
Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD

Artificial Neural Networks
Lecture Notes

Stephen Lucci, PhD

Part 6

About this file:

��If you have trouble reading the contents of this file, or in case of transcription errors, email
gi0062@bcmail.brooklyn.cuny.edu

��Acknowledgments:
Background image is from http://www.anatomy.usyd.edu.au/online/neuroanatomy/tutorial1/tutorial1.html (edited)
at the University of Sydney Neuroanatomy web page. Mathematics symbols images are from metamath.org's
GIF images for Math Symbols web page. Other image credits are given where noted, the remainder are native to
this file.

Contents

o Neural Net Paradigms - Review and Clarification
��McCulloch-Pitts Networks
��Perceptron Learning Rule
��Delta Rule
��Backpropagation

Neural Net Paradigms - Review and Clarification

McCulloch-Pitts Networks

o Binary signals - both input and output
o Directed, unweighted edges of excitatory or inhibitory (marked with a small circle)

inputs.
o Threshold value .
o inputs x1, x2, ... , xn through n excitatory edges and

y1, y2, ... , ym through m inhibitory edges.
o if m >= 1 and at least one of the signals y1, y2, ... ,

ym is the 1, the unit is inhibited and the output is 0.

o Otherwise, the total excitation = x1 + x2 + ... + xn is c
and compared with the threshold

omputed
.

If >= , then unit fires a 1
If < , then output = 1

Page 1

mailto:gi0062@bcmail.brooklyn.cuny.edu
http://www.anatomy.usyd.edu.au/online/neuroanatomy/tutorial1/tutorial1.html
http://www.anatomy.usyd.edu.au/online/neuroanatomy/index.html
http://metamath.flatline.de/symbols/symbols.html

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
o Example: The NOR Function

x1 x2 xi NOR
0 0 0 1
0 1 - 0
1 0 - 0
1 1 - 0

Perceptron Learning Rule

o Weight Updates:

 ' = + (t - y) , or
 = (t - y)

where is the learning rate, t is the target, y is the output, and is the input vector (equivalent to .)

 wi = (t - y)vi

x1 x2 NOR
0 0 1
0 1 0
1 0 0
1 1 0

with i = 1 to n+1 where wn+1 = and vn+1 = -1 , always.

o Example:
Compute NOR function using the Perceptron Learning Rule

Let initial weights be w1 = 0.1, w2 = 0.0, = 0.2, and learning rate = 0.5.

x1 x2 w1 w2 a y t (t-y) w1 w2

0
0
1
1

0
1
0
1

0.1
0.1
0.1
0.1

0.0
0.0
-0.5
-0.5

0.2
-0.3
0.2
0.2

0
0

0.1
-0.4

0
1
0
0

1
0
0
0

0.5(1-0)=0.5
0.5(0-1)=-0.5
0.5(0-0)=0.0
0.5(0-0)=0.0

0.0
0.0
0.0
0.0

0
-0.5
0.0
0.0

-0.5
0.5
0.0
0.0

0
0
1
1

0
1
0
1

0.1
0.1
0.1
-0.4

-0.5
-0.5
-0.5
-0.5

0.2
-0.3
-0.3
0.2

0
-0.5
0.1
-0.9

0
0
1
0

1
0
0
0

0.5(1-0)=0.5
0.5(0-0)=0.0
0.5(0-1)=-0.5
0.5(0-0)=0.0

0.0
0.0
-0.5
0.0

0.0
0.0
0.0
0.0

-0.5
0.0
0.5
0.0

0
0
1
1

0
1
0
1

-0.4
-0.4
-0.4
-0.4

-0.5
-0.5
-0.5
-0.5

0.2
-0.3
-0.3
-0.3

0.0
-0.5
-0.4
-0.9

0
0
0
0

1
0
0
0

0.5(1-0)=0.5
0.5(0-0)=0.0
0.5(0-0)=0.0
0.5(0-0)=0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

-0.5
0.0
0.0
0.0

0
0
1
1

0
1
0
1

-0.4
-0.4
-0.4
-0.4

-0.5
-0.5
-0.5
-0.5

-0.3
-0.3
-0.3
-0.3

0.0
-0.5
-0.4
-0.9

1
0
0
0

1
0
0
0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

No changes in the last epoch.

