(N/1)%1)10,20,10
I1S=15¢14M/1] 20 L=L+I+N/1

21 I=1+1 10 IF(CI1+1)*+2=-N)30,30,40
IF(M=-1+1)22,23,20 30 1=141

23 1S=18+1 GO TO t

22 1F(M-15)30,40,30 40 IFC(L=N}50,60,50

40 PRINTY 41,M SO WRITECD6,55)N

30 CONTINUE 60 CONTINUE

41 FORMAT(1S) sTor
STOP 55 FORMAT(14)
END END

2.1. Standardization

In order to simplify the further matching it is natural to normalize each
program. It is well-known that there is no canonical form for programs. Yet we
can reduce the search space by increasing the resemblance between the two
objects to be compared.

The transformation itself of a program into a graph is a first and very
important standardization. We have seen in Section 1.2 that the graph is a
representation of the calculus process that a program implies.

Moreover, LAURA applies transformations to each graph in order to extend
the standardization. Firstly, the arithmetic expressions are simplified using
classic rewriting rules. Secondly, some transformations are systematically ap-
plied to each graph, which may change their structure.

Before describing the main ones, let us introduce three concepts:

—a variable is defined when it appears in an input list, or in the left member of
an assignment.

—a variable is used when it appears in an output list, in the right member of an
assignment, in a test, or as an array index.

—a fuseau is a quasi-strongly connected graph which has only one entry node
and only one exit node [3].

2.1.1. Variable separation

When a variable X is defined at several places in the program, it is sometimes
possible to determine that no use of one particular definition can be a use of
another one. In this case, the system generates a new name for this definition
and for all its uses.

Example.
READ X READ X
Y=f(X) s Y=f(X)
X=A+B WX =A+B

Z=g(X) Z = g(WX)

84 A. ADAM AND J.-P. LAURENT

It is more difficult to establish such a condition when the variable is an array.
In LAURA, arrays are never separated.

2.1.2. Composition

In order to remove intermediate variables (whose presence in only one
program makes the matching more difficult) and to make calculus functions
show up in each program, LAURA uses the following transformation called
‘composition’:

—Let D be a definition of X: X = Exp, such as there is no occurrence of X in
Exp.

—Let U be a node in which X is used.

= If it is impossible that the value of X used in U comes from a definition
of X other than D, and if no variables used in Exp are redefined between D
and U, the system changes X into Exp for every occurrence of X in U.

In Fig. 2, compositions are applied in two different subgraphs. They make
the well-known formulas of second-order equations show up and increase the
similarity of the two subgraphs. After normalization of the arithmetic expres-
sions, the last difference will be removed by making U = —B/2A cross over the
test in the second subgraph and by suppressing it in the branches in which U is
no longer used.

Let us note that, when a variable is an array, we must be careful of the
values of the indexes before applying compositions.

Example.
A =f() (1)
X =g(AQ1)) @
AJ)=f) €)
Y = h(A()) (4)
Z=A(l)+A())

It is possible to apply a composition in (2) which becomes:

X =g(h(-+)
and in (4) which becomes:
Y =h(f---))

But, in (5), it is only possible to compose A(J) because the value of A(1) is
fi(--+) if J#1 and fo(--+) if J = 1. Thus (5) becomes:

Z=AW+f(-)

LAURA: A SYSTEM TO DEBUG PROGRAMS : 85

A 4
2
e X := BZ_AM.C X := B -4xAaC
¥
X -B
pLIN
cox_ | N0
v -B PT = X
2®A [4 T 1= X
! 2HA
r bRl = BT
244
¥ X1 := U-T
b x2 o= BT
*
{ A X2 := U+T

After using compositions these two subgraphs become :

Note : useless definitions are removed by the system.

F1G. 2. Example of compositions.

2.1.3. Independent calculus separation

When there are several independent calculus processes in the same loop, it is
possible to separate them if the following conditions are verified:
—It is possible to separate the body of the loop in two fuseaux F, and F,.
—No variable defined in one fuseau is used in the other.
—No variable used in the exit test is defined in F, or F;.

Then a transformation is applied that generates two loops (see Fig. 3).

86 A. ADAM AND J.-P. LAURENT

I := N1 = N1
:= T4N3
I := I+N3
= N1
t
:= T+N3

F1G. 3. Loop separation.

2.1.4. Induction equations

The linear induction equations of the first order may be solved to obtain a

calculus function as shown in Fig. 4.
In the example of Fig. 5 two programs use two different methods for a

S := A(I) #S+B(1)

I := I+1
no

IMN

\2

N N-1 N
$= TU A¥S+ 55 (B(D# JU a®K))+B)
I-1 =1 K=I+1

FI1G. 4. Resolution of a linear induction equation of the first order.

LAURA: A SYSTEM TO DEBUG PROGRAMS 87

-
"

A(0) e P:=0Q

b P = PX+A(I) P := P+A(T)wX#%#(N-I)

i

no A noe
I>N b ION
A 4 o
yes yes
1 - The Method of HORNER 2 - The sum of the monomials
N N-1 N Jl
P:= TU xea(0) « 35 (A TT X)+a(N)
i=1 I=1 K=I+1
\‘1 N
P i= 0+ & A(T)*Xe#(N-1)

I=0
N

E A(T)mx®u(N-1)
I=0

a4
"

FIG. 5. Two calculations of the same polynomial.

polynomial calculation. The resolution of the induction equations gives the
same formula in the two cases. This example shows the power of this trans-
formation which may extract the same formula from two sequences of program
that have not used the same algorithm.

2.1.5. Comparison with Program Optimization

The transformations that LAURA systematically applies on a program are
often the opposite of those to be applied in order to optimize it: our stan-
dardization eliminates most of the gains in memory space or in running time
that the programmer had designed. The separation of variables introduces new
memory space, the composition often implies repetitions of calculations and
the separation of independent calculus increases the number of loops. Also, the
solving of induction equations may completely destroy a subtle, efficient
algorithm (such as Hérner’s method in a polynomial calculation).

This opposition between the classic optimizations and our standardization is
quite natural. Qur purpose is the further matching of two graphs and it is
interesting to get rid of particular subtleties.

88 A. ADAM AND J.-P. LAURENT

= 6 101 ¢ N :=3

M/T %I % (~1)+M)

(N/T % T % (-1)+N)
IS := M/I+IS+I

L := N/I+I+L
1= I+1

IF ((T+1)#%2+N¥(-1))
(1% % 2%(-1)+M)

IF (N % (-1)+L)

(M+IS % (-1)) 4

Write N

Write M
N := N+1
M 1= M+l
IF (N+(-1000))

IF (M+(-1000)) >

STOP
STOP

F1G. 6. The current example: The two graphs after standardizations.

2.1.6. The current example

From the two programs given in Section 2.0, the system has built two graphs.
Fig. 6 shows these two graphs after standardization. Let us note the traduction
of the DO instructions and of the boolean IF instructions, and the modifications
in some arithmetic expressions (for example, in node 7, I * I has been changed
into I **?2 and has become the first term of the sum (I **2)*(-1)+M
because it is more complex than the other term).

2.2. First step—first level of matching

In the beginning the system tries to show that the two graphs represent two
calculus processes of the same functions. It tries to bind the variables, the
nodes and the arcs. For this it uses one list of hypothesis and one list of pairs of
nodes, called the ‘working list’.

LAURA: A SYSTEM TO DEBUG PROGRAMS 89

2.2.1. The hypothesis list

A hypothesis is made if there is a good chance of identifying a certain node s of
the model graph with a certain node ¢ of the student graph. Each hypothesis is
numerically evaluated using a classic evaluation function that looks for the
different characteristics of the two nodes: same connectives, same constants,
already identified variables, equal number of free variables, etc. In this way, a
number P(s,t) is associated with each hypothesis H(s,t) and is called its
‘plausibility’. In the beginning, for each node of the model graph, plausibilities
are evaluated for each node of the student graph which has the same nature.
The four best ones are stored and the four corresponding hypothesis are put in
the list. Each time the system identifies two variables, all the plausibilities of
the hypothesis of the list are reevaluated. When it identifies two nodes the list
of hypothesis is also updated. Furthermore, the fact that s and ¢ are found to
be immediate successors (or predecessors) of two identified nodes generates a
new hypothesis H(s, t) or, if it already exists, increases its plausibility.

The hypothesis and their plausibilities are used by the system to match the
good pairs of nodes as soon as possible.

2.2.2. Matching of two nodes

The LLAURA system often has to match one node s of the model graph and
one node ¢t of the student graph. These nodes must have the same nature (for
example two assignments) since the system matches them hoping to identify
them. If it is not possible, the matching may still give useful information.
When matching two nodes, the most difficult parts to compare are the
arithmetic expressions. To make it easier, all the arithmetic expressions are
normalized when the system builds the graphs: rewriting rules are applied,
sums and products are reduced and one order is defined between their terms.

Example.
Cos X+2sinY+Z+3-SinY
and Sin U + V+ 1+ Cos W +2 give the following lists:

N TN
S5 - DN

‘N

X Sm

Y

Q]

and it is obvious that the comparison will be easier.

90 A. ADAM AND J.-P. LAURENT

In order to match two arithmetic expressions, LAURA follows the two lists
in parallel. If it finds the same connective, the same constant or two variables
already identified with each other, it goes on. If a difference is met, it tries to
apply a transformation rule (for instance a rule of distributiveness). If it fails, it
generates one condition and starts again in matching the rest of the lists.

Finally the system returns either success or the list of the conditions that
should be accepted to identify the nodes. It may also return failure if it has
found a too complex condition.

The degree of complexity that the system accepts for a condition depends on
the step. In the first step, when it tries to establish the equivalence of the two
graphs, it only accepts one (and only one) condition X < Y, where X and Y are
free variables of Gy and Gg respectively. We shall see later, in Section 2.4 that
more complex conditions may be considered in the second step.

Let us give now some examples of conditional successes at the first step:

Examples.
V=1-8SinX and V'=1-Sin X"

success at the first step (X and X', V and V' are already identified with each
other).

V=1-8inY and V'=1-SinZ:

conditional success at the first step if Y and Z are free variables. The condition
is YeZ. Y and Z will be identified.

The matching of s and ¢ may produce the identification of these two nodes.
Also, it may lead in the first step to the identification of two variables X and Y,
if the condition XY is accepted. In this case, all the plausibilities are
recalculated to take in account this identification.

