
Compulers Educ. Vol. 20, No. 4, pp. 31 I-314, 1993
Printed in Great Britain. All rights reserved

0360-I 3 I5/93 $6.00 + 0.00
Copyright G 1993 Pergamon Press Ltd

STRUCTURED PROGRAMMING TECHNIQUES: A STUDY
OF RELATIVE COMPLEXITY-SOME PROGRAMMING

CONSIDERATIONS

M. ER

ICS Department, KFUPM, Box 1779, Dhahran 31261, Saudi Arabia

(Received 14 October 1992; accepted 12 April 1993)

Abstract-This paper examines a previous empirical study on the complexity of structured programming
techniques and finds that all five structured solutions contain programming errors, although they are all
based on Nassi-Schneiderman diagrams. The programming errors, of course, invalidate the previous
empirical results on the complexity of structured programming techniques. An elegant programming
solution to the multi-level control break reporting logic problem is then presented.

INTRODUCTION

In a recently published paper fl], Headrick and Fowler report an empirical study investigating the
complexity of some structured programming techniques. The programming problem chosen is
known as the multi-level control break reporting logic problem, which has something to do with
multi-conditional reporting in a data processing setting. It is somehow believed that different
structured programming techniques when applied to solving the same programming problem using
different nesting of if-statements and Ioops may yield different levels of complexity that affect
program comprehension and software maintainability. If their theory is correct, it implies that it
is better to teach students good structured programming techniques that yield least level of
complexity so that they can inherit good programming styles.

Headrick and Fowler[l] investigated 35 COBOL programming textbooks on their solutions to
the multi-level control break reporting logic problem and classified them as follows:

Technique A: un-nested if-statement logic;
Technique B: nested if-statement logic;
Technique C: nested perform-loop logic.

They then added two more structured programming techniques of their own:

Technique D: perform-loop with a nested if-statement logic;
Technique E: if-statement with a nested perform-loop logic.

Technique E was found to be significantly more complex than other techniques at pre-test, and
was subsequently deleted. In the actual test, a group of novice programmers were chosen as
subjects, and their perceived levels of complexity of the four remaining techniques are listed below
in increasing order of complexity:

(1) A
(2) B, D
(3) C.

However, what comes as a surprise is that Headrick and Fowler[l] simply refused to accept the
empirical test results which clearly suggest that they should switch over to Technique A rather than
continue using Technique C in teaching. In fact, they stated quite unambiguously:

“Not having totally overcome our pre-investigation biases, we are not quite prepared
to merely accept the results presented in this paper and begin teaching un-nested if-test
(i.e. Technique A) control break logic.” [Adapted from [l], comments in parentheses
added.]

311

312 M. ER

More disturbingly, we find that all of the five NassiiSchneiderman diagrams which employ
structured programming techniques are wrong. We are obliged to point out the programming
errors so that they are avoided in subsequent surveys of the same kind. This is the main purpose
of this paper. The unfortunate errors, of course, nullify the empirical test results.

The second purpose of this paper is to present an elegant programming solution which is believed
to be superior than any known solution to the multi-level control break reporting logic problem.

THE MULTI-LEVEL CONTROL BREAK REPORTING LOGIC PROBLEM

For the benefit of the readers who do not know what the multi-level control break reporting
logic problem is, we state the problem succinctly below.

An input file consists of a set of sales records. Each sales record consists of salesman name
(and/or salesman number), customer name (and/or customer number), and sales information, such
as item name, unit price, volume, and total price. The object is to print a report listing each sales
record in detail, a summary total of each customer, and a summary total of each salesman.

For the purpose of this exercise, we are interested in the control logic, and therefore the input
file may be simplified as follows:

salesman 1, customer 1, sales information
salesman 1, customer 1, sales information
salesman 1, customer 2, sales information
salesman 1, customer 2, sales information
salesman 2, customer 3, sales information
salesman 2, customer 3, sales information

It is further assumed that the input file is sorted using salesman as the primary key, and customer
as the secondary key. An implicit assumption is that each customer is handled by one and only
one salesman.

BASIC ASSUMPTIONS AND PROGRAMMING ERRORS

For each of the solutions reported in [l], the following basic assumptions are made, although
they were not stated previously.

(9
(ii)

(iii)

(iv)

(v)

(vi)

An initial read is performed in program initialization.
The previous salesman is initialized to the current salesman.
The previous customer is initialized to the current customer.
When a data record is read, the current record becomes the previous record, and the new data
record becomes the current record. This means previous salesman, current salesman, previous
customer, current customer are updated accordingly.
When an end of file is reached, arbitrary values are assigned to current salesman and current
customer such that current salesman # previous salesman, and current customer # previous
customer.
The calculations of total sales for each customer and each salesman are irrelevant to the
control logic and are ignored.

