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Abstract

A market-based scheduling mechanism allocates resources indexed by time to alternative
uses based on the bids of participating agents. Agents are typically interested in multiple
time slots of the schedulable resource, with value determined by the earliest deadline by
which they can complete their corresponding tasks. Despite the strong complementarities
among slots induced by such preferences, it is often infeasible to deploy a mechanism that
coordinates allocation across all time slots. We explore the case of separate, simultaneous
markets for individual time slots, and the strategic problem it poses for bidding agents.
Investigation of the straightforward bidding policy and its variants indicates that the efficacy
of particular strategies depends critically on preferences and strategies of other agents,
and that the strategy space is far too complex to yield to general game-theoretic analysis.
For particular environments, however, it is often possible to derive constrained equilibria
through evolutionary search methods.
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1 Introduction

1.1 Strategies for Complex Market Games

Consider a set of agents who have values over a set of available resources. A unit of
a particular resource can be employed only by one agent, and though multiple units
may be available, the demand for at least some resources at zero prices is greater
than the finite supply available. Deciding how to assign the available resources to
agents is anallocation problem. This characterization of the problem encompasses
many complex planning and coordinating activities.

Solution methods for allocation problems frequently are developed under the as-
sumption of centrally available information, or distributed information with coop-
erative behavior. When a centralized approach is possible, it will in general yield re-
sults superior to any purely decentralized method. Nevertheless, centralized meth-
ods are not directly applicable when agents have distinct interests and privately
held information about the requirements for and values of possible uses. We can-
not rely on the agents to reliably communicate such information to the center, as
the center’s use of the information to determine an allocation will typically create
incentives for the agents to misrepresent their situations in order to obtain more
advantageous results.

A resource allocation mechanismdefines a structured communication process that
determines which agents get which resources based on messages exchanged. The
field of mechanism designconsiders how to organize such mechanisms taking into
account the information and incentives facing the participating agents. Typically,
carefully designed mechanisms induce agents to reveal essential information via
monetary transfers tied to the messages and resources allocated.

Marketscomprise a special class of resource allocation mechanisms in which agents
exchange resources for money, atpricesdetermined through communication of of-
fers, orbids. When the price-determination process is mediated, and follows ex-
plicit rules mapping bids into allocations, the mechanism constitutes anauction.
A set of agents interacting through auctions defines amarket game, with payoffs
representing value of market outcomes, which in turn are a function of joint bid-
ding strategy. Market games are typically characterized by incomplete information,
complex dynamics, and large sets of possible actions (bids).

Market games corresponding to even moderately complex scenarios are notoriously
difficult to solve. That is, except for the simplest market mechanisms (e.g., a one-
shot auction for a single item, or a mechanism specially designed to have dominant
strategies), deriving a Bayes-Nash equilibrium is not analytically tractable.

Strategic complexity presents a particularly difficult problem when resources may
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be complements for some agents. Complementarity manifests when an agent’s
value for a particular resource is greater if it also obtains one or more other re-
sources. For example, an airline passenger may wish to obtain two connecting seg-
ments to complete a trip. The airline, meanwhile, needs to obtain reservations for
both a takeoff slot and a landing slot for each flight segment. When an agent must
bid for one resource with uncertainty about the market resolution of complements,
its decision presents risky tradeoffs.

Given the commonality of market games involving complementary resources, it is
perhaps surprising that very little is known about optimal strategies for such games.
For example, except under very restrictive assumptions, we do not know the opti-
mal bidding strategy in multiple item simultaneous ascending auctions (discussed
below). The explorations reported here represent our effort to address this large gap
in strategic understanding, in the context of the simple scheduling domain.

1.2 Market-Based Scheduling

Our investigations apply to the general problem of strategy exploration in com-
plex allocation mechanisms. For concreteness, however, we study an important in-
stance of this class:schedulingproblems. A problem can be described asscheduling
when the resources are distinguished (at least in part) by the time periods in which
they are available, so that a schedule is an allocation of these resources over time.
Scheduling arises at the core of problems in manufacturing, telecommunications,
logistics, and many other common contexts where reserving resources is called for.
It has of course been extremely well studied, by researchers in operations research,
computer science, and artificial intelligence [4,33]. Most scheduling methods are
centralized, in effect requiring that relevant information be globally available.

A configuration of markets that allocates resources over time defines amarket-
based schedulingmechanism. Computational markets of many kinds have been
proposed for a variety of scheduling domains, including time-shared computer sys-
tems [28], airport time-slot allocation [26], and railroad track allocation [3].

We focus on the strategic problem faced by an agent participating in a market-based
scheduling mechanism. We address scheduling in particular because it represents
an intrinsically important class of problems, and the temporal pattern of available
resources is often significant in problems beyond scheduling. Moreover, restricting
attention to scheduling (indeed, a particularly simple version) helps to focus our
investigation and provides some structure constraining the problem.
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1.3 Simultaneous Auctions

When there are strong interdependencies in agent preferences for distinct goods,
mechanism designers often recommend that the scope of the allocation mechanisms
be extended to consider the resources together. One increasingly popular class of
mechanisms taking this approach is thecombinatorial auction, where agents submit
offers for bundles of goods, and the auction calculates an allocation based on some
global optimization criterion [7].

However, combinatorial auctions are often not practical, for example because of the
difficulty of coordinating the allocations of the various resources, which may have
overlapping yet distinct groups of potentially interested agents. Regardless of the
reason, it is a simple fact that real-world markets quite typically operate separately
and concurrently despite significant interactions in preferences or costs. Thus, the
problem of dealing with simultaneous markets for related goods is a ubiquitous
one, and though it might seem that the problem can be alleviated in many cases by
widening the scope of the market, this is not a universally applicable solution.