2.2.3. The working list

The system also uses a ‘working list’ that always contains the pairs (s, t) of
identified nodes, for which at least one arc of extremity s (or ¢) is unidentified.
Then the system can consider at each moment a pair (s, t) of the working list
and try to identify two connected subgraphs around s and t respectively. For
this, it matches two by two their immediate successors and predecessors. If a
new pair of nodes is so identified, it matches the immediate successors and
predecessors of these nodes, and so on.

When the exploration around a pair of the working list is finished, this pair
either has vanished out of the list, or has received a mark. The system will start

LAURA: A SYSTEM TO DEBUG PROGRAMS 91

3 (s,t) unmarked in the
] working list

no yes

; Select H(s,t) A Search around s and
unmarked with P(s,t) t : new identifications
maximum of nodes and arcs, crea- Update the
3 tion of new hypotheses working list

and the hypo

thesis list

mark H(s,t)

Match s

conditional

failure

success (one
(o unconditional

: N4

condition

XeY)

success

- Identify X with Y

- Reevaluate each P(s,t) ._____9_____Jg;dentify s with t L_____

- Remove marks from the working

list and the hypothesis list

FIG. 7. First step. First level of matching.

again on a new exploration around the following pair of the list. The use of
graphs allows this non-linear strategy.

If the working list is empty or contains only marked pairs, the system
considers the hypothesis which has the greatest plausibility and tries to identify
two new points. If it succeeds, it again starts to identify new subgraphs.

All this work may be described by the diagram in Fig. 7.

2.3. First step—second level of matching
2.3.0. The current example
At the end of the first level, the state of the two graphs is given in Fig. 8.

M:=6
Is =1
I:=2

IS := M/I+I+I5

I := I+l

IF (I%42#(-1)+M)

IS := IS+I

9
#

13 e STOP

- in italics : identified nodes

- dotted line : identified arcs

A. ADAM AND J.-P. LAURENT

IF (N/I#I«(~1)+l)

L := N/I+I+L

IF ((I+1)®a2+4Nu(-1))}

IF (L+Nw(~1))

WRITE N

N := N+1

IF (N+(-1000}))

112 o STOP

F1G. 8. The current example: The two graphs after the first level.

2.3.1. Heuristic transformations of programs

Even if the two programs calculate the same functions, the first level cannot
succeed in identifying the two graphs. That would only be possible if the two
graphs had the same structure, and this is in general not true.

In most cases it is necessary to apply transformations to the graphs in order
to make their structures similar. These transformations, which cannot sys-
tematically be applied (as opposed to the standardization transformations), are
subject to heuristic criteria. They are only applied if it makes the identification
of new pairs of nodes possible. Then new elements appear in the working list,

which the system will use for new exploration.

This second level is summarized by the diagram in Fig. 9.

LAURA: A SYSTEM TO DEBUG PROGRAMS 93

y

Preceeding process (Fig. 7)
using the work list and +

the hypothesis list

N 4

Is it possible to apply a apply it
useful graph transformation ?

yes

no
r

FiG. 9. Summarized diagram of one step.

' J = J41
J =1
in GE:
in GM H \
]
Conditions :
- I and J are identified
-rand r' , s and s' are identified
- s has only one father, r
- r has two fathers
- s' has two fathers. One of them, r' is identified with r.
Transformation in GM : I :=0 composed into

I := 1, which will
I := I+1 I := I+l be identified

with J := 1

Note : This transformation makes a program in which the increment
of the index is made inside a loop similar to a program in which the increment

is made when jumping back.

FiG. 10. Example of node splitting.

94 A. ADAM AND J.-P. LAURENT

The main transformations that LAURA uses at this level are:
—node splitting,
—permutation (between two nodes or between a node and a subgraph),
—crossing over one test.

Some examples are given in Figs. 10, 11, and 12.

The transformations that LAURA uses at this level are very powerful. They
are the essential tool in order to deal with programs in which the control
structure is different from those of the program model.

in G, : r §

in G

Conditions :
- s and s' , a and a' , are identified.
- a has only one son, b.

- the subgraph H has a structure of fuseau (see Section 2, 1. 3) and
a 1s its output node.

~ a 1is permutable with all the other nodes of H (we assume that two
nodes are permutable if the variable defined in one is neither used, nor redefined

in the other and if no variable is used in both nodes).

Transformation in GM H

The arc (s,a) will be identified

8 with the arc (s',a')
©oa

¢ \
! '
'
A
\]
\
L
b

F1G6. 11. Example of permutation: A successor is moved up to the place of a son.

LAURA: A SYSTEM TO DEBUG PROGRAMS 9s

p I := I+1 t

IF ((J+D)»B(J+1))

-]

N

in G

=

¢

"IF (A(1))

Conditions :

- the varfables I and J, A and B are identified

- there is an hypothesis H(s,t) and, in matching s and t, one
condition has been obtained : I €3 J+1 := £(J)

- p 1is an assignment I := f(I)

- p 1s a predecessor of s which is always executed before s

- H has a structure of fuseau

- all the nodes of H other than s are permutable with p (I nei-
ther used nor redefined)

Transformations in GM :

IF ((I+1)%A(1I+1))

I o = I+l s and t will be
identified
2 a

FiG. 12. Example of crossing over one test that needs a composition.

2.4. Second step—diagnostics of errors

In the first step the goal of the LAURA system was to identify the two graphs
entirely in order to conclude that the student program was correct. If this total

identification was not possible, the system strives to reach another goal: to
express diagnostics of errors.

9% A. ADAM AND J.-P. LAURENT

The second step is in fact the same process as the first one, with a single but
essential difference: In the first level of the step, conditional success in matching
two points s and t may be obtained with more complex conditions.

As a matter of fact, the goal of the system at the second step is to detect
errors. So, if it only finds one difference between two nodes such as a difference
of variable, of constant, or operator, ... the system assumes it has probably
located one error. Then it identifies the two nodes despite the difference and as
it put them in the working list, it will try to make new identifications.

Examples of conditional successes at the second step.

V=1-SinX and V'=1-Cos X"
failure at the first step, conditional success at the second step (condition:
Cos < Sin).

V=1000 and V’'=10000:

failure at the first step, conditional success at the second step (condition:
10000 < 1000).

ALN=AIK)+AKK,J) and A'(I'\J)=A'I",K)Y+A'I',J):
)
failure at the first step, conditional success at the second step (condition
I'eK').

These new conditional successes, possible during the second step only, produce
new identifications of nodes and, consequently, new explorations of the graphs.
Of course when it makes a new identification, the system gives the user a
warning: s and t have been identified despite a specified difference.

The difference may be of no importance (for example in (1), I' and K' may
always have the same value). On the contrary it may reveal an error in the
student implementation.

The main diagnostics the LAURA systen: can express are:

—Error of variable

ex: S=A(J) and S'=A'(I',K).
—Error of constant

ex: N=1000 and N'=10000.
—Unary connective forgotten

ex: Y=1+LogSinX and Y'=1+LogX"
—Unary connective useless

ex: Y=1+LogX and Y’ =1+LogSinX"

LAURA: A SYSTEM TO DEBUG PROGRAMS 97

—Error of sign
ex: X=X+Y and X'=X'-Y".
—Error of branching

ex:
®

s)/\ s; and s’oQosé
NS i

r
[YR
—Inversion of two instructions

ex:
$1 l S;
s; ® and @ s; (s3and s; not permutable).
83 J’ 52
o
ex:
o [4
s'.ﬁh_s. and s 'ﬂ (s and 53 not permutable).
N X
55 @ s, @

—Error of conditions on the arcs coming from one test

ex: 1
]

$1 s
b o
> = >
7 \ " / \\
® @
§: S3 sé S:’,‘

2

The conditions accepted in this second step determine whether or not th:
system is able to make certain diagnostics. The more complex the condition
may be, the more sophisticated diagnostics may be possible. But of course it i
impossible to accept just any condition: if the differences between two node
are too large, it is unlikely that a local error is made at this node. Mor

98 A. ADAM AND J.-P. LAURENT

probably, the two matched nodes are not corresponding steps of the two
calculus processes. The conditions accepted by LAURA in the second step
must correspond to differences that have a good chance of revealing a local
mistake.

Examples of conditions not accepted.

V=1-SinX and W'=1-SinY' (W and Y not free)| failure
V=1-SinX and V'=X'-CosX’ at both
V=1-SinX and V'=3X'+2! steps.

When the second step is finished, it is possible that some subgraphs still
remain unidentified. In this case these subgraphs are printed out by the system.
In this way the user knows in which part of his implementation a doubt
remains. If this part contains a semantic mistake, it has not been pointed out by
the system but it has been localized, which is quite a big help in debugging.

The diagram of Fig. 13 shows the different steps of the LAURA system. Let
us point out that when a difference is neglected, a new identification is made
and the system starts again at the first step.

Transformation of the two

programs into two graphs

Standardization of these

two graphs

I

Initialization

of the hypothesis list

TOTAL } <
[< (Step 1 : IDENTIFICATION)
CORRECT PROGRAM : 4 PARTIAL
it calculates the Step 2 : SEARCH FOR [D IAGNOSTICS
same functions as PROBABLE ERRORS ves
the program model
4 no

Listing of unidentified

subgraphs

FiG. 13. General flowchart of the system LAURA.

LAURA: A SYSTEM TO DEBUG PROGRAMS

2.5. Results

2.5.0. The current example
After the first step, the two graphs were those of Fig. 14. During the second

step, the system made the following actions:

(1) When matching the nodes 1 and 101, it has accepted the condition 3 «> 6.
It has identified the nodes 1 and 101 and the arcs (1, 3) and (101, 102). It has
printed out a warning to inform the student. Let us note that the first perfect
number is 6. The LAURA system has corrected an awkwardness in the student

program.
(2) When looking at the conditions on the arcs coming from the nodes 9 and

&
"W
[y
-~

—
o W (- - e
~ x
. W N
[o
~ -
S B
A Y
—o
~ =z
I} []
o w

e 4 .9 IF (M/II(-1)+M) , 04, -A,
. \ v o
ll ', ’f',’ .‘4 = ." 'I £ ': =
: " ‘l' H] ’ J, *
SR $ IS := M/I+I+IS ! i \ 108 } L := N/T+I+L
] ' !
'l " \\‘)" : : ‘\\ Ibf
H L @7 X IF ((T+1)ww2+MM~1)) i \ 106 W' IF ((I+1)we2+Nn(-1))
¢o15 wEtT A V!
' K N ' \ :>
VI := I+l K S 7 S
. . U
i1 := 1ol 14 (I = T4l Y
1]]] 1
‘ ' I]
v {
A ' | '
| ! ' 108 & IF (L+in(-1))
' - ' M N
(1S = IS+I 8 ’ \ :® \‘@
! ’ 3 [] Y\
! S \ v
' s L’ ' v 109§ WRITE N
' K 1F (15eue(-1)) N Y
1 U [} N M ’
' @,' © ‘N 1106 N i= Nl
. A]
| Y 10 ¢ WRITE M ST
] H £ ~
\ Ve 1119 IF (N+(-1000))
N
Ny sl v
" . 112 & S7OP
\“ 12 '
;..-4 IF (M+ (~1000))
t
RS
13 & sTOP

FiG. 14. The current example: The two graphs after the first step.