o Final weights:

 w1 = -0.4
 w2 = -0.5
 = -0.3

Page 2

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
o Hence

 slope m = -w1/w2 = - (-0.4 / -0.5) = -4/5
 y-intercept b = /w2 = -0.3 / -0.5 = 3/5
 y = mx + b (i.e., x2 = mx1 + b)
 y = -4/5 x + 3/5

 x2 = -4/5 x1 + 3/5

x1 x2

0 3/5

3/4 0

Delta Rule

o Error Function:
 E = E(w1, w2, ... , wn+1)
(where is the augmented weight vector.)

o The optimal weight vector is found by minimizing this function by gradient descent
 wi = - (E/ wi)

o One attempt at a suitable error function:
 ep = 1/2 (tp - yp)2
ap is smooth and continuous. However, output depends on ap via the discontinuous
step function.

o One remedy:
 ep = 1/2 (tp - ap)2
When using the augmented weighted vector, the output changes as the activation
changes sign. i.e.,
 a >= 0 y = 1
One choice that works for target values {-1, 1} - bipolar outputs.

o If the whole training set is presented, we can obtain the true gradient
 E/ wi
(batch training).

o This is computationally intensive.
o Therefore, we adapt the weights based on the presentation of each pattern

individually.

Page 3

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
o i.e., we present the net with a pattern p, evaluate ep/ wi , and we take this as an

estimate of the true gradient E/ wi
 ep = 1/2 (tp - ap)2
where
 ap = w1xp

1 + w2xp
2 + ... + wn+1xp

n+1

 ep/ wi = -(tp - ap)xi
p

o Hence,
 wi = - (E/ wi)
 = - (ep/ wi)

 wi = (tp - ap)xi
p

Careful with the signs !
o Pattern training regime:

Weight changes are made after each vector presentation.
o Partial Derivatives

��Function of two variables.
��Let f be a function of x and y;

 f(x,y) = 3x2y - 5xcos y

��The partial derivative of f with respect to x is the function f/ x obtained by
differentiating f with respect to x, treating y as constant.
 f(x,y)/ x = 6xy - 5cos y
Alternate notation , fx(x,y).

��The partial derivative of f with respect to y is the function f/ y obtained by
differentiating f with respect to y, treating x as constant.
 fy(x,y) or f(x,y)/ y = 3x2 + 5 xsin y

o Geometric Interpretation

f(x,y)/ x is the slope of the surface f(x,y) = 3x2y - 5xcos y at the point P(xy, f(x,y))
in the x-direction.

o An Example Using the NOR Function

Train a two-input TLU with initial weights w1 = 0.1, w2 = 0 , = 0.2, and learning rate
= 0.25

In the table below note that x3 is always -1 and is input to and is used in the
activation column a.
Note also that (tp - ap) is refered to as the delta, or , so the the term (tp - ap) is
denoted in the table as

x1 x2 x3 w1 w2 a t w1 w2
0
0
1
1

0
1
0
1

-1
-1
-1
-1

0.1
0.1
0.1

-0.131

0.0
0.0

-0.275
-0.275

0.2
-0.1

+0.175
0.406

-0.2
0.1

-0.075
-0.812

1
-1
-1
-1

1.2/4 = 0.3
-1.1/4 =-0.275

-0.925/4 =-0.231
-0.47

0.0
0.0

-0.231
-0.47

0
-0.275

0.0
-0.47

-0.3
0.275
0.231
0.47

0 0 -1 -0.601 -0.745 0.876 -0.876 1 1.876/4 = 0.469 0 0

Page 4

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD

o
o Suppose first that the activation is very large (or small) so that the output is close to

1 or 0, respectively.
Graph is flat and hence gradient s'(a) is very small.
Activation close to threshold implies that s'(a) is large.

o alternately - we may use yp instead of ap.
Then,
 wi = s'(a)(tp - ap)xi

p.
o Not surprising that s'(a) appears here - Any changes in the weights alter the output

(and hence the error) via the activation.
The effect of any such changes depends thus on the sensitivity of the output with
respect to ...(illegible)

Backpropagation

o Layered Network

 n input sites
 k hidden units
 m output units

fig 7.17 Notation for the "three-layer" network

o The weight between input site i and hidden unit j: wij
(1)

o The weight between hidden unit i and output unit j: wij
(2)

o The bias, - is implemented as the weight of an additional edge.

Page 5

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
o There are (n+1) * k weights between input sites and hidden units

and (k+1) * m between hidden and output units. Thus,

1 the (n+1) * k matrix with component wij
(1) at the ith row and jthcolumn.

