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1 The Bolzano–Weierstrass theorem

Let N = {1, 2, 3, . . .} be the set of natural numbers, and let R be the set of reals.

Definition 1.1. A sequence of natural numbers is a function π : N → N. π is called increasing if
π(n+ 1) > π(n) for all n ∈ N. A sequence of reals is a function f : N → R, a subsequence g of f is
a composition f ◦ π where π : N → N is increasing.

In common parlance, by a sequence of reals one means an infinite list of real numbers a1, a2, a3,
a4, a5, a6, a7 a8, a9, a10, a11, . . . , and by a subsequence one means an infinite list containing only
some of these numbers, arranged in the same order; for example a2, a3, a5, a7, a8, a10, a11, . . . is a
subsequence. In the sense of the above definition, one can take f(n) = an and π(1) = 2, π(2) = 3,
π(3) = 5, π(4) = 7, π(5) = 8, π(6) = 10, π(7) = 11, . . . . Then, for the above subsequence, one has
g = f ◦ π.

Lemma 1.1. If π is an increasing sequence of integers then π(n) ≥ n for all n ∈ N.

Proof. We use induction of n. For n = 1, we clearly have π(n) ≥ n since π(n) ∈ N. If π(n) ≥ n for
some n, then π(n+ 1) > π(n) ≥ n, so π(n+ 1) ≥ n+ 1.

If f : N → R is a convergent sequence of reals, write

lim f
def
= lim

n→∞

f(n).

We have

Lemma 1.2. If f is a convergent sequence of reals and g is a subsequence, them lim g = lim f .
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Proof. Write s = lim f . Then, for every ǫ > 0, there is an N ∈ N such that |f(n)− s| < ǫ for every
n > N . Since we then have π(n) ≥ n > N by Lemma 1.1, we also have |g(n)−s| = |f(π(n))−s| < ǫ
for every n > N . Hence, indeed, lim g = s.

As an example, if 0 < a < 1, then the sequence f defined as f(n) = an for n ∈ N is convergent,
since it is a bounded decreasing sequence. The sequence g defined as g(n) = an+1 (n ∈ N) is a
subsequence of f ; indeed, g = f ◦ π where π(n) = n+ 1 for all n ∈ N. Hence, lim g = lim f , that is,

lim
n→∞

an+1 = lim
n→∞

an.

This equation was the key in showing that limn→∞ an = 0.

Theorem 1.1. If {an}
∞

n=1 is a sequence of reals, then it has a monotone subsequence.

Proof. Let
M = {n ∈ N : for every n′ > n we have an′ > an}.

If M is infinite, then the sequence 〈an : n ∈ M〉 is strictly increasing. If M is finite, let n1 > maxM .
Let n2 > n1 be such that an2

≤ an1
; there is such an n2, since n1 /∈ M . Let n3 > n2 be such that

an3
≤ an2

; there is such an n3, since n2 /∈ M . Continuing this way, if nk has been selected for k ≥ 1,
let nk+1 > nk be such that ank+1

≤ ank
; there is such an nk+1, since nk /∈ M . In this way we found

a subsequence {ank
}∞
k=1

of {an}
∞

n=1 that is decreasing in the wider sense.

The following result is known as the Bolzano–Weierstrass theorem (the links are clickable, and
lead to the Wikipedia pages of the authors of the result).

Corollary 1.1. Every bounded sequence of reals has a convergent subsequence.

Proof. By the preceding theorem, take a monotone subsequence of the given sequence. Since a
bounded monotone sequence is convergent, this subsequence is convergent.

Definition 1.2. If {an}
∞

n=1 is a sequence of reals then

(1) lim inf
n→∞

an
def
= inf{x : x ≥ an for infinitely many values of n}

For a set S of reals, if S is empty we put inf S = +∞, and if S is unbounded from below we put
inf S = −∞. If S is nonempty and bounded from below then it is knows that inf S ∈ R. In case the
sequence {an}

∞

n=1 is bounded, then the set

(2) S = {x : x ≥ an for infinitely many values of n}

is nonempty and bounded from below, and so in this case lim infn→∞ = inf S ∈ R.
The next theorem supplies another proof of the Bolzano–Weierstrass theorem.

Theorem 1.2. If {an}
∞

n=1 is a bounded sequence of reals then if has a subsequence that converges

to lim infn→∞ an.

This theorem was stated toward the end of the class; I tried to rush through the proof, but I
made some mistakes. What follows is a corrected proof.

The proof of his theorem relies on the next lemma:

Lemma 1.3. Let {an}
∞

n=1 be a bounded sequence of reals, and let s = lim infn→∞ an. Let ǫ > 0 be

arbitrary. Then the interval (s− ǫ, s+ ǫ) contains an for infinitely many values of n.

2

https://en.wikipedia.org/wiki/Bernard_Bolzano
https://en.wikipedia.org/wiki/Karl_Weierstrass


Proof. Let S be the set defined by formula (2). Then S is nonempty, bounded, and s = inf S. We
have s− ǫ < inf S, so s− ǫ /∈ S. Hence, there are only finitely many values of n for which an ≤ s− ǫ.
On the other hand, s + ǫ > inf S, so s + ǫ is not a lower bound of S. Hence there is an x ∈ S for
which x < s+ ǫ. Therefore, we have x ≥ an for infinitely many values of n. Thus, a fortiori,1.1 we
have s + ǫ > an for infinitely many values of n. As we saw just before, for only finitely many of
these values of n do we also have s − ǫ ≥ an. So, indeed, we have an ∈ (s − ǫ, s + ǫ) for infinitely
many values of n.

Proof of Theorem 1.2. Write s = lim infn→∞ an. Using the lemma just proved, let n1 be such that
an1

∈ (s− 1, s+1). Let n2 > n1 be such that an2
∈ (s− 1/2, s+1/2). If for k > 1 we have selected

nk−1, let nk > nk−1 be such that ank
∈ (s− 1/k, s+1/k). Then, clearly, the subsequence {ank

}∞
k=1

of {an}
∞

n=1 converges to s.

There is more about the Bolzano–Weierstrass theorem on pp. 23–24 (pdf pp. 29–39) in my
notes (a clickable link) Supplementary Notes on Introduction to Analysis by Maxwell Rosenlicht,
using various other techniques for the proof.

1.1For even stronger or greater reason (Latin)

3

http://www.sci.brooklyn.cuny.edu/~mate/anl/analysis.pdf
http://store.doverpublications.com/0486650383.html

	Contents
	The Bolzano–Weierstrass theorem