100 A. ADAM AND J.-P. LAURENT

108, it has printed out a message to indicate that these conditions do not
correspond. The LAURA system has detected a serious error: the student
program prints out the not-perfect numbers.

(3) The nodes 8 and 14 in the model graph remain unidentified. The
LAURA system has not been able to interpret this fact and has only printed a
message. We discuss this point in the conclusion.

We give below the diagnostics printed out by the system:

DIAGNOSTICS

w4e ATTENTION #+* POUR IDENTIFIER LES INSTRUCTIONS 1 ET 101

w»+ ON A ADMIS L°EGUIVALENCE DE 6 ET 3

4+ ERREUR POSSIRLE : VERIFIEZ LA VALEUR DE LA CTE OU DE LA VARIABLE QUE VOUS UTILISEZ
AR E RN RN PR PR AR R AN R KRN TN R R

INSTRUCTION 8 DANS PROGRAMME 1 NON IDENTIFIEE

INSTRUCTION 14 OANS PROGRAMME 1 NON IDENTIFIEE

CONDITIONS DIFFERENTES SUR LES ARCS ISSUS DES INSTRUCTIONS 7 ET 106

CONDITIONS DIFFERENTES SUR LES ARCS ISSUS DES INSTRUCTIONS 9 ET 108

P S S AR A2 RS R R AR R R A

COMPILE TIME= 3.10 SECL,EXECUTION TIMES 4.17 SEC.

(IBM 370-168)

2.5.1. Experimentations

The LAURA system has been tested with about a hundred programs written
by students to solve eight different problems in various fields:

—management (taxes calculation, Electric company invoices),

—arithmetic (perfect numbers, Pascal’s triangle),

—numerical analysis methods (integration, equation roots),

_sorting of an array A and N numbers (using a given algorithm: search for
maximum and permutation).

LAURA has been written in FORTRAN and has about 7000 instructions. On
an IBM 370/168 computer, the results have been obtained in a few seconds for
the shortest problems (e.g. the perfect numbers) and in about thirty seconds for
the longest one (Newton’s method).

The program models and the student programs are all written in FORTRAN as
we have built only one source-to-graph translator. The students are program-
ming apprentices but their programs have been compiled successfully before.

Many programs not only have superficial differences (names of variables,

LAURA: A SYSTEM TO DEBUG PROGRAMS . 101

arithmetic expressions,...) but also profound differences (structure, local
algorithms, ...). Most of the programs that calculate the same functions as the
program model have been recognized as ‘equivalent’ by the system. In many
others, LAURA has found errors and has expressed exact, clear diagnostics. In
some other cases, LAURA has not identified the whole student program. It has
only marked off one part that contains a difference with the model but it has
not been able to interpret this difference. It was generally sufficient to make
the student able to realize by himself either that he had made an error or that
he had used a variation without consequences.

Thus the LAURA system may be a great help in debugging programs and in
particular, an efficient tool for student programmers. It would be all the more
useful since it could be used in an interactive, conversational way.

Given below are some examples of programs that LAURA has dealt with.
For each example we present:

—the subject of the exercise proposed to the students,

—the program model and the student program, just as they are given to the
system,

—the two programs generated from the model graph and from the student
graph when the comparison is finished,

—the printed diagnostics.

Some comments are added to point out the main difficulties that were to be
solved. When necessary, the consequences of detected errors or of non-
interpreted differences are explained.

Example 1. Perfect numbers.

A perfect number is a positive integer k which is equal to the sum of its
divisors, 1 included and not k. Print out each perfect number less than or equal
to 1000.

Program model Student program

NOMBRES PARFAITS - ETUDIANT 1
NZ6
1=2

—~onvoo

¢ NOMBRES PARFAITS - CORRIGE bt
PO_100 1=6.1000 TF(N=(N/1)#1)10,20,10
s> 20 LELeToN/T

x=2
TFCI/KAK,EQ. 1) ISZIS+KeT/K 10 IEL(Ie1)2v2-0230,40.40
1F (K. LT,)6OTO 1 0 Govo 1
T 40 IF(L-N)50,60,50
60 WRITE(D6,55)H
S5 FORMAT(14)

IF(IS.EQ, IIWRITE(0D8.10)1
FORMAT(IS)

STOP

END

-
-0
cCooooosc00O0

S0 IF(N=1000)70,100,100
70 N=N+Y
0 GOTO 2
100 svep
0 END

102

I R R R R R R S TR TR

PROGRAMME DE REFERENCE

"

1
3
? 1

4 TF(I=1/KeK)UT7.,05,07
S

7

3

woa

1
K
1

ISSI/K415+K
TF(I-(Kk+1)ee2)yr.08,13
K=K+
6O0TH &
R OTFCIS-T1)11,09,91
9 PRINT I
11 1FC1000-1)12,12,14
14 12141
GNTNn 3
12 sTOp
Enn

R R Ry

DIAGNOSTICS

PROGRAMME CORRECT
TSI T R R

COMPILE TIME=

A. ADAM AND J.-P. LAURENT

ANsReNILASIELERTAILACERAN R NSRS

PROGRAMME ETUDPIANRT REELLRIT PAR LE SYSTHME

101
102
103
104
105
106
102
169
110
112
111

107

3.17 SEC.EXECUTION TIME=

NZh
=2
L=
TF(A=N/TI*12106,108,1u6
LN/ T4L+]
TF(H=-(1¢1)+e2)108,703,107
IFCL-N)110,909.110

PRINT N
IFCINUO=-NIT112,112,111
STNP

N=h4d

GOTD 102

1=1+1

LOTO 104

END

IL CALCULE LES MEMES FONCTIONS QUE LF PROGRAMMF DE FEFERENCE

(IBM 370-168)

S.04 SEC.

In spite of many syntactical and structural differences, the LAURA system
has determined that the student program is equivalent to the program model.

Example 2. Perfect numbers.

NOMBRES PARFAITS - CORRIGE
80 100 1=6.1000

1531

x=?
TFCI/KeK EQ, I)IS=IS+K+I/K
K=K+1

TF(K+K LT 1)GOTO 1
TFOIS.EQ.I)WRITE(08,10)1
FORMAT(IS)

sTNP

END

-
-0
e - - - -]

R R N R TS T R R

PROGRAMME DE REFERENCE

"o

I
K
1

»ouon

1
TFCI/Kex~1)06,05,06
ISST/K+K+]1S

K=K+1
TF(I-K*++2)05.08,04
TF(I-15)11,09.11
PRINT 1
TFC1000-1312,12.13
1=1+1

GOTO 3

STOP

END

[- V. I L VI VR

PN

-
~

c-

NOMBRES PARFAITS - ETUDIANT 3
N=3
NEN+T

1=2

15=1
20 IF(N/Ie1-N)21,22,21
22 IS=IS+I+N/]
2% 1=141

0 IF(I-N/2)20,23,23
23 IF(N=15)30.40,30C

40 WRITECO6,41)N

41 FORMAT(IS)

30 1F(N=1000)10.50,50
50 STOP

0 END

-
ococooo

R e R R

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

102 N=
103 1=
104 1S

"o

1

105 IF(N/I#1=N)147.7106,107
106 ISSN/I+1+1S

107 1=1+41

108 IF(N/2-1)109,109.105
109 TF(N=-15)111,110,111
110 PRINT N

111 1F(1000-N)112,112.113
112 stTOP

113 N=Ne1

GOTO0 103
END

LAURA: A SYSTEM TO DEBUG PROGRAMS 103

T S SR R SRR R R R R R L A A 2 X)

DIAGNOSTICS

ese ATTENTION #+» POUR IDENTIFIER LES INSTRUCTIONS
ess ON A ADVIS L EQUIVALENCE DE 6 EY &

+es ERREUR POSSIBLE : VERIFIEZ LA VALEUR DE LA CTE OU DE LA VARIABLE QUE VOUS UTILISEZ

1 EY 102

Y R R R T R A
INSTRUCTION 7 DANS PROGRAMME 1 NON IDENTIFIEE
INSTRUCTION 108 DANS PROGRAMME 2 NON IDENTIFIEE

Y R R R X T R R R R S R R

COMPILE TIME= 3.12 SEC,EXECUTION TIME= 7.72 SEC,

These diagnostics show an awkward initialization of N and a mistake in the
test of label 23: it is a serious error because some divisors will be added twice.

Example 3. Sorting.
In order to sort an array A(1)--- A(N) in decreasing order, the following
algorithm is used:
Step 1. Starting with A(1), find the maximum and interchange it with A(1).
Step 2. Do the same starting with A(2), and so on until N - 1.