2 the (k+1) * m matrix with components wij
(2).

o The n-dimensional input vector = (o1, ... , on)
is extended to: = (o1, ... , on, 1) .

o The excitation netj of the jth hidden unit is given by

o The activation function is a sigmoid and the output oj

(1) is

o Excitation of all units in the hidden layer = 1
(1) the vector whose components are the outputs of hidden units

 (1) = s(1) .

o Excitation of units in the output layer is computed using (1) = (o1
(1), ... , ok

(1), 1) .
o The output of the network is the m-dimensional vector

 (2) = s(IMG src="img06/ohat.gif">(1)
2) .

Steps of the Algorithm

o The following schematic is for a single input-output pair (,)

fig 7.18 Extended multilayer network for the computation of E (p.164)

o The error function for p input-output examples - we would need p copies of the
above network.

Page 6

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
o The weights for the network are chosen randomly.

The Backpropagation Algorithm

��i) Feed-forward Computation
��ii) Backpropagation to the output layer
��iii) Backpropagation to the hidden layer
��iv) Weight Updates.

o The algorithm is stopped when the value of the error function has become sufficiently
small.

o First Step: Feedforward Computation

The vector is presented to the network.
The vectors (1) and (2) are computed and stored.
The evaluated derivatives of the activation functions are also stored at each unit.

o Second Step: Backpropagation to the Output Layer

We are looking for the first set of partial derivatives E / wij
(2)

fig 7.19 Backpropagation path up to output unit j

From this path, we can collect all the multiplicative terms which define the backpropagated error j
(2)

Recall that d/dx s(x) = e-x / (1+e-x)2 = s(x)(1 - s(x)). Thus, ...

 j
(2) = oj

(2)(1 - oj
(2))(oj

(2) - tj)
and the partial derivative we are looking for is

 E / wij
(2) = [oj

(2)(1 - oj
(2))(oj

(2) - tj)]oi
(1)

 = j
(2)oi

(1)
o N.B. For this last step we consider wij

(1) to be a variable and its input oi
(1) a constant.

o The general situation during the backpropagation algorithm:

Page 7

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
At the input side of the edge with weight wij we have oi

(1) and at the output side , the
backpropagated error j

(2) .

o Third Step: Backpropagation to the Hidden Layer

We want to compute E / wij
(1).

Each unit j in the hidden layer is connected to each unit q in the output layer with an
edge of weight wjq

(2) for q = 1, ... , m.

The backpropagated error up to unit j in the hidden layer must be computed taking into
account all possible backward paths as shown:

The backpropagated error is

 j
(1) = oj

(1)(1 - oj
(1)) wjq

(2) q
(2)

The partial derivative we are looking for:

 E/ wij
(1) = j

(2)oi.

Page 8

Artificial Neural Networks Lecture Notes Part 6 Stephen Lucci, PhD
o Fourth Step: Weight Updates

��After computing all partial derivatives, the network weights are updated in the
negative gradient direction.

��A learning constant y defines the step length of the correction.
��The corrections for the weights are given by:

 wij
(2) = -yoi

(1) (2) , for i = 1, ... , k+1 and j = 1, ... , m

and
 wij

(1) = -yoi j
(2) , for i = 1, ... , n+1 and j = 1, ... , k

with the convention that:
 on+1 = ok+1

(1) = 1.
��Important: Corrections are made to the weights only after the backpropagated

error has been computed for all units in the network.

More Than One Training Pattern

o In the case p > 1 input-output patterns, an extended network is used to compute the
error function for each of them separately.

o The weight corrections are computed for each pattern yielding for wij
(1) the

corrections:

 1wij
(1) , 2wij

(1) , ... , pwij
(1)

o The necessary updates in the gradient direction is then:

 wij
(1) = 1wij

(1) + 2wij
(1) + ... + pwij

(1)
o (Batch or offline updates are rather expensive as a training set may consist of

thousands of patterns.)
o Often, however, the weight updates are made sequentially after each pattern

presentation
o (online training) more efficient
o Here, the corrections do not exactly follow the negative gradient direction. This adds

some noise to the gradient direction - can help to prevent falling into shallow local
minima of the error function.

o If the training patterns are selected randomly, the search direction oscillates around
the exact gradient direction, and, on average, the algorithm implements a form of
descent in the error function.

Page 9

	Artificial Neural Networks�Lecture Notes
	Stephen Lucci, PhD
	Part 6
	Contents

	Neural Net Paradigms - Review and Clarification
	
	
	
	fig 7.17 Notation for the "three-layer" network
	fig 7.18 Extended multilayer network for the computation of E (p.164)
	fig 7.19 Backpropagation path up to output unit j

