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1 The Bolzano—Weierstrass theorem

Let N ={1,2,3,...} be the set of natural numbers, and let R be the set of reals.

Definition 1.1. A sequence of natural numbers is a function 7 : N — N. 7 is called increasing if
m(n+1) > w(n) for all n € N. A sequence of reals is a function f: N — R, a subsequence g of f is
a composition f ox where 7 : N — N is increasing.

In common parlance, by a sequence of reals one means an infinite list of real numbers a1, as, ag,
a4, as, ag, a7 as, ag, a1, 411, - - -, and by a subsequence one means an infinite list containing only
some of these numbers, arranged in the same order; for example as, a3, as, a7, as, aig, a11, --- iS &
subsequence. In the sense of the above definition, one can take f(n) = a, and w(1) = 2, 7(2) = 3,
w(3) =5, 7(4) =7, n(5) = 8, m(6) = 10, 7(7) = 11, .... Then, for the above subsequence, one has
g=fom.

Lemma 1.1. If 7 is an increasing sequence of integers then w(n) > n for all n € N.

Proof. We use induction of n. For n = 1, we clearly have m(n) > n since m(n) € N. If 7(n) > n for
some n, then 7(n + 1) > w(n) >n,so m(n+1) > n+ 1. O

If f: N — R is a convergent sequence of reals, write

lim f 4 Jim f(n).

n—oo

We have

Lemma 1.2. If f is a convergent sequence of reals and g is a subsequence, them lim g = lim f.

*Written for the course Mathematics 4201 when substituting for Diogo Pinheiro at Brooklyn College of CUNY.



Proof. Write s = lim f. Then, for every € > 0, there is an N € N such that |f(n) — s| < € for every
n > N. Since we then have w(n) > n > N by Lemmall.1] we also have |g(n) —s| = |f(7m(n))—s| < e
for every n > N. Hence, indeed, lim g = s. O

As an example, if 0 < a < 1, then the sequence f defined as f(n) = a™ for n € N is convergent,
since it is a bounded decreasing sequence. The sequence g defined as g(n) = a"*! (n € N) is a
subsequence of f; indeed, g = f o7 where m(n) = n + 1 for all n € N. Hence, lim g = lim f, that is,

lim ¢"*! = lim a”.
n—oo n—oo

This equation was the key in showing that lim, ., a™ = 0.
Theorem 1.1. If {a,}22, is a sequence of reals, then it has a monotone subsequence.

Proof. Let
M ={n eN: for every n’ > n we have a,y > an}.

If M is infinite, then the sequence (a,, : n € M) is strictly increasing. If M is finite, let n; > max M.
Let ny > ny be such that a,, < an,; there is such an ng, since n; ¢ M. Let n3 > ng be such that
an, < an,; there is such an ng, since ng ¢ M. Continuing this way, if nj has been selected for k > 1,
let ngq1 > ny be such that ay, ., < ay,; there is such an ng 1, since ng ¢ M. In this way we found

a subsequence {a,, }7°, of {a,}32, that is decreasing in the wider sense. O

The following result is known as the Bolzano-Weierstrass theorem (the links are clickable, and
lead to the Wikipedia pages of the authors of the result).

Corollary 1.1. Every bounded sequence of reals has a convergent subsequence.

Proof. By the preceding theorem, take a monotone subsequence of the given sequence. Since a
bounded monotone sequence is convergent, this subsequence is convergent. O

Definition 1.2. If {a,}52, is a sequence of reals then

(1) liminf a, af inf{z : x > a,, for infinitely many values of n}
n—oo
For a set S of reals, if S is empty we put inf S = 400, and if S is unbounded from below we put
inf S = —oo. If S is nonempty and bounded from below then it is knows that inf S € R. In case the
sequence {a,}>2 ; is bounded, then the set

(2) S={z:z>a, forinfinitely many values of n}

is nonempty and bounded from below, and so in this case liminf, ,,, =inf S € R.
The next theorem supplies another proof of the Bolzano—Weierstrass theorem.

Theorem 1.2. If {a,}>2 is a bounded sequence of reals then if has a subsequence that converges
to liminf,, o a,.

This theorem was stated toward the end of the class; I tried to rush through the proof, but I
made some mistakes. What follows is a corrected proof.
The proof of his theorem relies on the next lemma:

Lemma 1.3. Let {a,}52 be a bounded sequence of reals, and let s = liminf,, o, a,. Let € > 0 be
arbitrary. Then the interval (s — €, s + €) contains a,, for infinitely many values of n.


https://en.wikipedia.org/wiki/Bernard_Bolzano
https://en.wikipedia.org/wiki/Karl_Weierstrass

Proof. Let S be the set defined by formula (2). Then S is nonempty, bounded, and s = inf S. We
have s —e < inf S, so s —e ¢ S. Hence, there are only finitely many values of n for which a,, < s—e.
On the other hand, s + € > inf S, so s + € is not a lower bound of S. Hence there is an = € S for
which z < s + €. Therefore, we have = > a,, for infinitely many values of n. Thus, a fortiori,*! we
have s 4+ € > a, for infinitely many values of n. As we saw just before, for only finitely many of
these values of n do we also have s — € > a,,. So, indeed, we have a,, € (s — €, s + €) for infinitely

many values of n. O

Proof of Theorem 1.2. Write s = liminf,, .., a,. Using the lemma just proved, let n; be such that
an, € (s —1,s+1). Let ng > ng be such that a,, € (s —1/2,s+1/2). If for £ > 1 we have selected
Ng—1, let ng > ng_q be such that a,, € (s —1/k,s+1/k). Then, clearly, the subsequence {a,, }32,
of {a,}$2 converges to s. O

There is more about the Bolzano—Weierstrass theorem on pp. 23-24 (pdf pp. 29-39) in my
notes (a clickable link) Supplementary Notes on Introduction to Analysis by Maxwell Rosenlicht,
using various other techniques for the proof.

L-1For even stronger or greater reason (Latin)


http://www.sci.brooklyn.cuny.edu/~mate/anl/analysis.pdf
http://store.doverpublications.com/0486650383.html

	Contents
	The Bolzano–Weierstrass theorem