3 0 TRI -~ CORRIGE 4 0 TRI = ETUDIANT 1

0 DIMENSION A(100) 0 DIMENSION AC10)
0 READ 1.N,(ACI), I=1,N) 0 READ S5.N,(ACI}.I=1.N)
1 FORMAT(I3/(8F10.2)) 0 NN=N-1
0 NM=N-1 0 00 100 J=1.NN
0 DO 10 X=1,NM 0 MAX=ZA(Y)
0 supP=a(x) 0 L=
0 LsK 0 DO 1 K=1,N
0 xp=K+1 0 IF{MAX_GE.A(K))IGOTO 1
0 DO 11 J=KP,N 0 MAX=A(K)
0 IFCSUP,GE.ACJ)IGOTO 11 0 L=x
0 sup=a(yd) 1 CONTINUE
0 L=y 0 A(LI=ALS)

11 CONTINUE 0 ACJ)=MAX
0 A(LI=A(K) 100 COMTINUE

10 A(x)=sup 0 PRINT 7,(ACI),IS1,N)
0 PRINT 2.C(ALI),I=1,N) 7 FORMAT(F10.2)
2 FORMAT(F10.2) S FORMAT(8F10.0)
0 sToP 0 stop
0 END 0 END

AR R R R PR AN RN AR R R AR NI TRk

PROGRAMME DE REFERENCE

P R R R RS R R

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

1 READ N 101 READ N

2 READ A(KI).KI=ST1.N) 102 READ ACID).II=1.N)

3 NM=N-1 103 NN=N-1

4 x=1 104 =1

5 SUP=A(K) 105 MAX=a(J)

6 L=K 106 L=y

8 J=K+1 107 x=1

9 IFCACJI)-SUPI12.12,10L 108 IF(A(KI=-MAX)T111.,111,109
12 9=J+1 111 K=Kl

13 1F(J-N)09,09,14 112 IF(K-N)>108,108.113
14 A(L)I=A(K) 113 alL)I=AQ))

15 A(K)I=SUP 116 ACJISMAX

16 K=K+1 115 J=1+41

17 IF(XK=-NK}O0S,05.18 116 I1F(J=NNI105,105.117
18 PRINT ACLI).LI=1.N) 117 PRINT A{JI).JI=1.N)
19 stTop 118 sTOP
10 SuP=a(J) 109 MAXZA(K)
11 1= 110 L=k

6070 12 6OoTO 111
END END

104 A. ADAM AND J.-P. LAURENT

LR R R R TR Y

VARIABLES JDENTIFIEES

N N

A A

sup MAX *++ ERREUR DE GENRE
J X

K1 11

Lt JI

L NN

K J

L L

LR R P Y PR

DIAGNOSTICS

ves ATTENTION +++ ERREUR(S) DE GENRE PROBABLE(S)
REPORTEZ=VOUS A LA LISTE DES IDENTIFICATIONS DE VARIABLES

LA AR A R S R R A R R)
INSTRUCTION 8 DANS PROGRAMME 1 NON IDENTIFIEE

INSTRUCTION 107 DANS PROGRAMME 2 NON IDENTIFIEE

LR s TR S

COMPILE TIME= 3.28 SEC.EXECUTION TIME= 4,70 SEC.

The nodes 8 and 107 remain unidentified. The inner loop in the student
program must begin with K =J +1 and not K = 1: it finds at each time the
same maximum.

Example 4. Pascal’s triangle.

Use the induction formula C%=C%_;+ C%2] in order to compute the
coefficients of Newton’s binomial.

Starting with A(1,1)= A(2,1) = A(2,2) = 1, compute and print out each line
from 3 to 20.

(Given the weak representation capacity of our computer, use a real array
A)

[0 TRIANGLE DE PASCAL ~ CORRIGE 4 O TRIANGLE DE PASCAL ~ ETUDIANT 1
O OIMENSION AC20,20) 0 DIMENSION A€20,20)
0 A(Y,1)=1 0 A(1.1)=1
0 AC2,1)=1 0 A€2.1)=1
0 A(2,2)=1 0 AC2,2)=1%
0 b0 1 1=3.20 0 00 1 1=3.20
0 AC1.1)=1 0 y=2
0 Ir=1-1 0 A(1,1)=1
0 D0 3 J=2,11 3 ACT,=ACI=1, 00011, -1}
3 ACIL.JX=ACI=1,00+A(1-1,4-1) 0 J=J+1
0 A(I,.1)=1 0 IFC(J.EQ.I-1)60T0 2
1 PRINT 4.CACI.9).J=1.1) ¢ 6070 3
4 FORMAT(20F6.0) 2 A1, 1)1
0 STOP 1 PRINT 4.(AI.J).J=1.1)
0 END 4 FORMAT(20F6.0)
0 sTOP
0 END

LAURA: A SYSTEM TO DEBUG PROGRAMS 105
22 R 2R R R R E SR RS E RS ZZER SR (222 EXRZEEZR RS RA RS SRR EE RS)
PROGRAMME DE REFERENCE PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

1 A01,1)=1 101 A1, 1)=1
2 AC2,1)=1 102 A(2,1)=1
3 A(2,2)=1 103 A(2,2)=1
4 123 104 1=3
7 =2 105 y=2
5 AC1,1)=1 106 ACI,12=1
8 ACI,J)I=ACI=1,0=-1)+a(1=-1.4) 107 ACI.J)=A(I=1,0=1)+A01=1,))
9 J=J+1 108 J=J+1
10 1F(J=141)08,08,11 109 1FCJ4=1412107.110,107
11 AC1, D=1 110 ACI,1)=1
12 PRINT ACIL.JI),41=1,1) 111 PRINT ACILID),1121,1)
13 1=1+1 112 1=141
14 1F(1~20)07,07.15 113 IF(I-202105,105,114
15 sTOP 114 STOP
END END
LR AR AR R E R 2R 2 R Y RS
DIAGNOSTICS
22222 ZER2 2R 222 R R 2 R 221
CONDITIONS DIFFERENTES SUR LES ARCS ISSUS DES INSTRUCTIONS 10 €T 109
XXX EZEEZRZXSRR 2SR SRR 223
COMPILE TIME= 3,03 SEC.EXECUTION TIME= 3.44 SEC,
Serious error: the inner loop must also be executed when J =J —1.
Example 5. Pascal’s triangle.
¢ 0 TRIANGLE OE PASCAL - CORRIGE ¢ 0 TRIANGLE DE PASCAL = ETUDIANT &
0 DIMENSION A(20.20) 0 OINEMSION A(20.20)
0 A1, 1= 0 AC1,1)m1
0 A(2,1)=1 0 AC2,1)=1
0 A(2,2)=1 0 A€2,2)=1
0 00 1 123,20 0 1=3
0 ACI,1)=1 1% J=2
0 11=1-1 0 ACI,1)%1
0 00 3 4=2.11 11 ACLLJ)2ACI=1,4=1)+AC1=1,4)
3 AL)SACI=1,J)+A(1-1,4-1) 0 J=Jeq
0 ACI,D)=1 0 IFCJ.LT,I)GOTO 14
1 PRINT 4, (ACI,J),321,1) 0 ACI,J)=Y
4 FORMAT(20F6.0) 0 PRINT 15,(ACI,d).J4=1,1)
0 STOP 0 1=1+1
0 END 0 IFCI,LE.20)60T0 14
0 sTOP
15 FORMAT(1X,20F6.0)
0 END
LA Z X R R A AR R R R R AR E N NN (22 R R AR R E AR EER AR SRR SRR 2]
PROGRAMME DE REFERENCE PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME
1 A(1,1)=1 101 AC1,1)=1
2 A€2,1)=1 102 A(2,1)=1
3 a(2,2)=1 103 A(2,2)=1
4 123 104 1=3
7 J=2 105 J=2
S A(I,1)=1 106 ACI,1)=1
8 ACI,)=ACI=1,4=1)sAlI-1, 1) 107 ACI,J)SACI=1,J=1)+AC1=1,)
9 4=t 108 J=J+1
10 IF(1-4211.11,08 109 TFC1-42110,110,107
11 ACI, D)= 110 ACI,4)=1
12 PRINT ACI.4D),01I21,1) 111 PRINT A(1,1I),1121,1)
13 12141 112 1=1+1
14 1F(1-20007,07,15 113 IF(1-20)105,105,114
135 ::g’ 114 stop

END

106 A. ADAM AND J.-P. LAURENT

A R Y

DIAGNOSTICS

##e ATTENTION ### POUR IDENTIFIER LES INSTRUCTIONS 11 ET 110
«ee« ON A ADMIS L°EQUIVALENCE DE 1 ET J
s*v ERREUR POSSIBLE : VERIFIEZ LA YALEUR DE LA CTE OU DE LA VARIABLE QUE VOUS UTILISEZ

CheSC e RN R TR TR AR RREN
COMPILE TIME= 2.92 SEC.EXECUTION TIME= 4.04 SEC.

The system has printed out a warning. Yet, there is no error since J has
always the same value as I when 110 is executed. We discuss this point in the
conclusion.

Example 6. Trapezium method.

In order to get an approximation of the integral [’ f(x)dx, we use the
trapezium method. If one divides the interval [a, b] into n intervals of equal
length A = (b — a)/n, then:

s=hxﬂﬂL;ﬁ’-’)+2'f(a+ih).

To ameliorate the precision, one may increase the number of trapeziums, for
instance by doubling the value of n. Different approximated values of S will be
so calculated until a relative precision ¢ is reached.

Values of a, b, n, ¢ are put in datas. The different values of S obtained must
be printed out.

(In order to calculate f(x), use a subrouting FF(x).)

4 0 METHODE DES TRAPEZES - CORRIGE c 0 METHODE DES TRAPEZES - ETUDIANT 1

0 READ 100,A,8,N.EPSIL O READ 1,A,B.N,C

100 FORMAT(2F10.0,110,F10.0) 0 D=0
0 1=0. 4 H=(B-A)/N
1 K=(B=A)/N 0 E=(FF(A)+FF(B))/2
0 s=0, 0 J=N-1
0 NM=N-=1 0 po 2 I=%,y
0 b0 2 IZ1,NM 2 ESE+FF(A+I+H)
2 S=S+FF(A+IsH) 0 S=E*H
0 S=H*((FF(A)+FF(B))/2+5) 0 PRINT 6.5
0 PRINT 200,S 0 LFCABSC((S5=-D)/S).LT.CISTOP

200 FORMAT(E15.6) 0 p=$§
0 TF(ABSC(S-T)/S).LE.EPSILIGOTO 1000 0 N=2+N
¢ T=s 0 GOTO 4
0 NzZ24N 1 FORMATC2F10,0,170,F10,0)
0 GO0TO 1 6 FORMAT(E20.8)

1000 stoP 0 END

0 END

LAURA: A SYSTEM TO DEBUG PROGRAMS 107

P R R R AR 2]

PROGRAMME DE REFERENCE

1 READ A
2 READ B
3 READ N
4 READ E
S T=0,
13 WIS=CSIGMACFFCA+(B=A)#MI/N) , (MIZT, N=1))+FF(A)*0 5+FF(BI*0.5)+(B=A)/N
14 PRINT WiS$
15 IFCEPSIL=ABSCCCSIGMACFFCA+(B=AI*MI/N) ,(MI=1 , N=1,))¢FF(A)*0 S+FF(B)#0,5)»(B=A)/
N-T)*N/(B=A)/(STGMACFF(A+(B=~AN*MI/N) ,(MI=1,,N=1,))+FF(A)*0 5+4FF(B)*+0.5)))16,18,18
op
:2 :I(SlGMA('F(A‘(B-A)'HIIN).(HI=1.-N-1.))OFF(A)GO.50‘F(!)'0.5)'(B-A)/N
17 N=N#2
GoTO0 13
END

A L 2 T Y)

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

101 READ A
102 READ B8
103 READ N
184 READ €
105 0=0
113 S=(SIGMACFF(A+(B=AI*KI/N) (KIZ1. ,N=1,))+FF(AI*0,5+FF(B)*0,.5)2(B~A)/N
114 PRINT S
115 IFCC-ABS(((SIGMACFFC(A+(B=A)*KI/N), (KIZ1 ., N=1,))4FF(A)I*0 . S+FF(B)*0.5)+(B-A)/N=D)
*H/CB-A)/CSTEMACFFCAC(B=A)*KT/ N) . (KIS1.,N=1.))+FFCA)*0. . 5+FF(8)*0,5)))117.117.116
116 SsTOP
117 DE(SIGMACFFC(AC(B=A) *KI/N), (KIS, N=1.))*FF(A)*0.5¢FF(B)*0.5)*(B=A)/N
118 N=EN#2
GOYO 113
END

e 2 Yy

DIAGNOSTICS

L e T I R TR SRT)

CONDITIONS DIFFERENTES SUR LES ARCS ISSUS DES INSTRUCTIONS 15 ET 415

AR AR F RN RN NN E RS E AN I RNy
COMPILE TIME= 3,64 SEC,EXECUTION TIME= 25,49 SEC,

Let us note that the two programs used different initializations. The resolu-
tion of the induction equations and, after, the compositions have translated the
two calculus processes into the same formula.