Although assumptions (ii) and (iii) are un-natural, there is nothing wrong with them.
Having said that, we now discuss each of the five programming techniques reported in terms of

the Nassi-Schneiderman diagram, and point out its errors, if any.

Technique A: un-nested if-statement logic (Fig. I of [I])

At the end of a subsequence of a salesman’s sales records, the customer total line is printed twice,
which is wrong. This is because current salesman # previous salesman*current customer #
previous customer. Another error occurs toward the end of the diagram: “Print a customer total
line” appears twice-the second one should be changed to “Print a salesman total line”.

Structured programming techniques 313

Table I. A summary of programming errors of five structured
programming techniques

Technique Input file not empty input tile empty

A wrong Prints garbage
B Correct but clumsy Prints garbage
c Infinite loop Terminates correctly
D Infinite loop Terminates correctly
E Wrone Prints narbaac

Finally, if the print file is empty to begin with, the program is wrong as there is no “customer total”
nor “salesman total” to print but the program still prints them as garbage.

Technique B: nested if-statement logic (Fig. 2 of [I])

Again, if the input file is empty to begin with, this program still prints “customer total” and
“salesman total” which are just garbage. Furthermore, we observe that “Print a customer total
line” appears twice in the nested if-statement-there is nothing wrong with these but that they are
simply signs of clumsiness.

Technique C: nested perform-loop logic (Fig. 3 of [l])

In the innermost perform-loop, the second conjunct “current salesman = previous salesman” is
redundant because current customer = previous customer S. current salesman = previous sales-
man. Even so, the program as it stands is wrong, as it is trapped in an infinite loop when the
following situation occurs:

Previous record: salesman I, customer 1, sales information
Current record: salesman 1, customer 2, sales info~ation.

In other words, the condition of the innermost loop is always false (because current cus-
tomer # previous customer), but the condition of the middle loop is always true (because current
salesman = previous salesman); there is no “Read a data record” statement to alter the situation,
hence the infkrite loop.

I Program initialization m-7

I While more data records I

I I Print a detail Line I

I I Read a data record I

I Program tem1ination I
Fig. 1. An elegant programming solution presented in a Nassi-Schneiderman diagram for solving the

multi-level control break reporting logic problem.

314 M. ER

Technique D: perform-loop with a nested if-statement logic (Fig. 4 of [1])

Apart from the clumsiness of having two “Print a customer total line” statements, the program
is also wrong. It is trapped in an infinite loop when the following situation occurs:

Previous record: salesman 1, customer 2, sales information
Current record: salesman 2, customer 3, sales information.

In other words, the condition of the innermost loop is always false (because current sales-
man # previous salesman), but the input file is not depleted yet, implying the condition of the
outermost loop is always true, hence the infinite loop. Again, there is no “Read a data record”
statement to alter the situation.

Technique E: if-statement with a nested perform-loop logic (Fig. 5 of [I])

The program as it stands is wrong. The two arms of the if-statement should be interchanged.
Beside the clumsiness of having two “Print a salesman total line” statements, we observe that the
program is also incorrect when the input file is empty to begin with-it prints a salesman total line
which contains garbage.

We summarize all five techniques and their programming errors in Table 1. To our disappoint-
ment, none of the programs using the structured programming techniques is correct.

AN ELEGANT PROGRAMMING SOLUTION

We now present an elegant programming solution to the multi-level control break reporting logic
problem using the Nassi-Schneiderman diagram as shown in Fig. 1. It is not based on assumptions
(ii) and (iii), but relies on assumption (v).

Its elegance may be appreciated as follows:

(a) The previous salesman and previous customer need not be initialized to some artificial values.
(b) If the input file is empty to begin with, the program terminates correctly without printing

garbage.
(c) No duplication of statement nor redundancy may be found in the Nassi-Schneiderman

diagram.
(d) A test is carried out before printing a total line. This applies both to a customer total line and

a salesman total line.
(e) The solution is transparent and straightforward with only one loop.

CONCLUDING REMARKS

Out of five structured programming techniques which purport to solve the multi-level control
break reporting logic problem, none of them has been found to be free of programming
errors-either it does not terminate on a legitimate input file, or it prints garbage on an empty input
file.

Fortunately, we are happy to report an elegant programming solution to the multi-level control
break reporting logic problem. Its logic is simple, transparent and pleasing.

It is our contention that some “structured” programs are complex and hard to understand
because their logics are wrong or entangled as Headrick and Fowler’s paper[l] shows.

Acknowledgement-The use of KFUPM’s facilities in undertaking this research and in preparing this paper is gratefully
acknowledged.

REFERENCE

I. Headrick R. W. and Fowler G. C., Structured programming techniques: a study of relative complexity. Computers Educ.
12, 539-544 (1988).