Only one difference remains (. LT . instead of . LE . in the final test). It has

no importance as trapezium method is an iterative method, but LAURA has
not this knowledge.

108

Example 7. Trapezium method.

-
o

~
=
COO OO OCOONOOOAOOOO

-
©
o

METHODE DES TRAPEZES - CORRIGE
READ 100,A,B,N,EPSIL
FORMAT(2F10.0,110,F10,0)

T=0.

H=(B=A)/N

$=0,

NM=N=1

D0 2 I=1,NM

SSS+FF(A+I*H)
SSHe((FF(AI+FF(B))/2+5)

PRINT 200,S

FORMAT(E15.6)
IFCABS((S-T)/S).LE.EPSIL)IGOTO 1000
T=§

N=2«N

6010 1

sToP

END

R R R R T L P

PROGRAMME DE REFERENCE

READ A
READ B
READ N
READ E
T=0.

§=0.

1=1

STFF(A+(B=A)*I/N)+S

1=1+1

IF(I-N+1)10,10,13
WISS(S+FF(B)*0.5+FF(A)«0,5)+(B-A)/N
PRINT W1S

 COOVFEFOoOWOOOOOOOONODORO—S0 O

A. ADAM AND J.-P. LAURENT

METHODE DES TRAPEZES - ETUDIANT 3
READ 1,A,B,K,EPS
FORMAT(2F10.0,110.F10.0)
u=0

PAS=(B-A)/K

L=K=1

SOMME=0

1=1

XZA+I#PAS

FSFF(X)

SOMME=SOMME+F

12141

IF(I.LE.L)GOTO ¢
T=0.5+(FFC(A)+FF(B))
SOMMESSOMME+T
SOMME=PAS+SOMME

PRINT 3,S50MME
FORMAT(E12.5)
TFCABSC(SOMME=U) JUI-EPS)4,4,5
STOP

J=SOMME

K=2+K

GOTO 6

END

TFCABSCCCS*FF(BI*D . 5+FF(A)*0,5)%(B-A)/N=T)*N/(B=A)/(S+FF(B)~0.5+FF(R)*0.5))~

STOP
T=(S+FF(BI*D,S+FF(AI~0.5)+(B=-A)/N
NZN*2

G0T0 7

END

I R R R e e R S R R

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

101
102
103
104
105
108
109
112

114
17
118
119
121
122

120

READ A
READ B
READ K
READ E
u=0

SOMME=0

1=1

SOMMEEFFC(A+(B=~A) *I/K)+SOMME
1=1+1

IFCI=-K¢1)112,112,117

W2SOMMES(SOMME+FF(8) 20 .5+FF(A)+0.5)#(8=A)/K

PRINT W2SOMNME

EPSIL)18,18.1¢

TFCABSCC(SOMME+FF(B)*0.5+FF(A)*0.5)%(B=A)/K~U)/U)=EPS)120.120,121

UZ(SOMME+FF(B) +0,5+FF(A)*0.5)+(B=A)/K

K=K*2
60TO 108
sTOP

END

LAURA: A SYSTEM TO DEBUG PROGRAMS 109

OIAGNOSTICS

R R e R R 2

INSTRUCTION 15 DANS PROGRAMME 1 NON I0ENTIFIEE

INSTRUCTION 119 DANS PROGRAMME 2 NON IDENTIFIEE

e R T T

COMPILE TIME= 3.06 SEC,EXECUTION TIMES 12.87 SEC.

Serious error: the test

SOMl\l'ijE —Ul| < EPS

is a division by 0 at the first time.

Example 8. Newton’s method.

Let P(x)=ax"+ayx"'+---+a,., be a polynomial which has n real,
distinct roots. Let x, be a value greater than the greatest root.

(1) Using Newton’s method it is possible to calculate the greatest root (with
a precision ¢): a series that converges towards r is built from the formula

Xn+1 = Xp — T .
fi(x.)

(2) Let r be the obtained value. Dividing P(x) by (x —r), a new polynomial
is obtained with the same roots as P, r excepted. Again using Newton’s method
on the new polynomial, the second root of P is obtained.

Calculate successively the n real, distinct roots of P. Print out at each time all
the values of the series x,. To stop the calculation of this series, note that
f(x,)—0.

The degree N of the polynomial, xy, &€ and the coefficients of the polynomial
are put in datas in this order.

4 0 NEWTON CORRIGE [0 METHODE OE NEWTON ETUDIANT &
0 DIMENSION A(8) 0 DIMENSION A(8)
0 READ 2,N.T,R 0 READ 1,N,X,EPSIL
2 FORMAT(I10,2F10.0) 1 FORMAT(I10,2F10.0)
0 M=N+1 0 M=Net
0 READ 3,(ACD),I=1,M) 0 READ 3,(ACI),I1=1,M)
3 FORMAT(8F10.0) 3 FORMAT(8F10,0)
14 p=0 2 a=0
0 M=N+1 0 DO & I®1.N.1
0 D0 6 I=1,M 6 Q=QaXe(N¢1=1)wA(T)
& P=PaT+A(]1) 0 p=0
0 a=0 0 M=N+1
0 00 4 I=1,n 0 00 6 I=1.M,1
4 QQ*T+(N+1=1)+A(1) 6 P=Pe+X+A(])
0 T=T-P/0Q 0 X=X=(P/Q)
0 PRINT 8,T 0 PRINT 8.X
8 FORMAT(E17.7) 8 FORMAT(E17.7)
0 IFCABSC(P)-R)12,12,14 0 IFCABSC(P) ,GT.EPSIL)IGOTO 2
12 po 16 1=2,N 0 PRINT 8
16 ACI)=ACI)+TwA(I=1) 0 00 7 I=2.N.1
0 N=N- 7 ACL)SACI)+(X*ACI=1))
0 IF(N-1)18,18,14 0 IF(N,LE.2)GOTO ¢
18 X=-A€2)/aC1) 0 N=N=1
0 PRINT 8.X 0 Goro 2
0 sToP 9 X==a(2)/7A01)
0 END 0 PRINT 8.X
c STOP
0 END

110 A. ADAM AND J.-P. LAURENT

T L R R TS T e

PROGRAMME DE REFERENCE

1 READ N
2 READ T
3 READ R
4 WIMEN+1
S READ A(JJ),JJ=1,W1M)

9 PSSIGMACACNYI#Tos(N=NJ+T,) . (NJST1, . N*¢1,))
17 TST=SIGMACACNI) *TaadN=NI*+1.), (NIZ1, NeT.)D/STCMACKN=JK+T) eACIKI #Toe(N=JK), (JK=T, . N)
18 PRINT T
19 1F(ABS(P)=-R)20.20.09
20 1=2
21 AC(II=ACI)+ACI=1)aT
22 1=1+1
23 1F(I=-N)21.21.25
25 T1F(N=2)26,26,31
3t N=N-1

GoY0 9
26 X==A(2)/AC1)
27 PRINT X
28 STOP

END

Iz IR R R R R R R R Y

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

101 READ N
102 READ X
103 READ EPSIL
104 WiM=Ne1
105 READ ACII), II=1,81M)
114 PESIGHACA(TY) eXaa(N=1J+1,),(2J=1,,N*1.))
117 X=X=SIGMACACTI) #Xea(N=TJ+1,),(1J=T1, N1 D) /STGMACIN=LT+1 DoA(LI)oXwe(N=LLI),(LTI=1,,N))
118 PRINT X
119 IFCABS(P)=-EPSIL)120,120.114
120 1=2
121 ACI)I=ACI)+A(1=10nX
122 1=141
123 IF(I-N)121,121,124
124 IF(N-2)126.126,125
126 WAX==A(2)/AL(Y)
127 PRINT WiX
128 sTOP
125 N=N-1
GOTO 114
END

MO RNNS R I RS SRR RS NIRARRREN

DIAGNOSTICS

PROGRAMME CORRECT : IL CALCULE LES MEMES FONCTIONS QUE LE PROGRAMME OE REFERENCE

S R R R R A e R A S R R]

CONPILE TIME= 3.60 SEC,EXECUTION TIMES 37.83 SEC.

The student program is recognized equivalent, although the computations of
P(x) and P’(x) are not made in the same order as in the program model.

LAURA: A SYSTEM TO DEBUG PROGRAMS

Example 9. Newton’s method.

NEWTON CORRIGE 3
DIMENSION A(C8)

READ 2,N,T,R
FORMAT(I10,2F10,0)
N3N+

READ 3,(ACI),1=21,M)
FORMAT(8F10,0)

P=0

M=N+1

D0 6 I=1.M
PEPsT+ALD)

e=0

DO & I=1,N
Q=QeT+(N+1-1)#A(])
T=T~p/Q

PRINT 8,T
FORMATCE17.7)
IFCABS(P)~R)12,12,14
00 16 1=2,N
ACIIZACI) +T#ACE=1)
N=N=1
IF(N=1)18,18,14
X==AC2)/AC1)

PRINT 8.X

STOP

END

A S 22 R 2

c

-

-
COOWOODOPNONOOFrOOCTORIPUOOND DD

-

PROGRAMME DE REFERENCE

1 READ N

2 READ T

3 READ R

4 WINENeT

S READ ACKJ).KJ=1,uwiM)

9 PESIGMACA(MI) oToa(N=MJ+1), (MIZT, ,N*1,))
17 T2T~SIGMACA(MY) oTew(N=MI+T,),(MIZT N+1,))/STGMACIN=KK+T I 4ACKK) eToa(N=-KK), (KKZ1,.N))

18 PRINT T
19 1FCABS(P)-R)20,20,09
20 1=2
21 ALDIZACL) #A(I=-1)T
22 1=1+41
23 IFC(I-N)21,21.24
24 N=N-%
25 IF(N=-1)26,26,09
26 Xx==A{2)/A€1)
27 PRINT X
28 sYOP
END

L R

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

101 READ N

102 READ X

103 READ E

106 M=N+1

105 READ ACII),1I=1,M)

109

113
(NI=1,.,.N))

114 PRINT X

115 TF(ABS(F)-E)116.116,109

116 1=2

117 ACI)ZACI)#A(I=1) 2

118 I=1+1

119 1F(1=-N3117,117.120

120 N=x-1

121 IF(N=-13122,122.109

122 R==A(2)/A(1)

123 PRINT R

124 sToP
END

11

METHODE DE NEWTON
OIMENSION AC20)
READ 1,N,X,E
MSN+1
READ 15.(ACD),131,M)
FORMAT(110.2F10.0)
FORMAT(8F10.0)
F=A(1)
1=1
6=0
FEFsX+A(I+Y)
GEGeX+{N=-T+1)+A(])
I=1+1
TF(I=-N)4.4,3
X=X=F/G
PRINT 100,X
TFCABS(F)-E)S5.5,7
PO 10 I=2.N
ACD)I=ACD) +(X*AC1=1))
N=N=1
TF(N=-1)12,12,7
R==A(2)/7AC1)

PRINT 100,R
FORMAT(ET?.7)
stTopP

END

ETUDIANT 5

FESTGMACACIJ* 1) wXoe(N=3J),CJUST,.,NII+AC1) eXneN
X=X-(SIGHA(A(JJ'1)'Xt'(N-JJ).(JJ=1..N))’A(1)'X"N)/SIGHA((N-NI‘1.)'A(NI)'X"(N-NI).

112 A. ADAM AND J.-P. LAURENT

DIAGNOSTICS

L N R R LR

INSTRUCTION 9 DANS PROGRAMME 1 NON IDENTIFIEE
INSTRUCTION 17 DANS PROGRAMME 1 NON IDENTIFIEE
INSTRUCTION 109 DANS PROGRAMME 2 NON IDENTIFIEE

INSTRUCTION 113 DANS PROGRAMME 2 NON IOENTIFIEE

L e A R 2 T Y

COMPILE TIME= 3.55 SEC,EXECUTION TIME= 37.78 sEecC,

The student has used only one loop to compute P(x) and P’(x). This
difference has been reduced by the system. Unfortunately the system could not
identify the arithmetic expressions in (9, 109) and in (17, 113) since it is not able
to prove that

n n+l
u, + Ui = U;.

= =

Example 10. Newton’s method.

c O NEWTON CORRIGE c 0 METHODE DE NEWTON ETUDIANT 8
0 DIMENSION A(8) 0 DIMENSION AC10)
0 READ 2,N,.T,R 0 READ 10.N.X,C
2 FORMAT(IN0,2F10.0) 10 FORMAT(I10.2F10.0)
0 M=N+1 0 m=N+1
0 READ 3,(ACI),.I=1,.M) 0 READ 9,(A(I),I=1,M)
3 FORMAT(B8F10.0) 9 FORMAT(8%10.0)
14 P=0 1 p=s0
0 M=N+1 0 M=N+1
0 00 6 I=1.M 0 b0 20 I=1,M
6 P=peT+Al]) 20 P=P+A(I) *Xea(N=141)
0 e=0 0 a=0
0 00 & I=1,N 0 50 30 1=1,N
L Q=QeTH+(N+1-1)#AL]) 30 Q=0+ACI)w(N=-T+1)uxeax(N-1)
0 T=7-P/Q 3 x=x-pr/Q
0 PRINT 8.7 0 PRINT 12,X
8 FORMAT(E17.7) 12 FORMAT(F10.4)
0 TF(ABS(P)I=R)12,12.,14 0 TFCABSC(P) _GT.CIGOTO 1
12 DO 16 I=2.N 0 00 5 1=2,N
16 ACI)SACI)+T#A(E=1) 5 ACDI=SACI)+xX+a(I-1)
0 N=N=-1 0 N=N=1
0 ITF(N=-1)18,18.14 0 IF(N.EQ.1)60T0 ¢
18 x==a(2)/a(1) 0 6070 1
0 PRINT 8.X 6 D==A(2)/A(1)
0 sToP 0 PRINT 12,0
0 END 0 sTOP
0 END

LAURA: A SYSTEM TO DEBUG PROGRAMS 13

PROGRAMME DE REFERENCE

1 READ N

2 READ T

3 READ R

4 WAM=N+1

S READ ACJJ),JI=1.WAM)

9 PSSIGMACACNGI T+ o (N=NJ+1,),(NJ=T1,,N+1.))
17 T=T-SIGMACA(NI) *Tax(N=NJ+1.), (NJIZT, N+1.))/SIGMACIN=JK+T I *ACIKI * T+ (N=JK), (JK=1,,N))
18 PRINT T
19 TF(ABS(P)=R)20,20,09
20 1=2
21 ACIIZACII+A(I=1)#T
22 1=1+1
23 IF(I-NJ)21.21,24
24 N=N-1
25 JF(N-1)26.26,09
26 X==A(2)/A(1)

27 PRINT X
28 STOP
END

IR I T R F e Y

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

101 READ N
102 READ X
103 READ C
104 WiM=N+1
105 READ ACID).II=1,W1M)
109 P=STGMACACLID#X**(N~LI+1.),(LI=1.,N#+1.))
117 XEX-SIGMACACLID «Xaw(N=LI+T.), (LIZ1, . N+1, D)) /STGMACIN=TI+T D *ACT) #XnaiN~1J).(T1J=9,.N))
118 PRINT X
119 IF(ABS(P)-C)120.120.109
120 1=2
121 ACDISACDI+A(I=1)9X
122 1=1+%
123 IFCI-N)121.121.124
124 N3N-1
125 1F(N=-1)109.126.109
126 D=-A(2)/A(1)
127 PRINT O
128 sTOP
END

R N s R A 2R R

OIAGNOSTICS

L RS R R R R R R}

CONDITIONS NIFFERENTES SUR LES ARCS ISSUS DES INSTRUCTIONS 25 ET 125

LRy T R R R L)

COMPILE TIME= 3.33 SEC.EXECUTION TIME= 33,84 SEC.

To compute P(x) and P’(x) the student has added all the monomials instead
of using Horner’s method. The system has reduced this difference. The only
difference that remains is about tests 25 and 125. To prove that it is not really
an error, the system should know that the input value of N is greater than 1.

114 A. ADAM AND J.-P. LAURENT
Example 11. Second-order equation.

The parameters a, b, c, of the equation ax’+ bx + ¢ =0 are put in data. Find
the real roots. Print out their number and their values.

DISCUSSION EQUATION 2EME DEGRE DANS R : ETUDIANT 3
READ(05,100)A,8.C
I1F(A,EQ,0)G60T0 1
D=B#s2=beAel
IFCD)2.3.4

NR=2

0=SQRT(D)
R1=2(~-8+0)/(24A)
R2=(=8-0)/(2+A)
WRITE(66,200)NR.R1,R2
sTOP

RU==B/(2%A)

NR=1
WRITECO6.300)NR,RT
STOP

NR=0
WRITE(06.400)NR
1F(8)5.6.5

R1==B/A

60 TO 7

1fF(C)2.8,2

NR=~-1

GOTO 2
FORMAT(3E12.4)
FORMAT(IS)
FORMAT(15,E12.4)
400 FORMAT(IS,2€12.4)
§TOP

END

CONOCAONOONANOOOODFDOOCO O

[P
coco
coco

co

124 NRz-1
DEFINITION NON UTILISEE..,. ELIMINEZ CETTE ANOMALIE ET SOUMETTEZ LE PROGRAMME 0E NOUVEAU

COMPILE TIME= 3.08 SEC.EXECUTION TIME= 0.73 sec,

Three times, the system has given a diagnostic of error a priori, when
building the student graph.

First program: “The definition NR = —1 is never used”.

Then, the student realizes that after NR =-1, the instruction
WRITE (06,300) NR,R1 must be executed. So he changes the place of label 2.

LAURA: A SYSTEM TO DEBUG PROGRAMS 115

OISCUSSION EQUATION 2EME DEGRE DANS R : ETUOIANT 3
READ(0S5,100)A.0.C
IF(A.EQ.0)GOTO 1
DEBawZ=bwAr(
1F(D0)2.3.,4
NR=2
0=SQART(D)
Ri=(-B+D)/(244)
R2=(~B=D)/(24A)
WRITE(66,200)NR,RY1,R2
sTOP
RU==B/(2#A)
NR=1
WRITECO06,300)NR,RY
STOP
NRZ0
WRITE(06.400)NR
IF(8)S5,6.5
R1Z=B/A
60 T0 7
1F(C)2.8.2
NR3=1
6070 2
100 FORMAT(3E12.4)
200 FORMAT(IS)
300 FORMAT(IS,E12.4)
400 FORMAT(1S5,2E12.4)
0 sToP
0 END
0
119 NR=0
INSTRUCTION JAMAIS ATTEINTE,.. ELIMINEZ CETTE ANOMALIE ET SOUMETTEZ LE PROGRAMME DE NOUVEAU

OB NOOC ANOSOOVNLWOOOORPFrOOODO

COMPILE TIMEs 2,98 SEC,.EXECUTION TIME= 0.49 SEC.

Second program: “The instruction NR = 0 is never executed”.
As a matter of fact. The student correction is false. He must not change label
2. He must create another label, 12.

DISCUSSION EQUATION 2EME DEGRE DANS R : ETUDIANT 3
READCO05.100)A.8.C
IF(A.EQ.0)60TO 1
DRBee2-bean(
IFCD)2.3.4
NR=2
0=SQRT(D)
RI=(=84D)/(2+4)
R28({=B=D)/(2+4)
MRITE(66,200)NR.R1,R2
STOP
RUS=8/(2+2)
NR=1
WRITEC06.300)NR. R
STOP
NR20
WRITE(06.,400) MR
1F(8)5.6.5
R1z=8/A
60 TO 7
1F(C)2.8.2
LEELS]
GOT0 12
100 FORMAT(3E12.4)
200 FORMATC(IS)
300 FORMAT(IS,Et2.4)
400 FORMAT(IS,2E12.4)
0 stop
0 END
115 RUZ=B/(2+A)
OEFINITION NON UTILISEE... ELIMINEZ CETTE ANOMALIE ET SOUMETTEZ LE PROGRAMME DE NOUVEAU

-
CROVORANNOONWOOOOOIroOOSO

COMPILE TIMEZ 2,97 SEC.EXECUTION TIME= 0.79 SEC.

116 A. ADAM AND J.-P. LAURENT

Third program: ‘“The definition RU = —B/(2A) is never used”.

Here the system detects a punch-error, RU instead of R1.

Once this error has been corrected, the graph is constructed by LAURA
without any other diagnostic and the matching with the program model is
possible.

4 0 DISCUSSION EQUATION 2EME DEGRE DANS R : “'CORRIGE’"
0 READ(0S5,11)A,8.C
11 FORMAT(3E12.4)
0 IFCA)S1,50.51
51 Dz=Bre2=LeAr([0 DISCUSSION EQUATICN 2EME DEGRE DANS R : ETUDIANT 3
0 IF(D1,2.3 0 READ(05.100)A.8.C
1 N=0 0 IFC(A,EQ.0)G0T0 1
70 WRITE(06,12)N 0 DSBe#2-fepAn(
12 FORMAT(IS) 0 IF(D)2.3.4
0 60 YO 100 4 NR=2
2 X0=-B/(2#A) 0 D=SQRT(D)
20 N=t 0 R1=(=B+0)/(2#A)
0 WRITE(Q6,13)N,X0 0 R2=(-B-0D)/(2#+h)
13 FORMAT(I5,€E12.4) 0 WRITE(66,200)NR.R1,R2
0 60 TO 100 0 STOP
3 X15(=B=SQRT(D)}/(2+A) 3 R1==-8/(2#%A)
0 X2=(-8+SQRT(D))/(2+A) 7 NR=%
0 N=2 0 WRITE(06.300)NR,RY
0 WRITECQ06.14)N,X1,X2 0 stop
14 FORMAT(IS5,2E12.4) 2 NR=0
0 GO TO 100 12 WRITECQ6,400)NR
50 IF(8)61,60,61 1 IF(8)5,6.5
61 x0=-C/8 6 RY1=~B/A
0 60 TO 20 0 60 YO 7
60 IF(C)1,62,1 5 IF(€)2.8,2
62 N=-1 8 NR=-1
0 60 YO 70 0 6OTO 12
100 sTOP 100 FORMAT(3E12.4)
0 END 200 FORMAT(1S)
300 FORMAT(IS,E12.4)
400 FORMAT(1S,2E12.4)
0 sToOP
0 END
PROGRAMME DE REFERENCE PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME
1 READ A 101 READ A
2 READ B 102 READ B
3 READ C 103 READ C
& TFCA)06.,19.06 104 IFCAY106,121,106
19 IF(8)20.21,20 121 1F(B)123,122,123
21 1F(C)07,22.,07 122 R1=-B/A
22 N=-1 117 PRINT 1
8 PRINT K 118 PRINT R
23 STOP 114 sToP
7 N30 123 1F(E)119.124.119
60TO 8 124 NR==1
20 X0=<C/B 120 PRINT NR
11 PRINT 1 60TO 121
12 PRINT X0 119 NR=0
6oT0 23 60TO 120
6 TF(Bwe2 +AeC*(~4.))07,09,14 106 IF(Ben2 +ArLa{~4,))119,115,109
14 X2E((B#v2 +ASCH (=4,))en0 5-8)/A%0,S 109 WIRTE((B*a2 +AeCa (=4,))ee0, 5=B)/A*0.5
13 x12(=(Bee2, +AeCH(=4,)) %0, 5=B)/A*0.5 110 R2=(-(Ba*2,4A+Co (=4))*¢0 5-B)/A40.5
16 PRINT 2 111 PRINT 2
18 PRINT X2 112 PRINT WiR1
17 PRINT X1 113 PRINT R2
6av0 23 60T0 114
9 X0=8/A%(=0,5) 115 RI1=B/A*(=0,5)
60TO 11 GOTO 117

END END

LAURA: A SYSTEM TO DEBUG PROGRAMS 117

DIAGNOSTICS

B PPN
INSTRUCTION 20 DANS PROGRAMME 1 NON IDENTIFIEE)

INSTRUCTION 122 DANS PROGRAMME 2 NON 10ENTIFIEE }

ERREUR DE BRANCHEMENT PROBABLE : ARC(120,121) AU LIEU DE ARC(120,114))]
CONDITIONS DIFFERENTES SUR LES ARCS ISSUS DES INSTRUCTIONS 19 ET 121 3)

I R e R R

COMPILE TIME= 3.03 SEC,EXECUTION TIME= 7.55 SEC.

(1) R1=-B/A instead of R1=-C/B.
(2) A stop has been forgotten.
(3) Labels 122 and 123 are interchanged.

Example 12. Electric Company Invoices.

For each consumer, the amount to be paid depends on the difference
between the actual meter reading and the precedent one.

The consumption is divided in two sections by a certain limit.

—For the amount consumed up to the limit a first tariff is applied.
—For the rest a second cheaper tariff is applied.

Added to the sum thus obtained is the rent of the meter itself.

On a first card, are punched the price of this rent, the two tariffs and the
limiting amount.

For each consumer there is one card with his consumer number, his pre-
cedent meter reading and the actual one. Print out the consumer number, the
part of the consumption rated at the first tariff, the part rated at the second and
the total amount to be paid.

N.B.: An end of file card contains 0 as consumer number.

c 0 FACTURE E.D.F., = CORRIGE < 0 FACTURE E.D,.F. = ETUDIANT 2
0 READ 1.C,P1,P2,IBORNE 0 READ 1.,CL,Q1,Q2.1IT
1 FORMAT(3F10,2,110) 1 FORMAT(3F10.2.110)

10 READ 11.NUM,NR,IAR 0 READ 2.N.R2Z2,R1

11 FORMAT(3110) 2 FORMAT(110.2F10.0)
0 IF(NUM_EQ,0)STOP 0 IF(N.EC.0)GOTO 10
0 ICONS=NR-IAR 0 IF(R2«R1-1T)3.3.4
0 IFCICONS.GT,IBORNE)GOTOD S 3 M2=0

0 M1=ICONS 0 Mi=R2-R1

0 M2=0 0 60TO §

0 GOTO 6 4 M2=R2-R1-1T

5 M1=IBORNE 0 Mi1z1T

0 M2=TCONS-1BORNE S P1=M1+Q1

6 TOT=Ce+MIepIeM2+P2 0 P2=M2+qQ2

0 PRINT 20,NUM,M1,M2,TOT 0 F=P1+p2+(lL
20 FORMAT(3110,F10.2) 0 PRINT &.N.M1,M2,F
¢ 6070 10 4 FORMAT(3110.F10.2)
0 END 10 sToP

0 END

118 A. ADAM AND J.-P. LAURENT

PROGRAMME DE REFERENCE PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME
1 READ C 101 READ CL
2 READ P1 102 READ @1
3 READ P2 103 READ Q@2
& READ IBORNE 104 READ IT
S READ NUM 105 READ N
6 READ NR 106 READ R2
7 READ [AR 107 READ R1
8 IF(NUMINI1,09,11 108 I1F(N)109.121.109
9 stTOP 121 sToP
11 IF(NR-TAR-IBORNE)13,13,15 109 IF(R2-R1-17)110.,110,112
15 M2=NR~TAR-IBORNE 112 M2=R2=-R1-1I7
14 M1=180RNE 113 Mi=17v
16 TOT=C+P2+«M2+P1+M1 116 FCL+Q2+M2+4Q1+M1
17 PRINT NUM 117 PRINT N
18 PRINT M1 118 PRINT M1
19 PRINT M2 119 PRINT M2
20 PRINT TOT 120 PRINT F
60T0) 6010 121
13 M2=0 110 M2=0
12 M1=NR-IAR 111 M1=R2-RY
GOTO 16 GOTO 116
END END

I e R

VARIABLES IDENTIFIEES

C cL

P1 Q1

P2 Q2

IBORNE IT

NUMK N

NR rR2 #wx+ ERREUR DE GENRE
IAR R1 #«* ERREUR DE GENRE
M1 M1

M2 T4

T07 F

I e R R P Y

DIAGNOSTICS

s« ATTENTION #»*» ERREUR(S) DE GENRE PROBAMLE(S) :
REPORTEZ-YOUS A LA LISTE DES IDENTIFICATIONS DE VARIABLES

R R R AR ARSI AN R R TSR RN RN NN
ERREUR DE BRANCHEMENT PROSABLE : ARC(120,121) AU LIEU OE ARC(120,105)

L R R R A 2 2 2

COMPILE TIME= 3,47 SEC.EXECUTION TIME= 7.07 sec,

The student only computes the amount for the first consumer.

LAURA: A SYSTEM TO DEBUG PROGRAMS

Example 13. Electric Company Invoices.

-—

~ .
COOCCOUVOOOOCC =020

FACTURE E,0.F, - CORRIGE
READ 1,C,P1,P2.180RNE
FORMAT(3F10.2,110)

READ 11,NUM,NR,IAR
FORMAT(3110)
IF(NUM_EQ.0)STQP
ICONS=NR-TAR
IF(ICONS,GT.IBORNE)GOTO §
M1=ICONS

M2=0

GOTO 6

M1=IBORNE
M2=ICONS=-IBORNE
TOT=C+M1+4PTI4M24P2

PRINT 20,NUM,M1.M2,TOT
FORMAT(3110,F10.2)

60TO0 10

END

R e T 2 2 T T 2

PROGRAMME DE REFERENCE

READ C

READ P1

READ P2

READ IBORNE

QEAD NUM

READ NR

READ IAR
TF(NUMIT1T.09. 11
STOP
TF(NR~IAR-IBORNE)12,12.74
M1=TBORNE
M2=NR~IAR-IBORNE
TOT=C+P2+M2+P 1 oM
PRINT NUM

PRINT M1

PRINT M2

PRINT TOT

GOTO S
M1=NR=1AR

M2=0

GOTO 16

END

LA R R TR N T TS

DIAGNOSTICS

PROGRAMME CORRECT : IL CALCULE LES MEMES FONCTIONS QUE LE PROGRAMME DE REFERENCE

R R R R R N R T

0 FACT
0 READ
1 FORM
0 READ
2
0
[}

ow

FORM
IF(N
1=0

0 L=1-
0 IF(L
20 N1=L
0 N2=0
0 GOTO
30 Nt=(
N2=L

URE E.D.F, =ETUDIANT 5
T.X.¥,2,%
AT(3F10.2,110)

2,NC 1.4

AT(3110)

C.EQ.0)60TO0 100

4
~K3»26,20,30

40

=X

0
40 TST+X+Y*N142ZeN2

0 PRINT 90,NC,N1,N2,T
90 FORMAT(3I10,F10.2)

0 coTo
100 sTOP
0 END

L T R R T T

PROGRAMME ETUDIANT REECRIT PAR LE SYSTEME

50

101
102
103
104
105
106
107
108
121
1M
114
115
1146
17
118
119
120

112
113

READ
READ
READ
READ
READ
READ
READ
IF(NCY111,121.111
STOP
TF(1=-J=-K)112,112,114
N1=x

N2=1=J=K
TSX4Z*#N2+Y*N1

PRINT NC

PRINT N1

PRINT N2

PRINT T

GOTO 105

N1=1=J

N2=0

60T0 116

END

e T RN X
o

The useless initialization of T is eliminated by compositions.

COMPILE TIME=

3.08 SECLEXECUTION TIME=

6.12

SEC,

119

120 A. ADAM AND J.-P. LAURENT
3. Further developments and conclusion

The main direction to improve the precision of the diagnostics given by our
system is probably the addition of a theorem prover.

We wanted to study what debugging was possible without using assertions
methods and, consequently, we have not used any theorem prover. Yet the
very strategy of the LAURA system makes it able to generate in a natural way
conjectures that it would be very interesting to prove. As a matter of fact,
LAURA makes only diagnostics of possible errors. It makes one as it detects a
certain difference and the difference itself may produce a question. Let us
consider the Example 5 in Section 2.5.1. After the matching, there remains only
one difference between the model graph and the student graph: A(,I)=1in
the model and A(I, J) =1 in the student graph. Then it is easy to generate the
proposition: “Is the value of J always equal to the value of I at this node?”.
The proof that this conjecture is true may be obtained without more in-
formation than the student graph.

In some cases such as in this example, this method would make the system
able to neglect differences that correspond to a variation without consequences
(in its actual version LAURA prints out a useless warning). In other cases the
conjecture could be proven false. Then the system would print out a diagnostic
of undoubted error. As useful conjectures may be generated easily, a theorem
prover would be an efficient tool to make our system interpret differences
before giving diagnostics.

It must be pointed out that without any more information than the program
model and the student program, some differences cannot be interpreted. It
would need, besides the knowledge of the task the program has to perform, a
great knowledge of the field in which this task has a meaning. For example, we
have seen in Section 2.5.0 about the current example, that after matching,
nodes 8 and 14 remain unidentified in the model graph (Fig. 14).

This difference is very difficult to interpret. If an integer I divides the
integer N, the quotient N/I is also a divisor of N. It is a well-known property in
Arithmetic and the authors of the programs have both used it. They only look
for the divisors less than or equal to VN and for each they add I and N/I at
the same time. In the program model, it was thought that VN may be an
integer. If it is, for the value VN of I, only I must be added (otherwise VN
would be added twice). That is why there is a particular branch coming from
the exit test 7. In the student program such a branch does not exist: the sum of
the divisors is then wrong if N is a square number!! Can we conclude that the
student has made a mistake? Not necessarily. In fact, it depends on whether or
not this difference changes the printed out results, that means whether or not
there are square numbers less than 1000 which are also perfect numbers!
By chance there is the following theorem in Arithmetic: “no integer can be
both a square number and a perfect number”. So we can now conclude that the

LAURA: A SYSTEM TO DEBUG PROGRAMS 121

student program will print out the same result as the model

This example shows that the automatic interpretation of differences some-
times requires a thorough knowledge of the field in which the problem is
formulated. Thus, according to automatic debugging, we must choose between
two possibilities. The first one is to debug programs in various fields, leaving
the user himself to make some difficult interpretations. In our system, this
solution has been selected. The second one is to give a good knowledge of a
specialized field and to debug programs in this field only.

In the latest perspective we meet one of the most important general
problems in Artificial Intelligence at the present time: how to give a great deal
of knowledge to a system and how to use it?

ACKNOWLEDGMENTS

We wish to thank J. Pitrat, Research Director at the C.N.R.S., who leads our work in Artificial
Intelligence for many years. We are indebted to him and to the members of his team for friendly
and efficient aid.

We would also like to thank J. Arsac, Professor at the University P. and M. Curie (Paris VI) for
many useful advices.

REFERENCES

1. Adam, A., Utilisation des Transformations Sémantiques pour la correction automatique des
Programmes, Thése de Doctorat d’Etat, Paris VI (1978).

2. Adam, A. and Laurent, J.P., Décomposition du graphe d’un programme permettant d’étudier
la permutabilité des groupes d’instructions, 2éme Colloque International sur la Programmation,
Paris (April 1976).

3. Adam, A. and Laurent, J.P., Décomposition compléte d’un graphe en fuseaux. Applications au
graphe d’un programme, Annexe commun aux théses d’état. '

4. Arsac, J., Nolin, L., Ruggiu, G. and Vasseur, J.P., Le syst¢tme de programmation structuré

EXEL, Rev. Tech. Thomson-CSF 6 (3) (1974).

. Arsac, J., La construction de programmes structurés (Dunod, Paris, 1977).

. Ashcroft, E., Program proving without tears, Collog. IRIA, Arc et Senans (Juillet 1975).

. Bledsoe, W.W., Non resolution theorem proving, Artificial Intelligence 9 (1) (1977).

. Brand, D., Analytic resolution in theorem proving, Artificial Intelligence 7 (4) (1976).

. Boyer, R.S. and Moore, J.S., Proving theorems about LISP functions, Proc. 3rd IJCAI (1973).

. Burstall, R M. and Darlington, J.A., A system which automatically improves programs, Acta

Informatica (1976).

11. Burstall, R.M. and Darlington, J.A., A transformation system for developing recursive
programs, J. ACM 24 (1) (1977).

12. Chang, C.L., Lee, R.C.T. and Slagle, J.R., A direct method for verifying programs, Heuristic
Laboratory Bethesda Maryland 20014.

13. Chang, C.L., A test oriented method for generating inductive assertions in program
verification, IBM Research Laboratory, San José, CA 95193.

14. Dahl, O.J., Dijkstra, E. and Hoare, C.A R, Structured programming, in: APIC studies on data
processing No. 8 (Academic Press, London, 1972).

15. Dijkstra, E., A constructive approach to the problem of program correctness, BIT 8 (1968).

16. Elspas, B., Green, M.G., Levitt, K.N. and Waldinger, R.J., Research in interactive program
proving techniques, SRI, Meno Park, CA (May 1972).

[==JAN=20 RN e NNV |

—_

122 A. ADAM AND J.-P. LAURENT

17. Flavigny, B., Sur la détection a priori des erreurs dans les programmes, Thése de 3éme cycle,
Paris VI (December 1972).

18. Floyd, R.W., Assigning meanings to programs, in: Proc. Symp. in Applied Mathematics, Vol. 19
(Am. Math. Soc. Providence, RI, 1967).

19. Floyd, R.W. and Knuth, D.E., Notes on avoiding GO TO statements. Information Processing
Ler. 1 (1971).

20. Gerhardt, S.L., Knowledge about programs. A model and case study, IEEE Conf. on Reliable
Software (1975).

21. Hearn, A.C., REDUCE II. A system and language for algorithm manipulations, Proc. of 2nd
Symp. on Symbolic and Algebraic Manipulations, University of Utah (1971).

22. Hoare, C.A.R., An axiomatic basis for computer programming, Comm. ACM 12 (10) (1969).

23. Hoare, C.A.R., Proof of a program FIND, Comm. ACM 14 (1) (1971).

24. Katz, S.M. and Manna, Z., A heuristic approach to program verification, 3rd IJCAI (1973).

25. Katz, S.M. and Manna, Z., Logical analysis of programs, Comm. ACM 19 (4) (1976).

26. King, J., A program verifier, Thesis, Carnegie-Mellon University, Pittsburg (1969).

27. Knuth, D.E., Structured programming with GO TO statements, ACM Computing Surveys
(December 1974).

28. Laurent, J.P., Un syst¢me qui met en évidence des erreurs sémantiques dans les programmes,
Thése de Doctorat d’Etat, Paris VI (1978).

29. Lee, R.C.T,, Chang, C.L. and Waldinger, R.J., An improved program synthesis and its
correctness, Comm. ACM 17 (4) (1974).

30. Loveman, D., Program improvement by source to source transformation, J. ACM 24 (1)
(1977).

31. Malloy Brown, F., Doing arithmetic without diagrams, Artificial Intelligence 9 (2) (1977).

32. Martin, W.A. and Fateman, R.J., The MACSYMA system, Proc. of 2nd Symp. on Symbolic and
Algebraic Manipulation, University of Utah (1971).

33. Manna, Z., The correctness of programs, J. Comput. System. Sci. 3 (2) (1969).

34. Manna, Z. and Pnueli, A., Axiomatic approach to total correctness of programs, Stanford
Computer Science Dept. CS 73-382 (1973).

35. Manna, Z. and Waldinger, R.J., Knowledge and reasoning in program synthesis, Artificial
Intelligence 6 (2) (1975).

36. Naur, P., Proof of algorithms by general snapshots, BIT 6 (1966).

37. Pastre, D., Automatic theorem proving in set theory, Artificial Intelligence 10 (1) (1978).

38. Ruth, G.R., Analysis of algorithm implementations, Thesis, MIT (May 1974).

39. Ruth, G.R,, Intelligent program analysis, Artificial Intelligence 7 (1) (1976).

40. Standish, T.A., Harriman, D.C., Kibler, D.F. and Neighbors, J.M., The Irvine Program
Transformation Catalogue, Dept. of Information and Computer Sciences, University of Cali-
fornia, IRVINE (1976).

41. Waldinger, R.L. and Levitt, K.N., Reasoning about programs, Artificial Intelligence 5 (3)
(1974).

42. Weigbreit, B., Complexity of synthesizing inductive assertions, J. ACM 24 (3) (1977).

43. Wertz, H., Un systéme de compréhension, d'amélioration et de correction de programmes
incorrects, Thése de 3éme cycle, Paris VI (1978).

Received 5 March 1979