Note that in some cases allocating multiple resources through simultaneous auc-
tions is a deliberate design choice, for example (until quite recently) in the se-
ries of FCC spectrum auctions [15]. In some it is a result of separate initiation
of commonly-operated auctions (e.g., all of the auctions running concurrently—
despite potential interactions—on eBay), and in many others a result of completely
separate initiation and operation of markets.

Although most of the literature on auction theory deals with mechanisms mediating
a single resource [13], some recent work has addressed the issues of simultaneous
auctions for multiple goods. The main lesson seems to be that simultaneous ascend-
ing auctions tend to work well when there exists a competitive price equilibrium. A
sufficient condition for competitive equilibrium is that goods are substitutes [11,2].
This is not altogether surprising given that substitutability is the standard condition
for stability of the tatonnement protocol [14]. It is also well-established that simul-
taneous ascending auctions can fail miserably whenever there are any complements
[18,9].

Simultaneous auctions are quite common even when the gross substitutes condi-
tion does not hold.1 Thus, an understanding of how agentsshouldbehave when
faced with separate markets for complements would constitute useful knowledge
for strategists as well as mechanism designers.

1 For example, complements are patently important in the FCC spectrum allocation prob-
lem, yet separate markets were chosen over a combinatorial auction despite its high stakes
and the authority of a single entity to set the mechanism.
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2 Scheduling Problem Definition

In the simple scheduling problem we consider [32], there areM units (calledtime
slots) of a single schedulable resource, indexed1, . . . ,M. Each ofN agents has
a single job that can be accomplished using the resource. Agentj ’s job requires
λ j time slots to complete, and by accomplishing this job it obtains some value
depending on the time it completes. Specifically, ifj acquiresλ j time slots by
deadlinet, it accrues valuev j(t). Deadline values are nonincreasing:t < t ′ implies
v j(t)≥ v j(t ′).

If λ j = 1 for all j, we call the scheduling problemsingle unit. Problems violating
this constraint aremultiple unit. If each agentj has a single deadline (there exists a
Tj such thatv j(t) = v j(t ′) > 0 for all t, t ′ ≤ Tj , andv j(t ′′) = 0 for all Tj < t ′′ ≤M),
we call the problemfixed deadline. If v j(t) > v j(t ′) > 0 for some j, t, t ′ (i.e., j ac-
crues greater value for finishing the job sooner), then we call the problemvariable
deadline.

3 Ascending Auctions

3.1 Mechanism

In thesimultaneous ascending auctionfor scheduling, a separate auction is run for
each slot. Each auction can have multiple rounds of bidding. At any given time, the
bid priceon slotm is βm, defined to be the highest bidbm

j made thus far (or zero if
there have been no bids). Theask pricefor slotm is defined to beαm= βm+ε. To be
admissible, a bid must satisfybm

j ≥ αm. If an auction receives multiple admissible
bids in a given round, it admits the highest (breaking ties arbitrarily). An auction is
quiescentwhen a round passes with no new admissible bids.

The auctions proceed concurrently. When all of them are simultaneously quiescent,
the auctions all close and allocate their respective slots per the last admitted bids.
Because no slot is committed until they all are, an agent’s bidding strategy on one
slot cannot be contingent on the outcome for another slot.

3.2 Straightforward Bidding

In order to analyze the overall marketprotocol, we evaluate how the simultaneous
auction mechanism performs when agents pursue particular strategies. We begin
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with a baseline strategy calledstraightforward bidding(SB).2 A straightforward
bidder takes a vector ofperceived pricesfor the slots as given, and bids those prices
for the bundle of slots that would maximize the agent’s surplus if it were to win all
of its bids at those prices.

If agent j is assigned a set of slotsX, it accrues valuev j(X) based on the best
deadline it can achieve:v j(X) = v j(X(λ j)), whereX(t) is the tth time slot inX.
Given that it obtainsX at prices~p, the agent’ssurplusis its value less the amount
paid,σ(X,~p) = v j(X)−∑m∈X pm. When agentj is winning the set of slotsX−1 in
the previous bidding round, we define the current perceived prices to bep̂m = βm

for m∈ X−1, and p̂m = αm otherwise. Then, under SB, agentj bids bm
j = p̂m for

m∈ X∗ such thatX∗ = argmaxX σ(X, ~̂p).

3.3 Baseline Strategy Performance

The straightforward bidding strategy is quite simple, involving no anticipation of
other agents’ strategies. For the single-unit problem, such anticipation is unneces-
sary, as the agent would not wish to change its bid even after observing what the
other agents did [2]. This is called theno regretproperty [10], and means that from
the agent’s perspective, no bidding policy would have been a better response to the
other agents’ bids.

A single-unit, fixed-deadline problem in which all agents have the same deadline
(M without loss of generality), is equivalent to a problem in which all buyers have
an inelastic demand for a single unit of a homogeneous commodity. For this prob-
lem, Peters and Severinov [22] showed that straightforward bidding is a perfect
Bayesian equilibrium.

Up to a discretization error, the allocations from simultaneous ascending bid auc-
tions are efficient when agents follow straightforward bidding. We have shown
elsewhere [32] that the final price vector will differ from the minimum unique
equilibrium price by at mostεκ, whereκ ≡ min(M,N). The value of the alloca-
tion, defined to be the sum of the bidder surpluses, will differ from the optimal
by at mostκε(1+ κ). A similar bound was established by Bertsekas [1] in a more
general setting.

Unfortunately, the very nice properties for straightforward bidding in single-unit
problems do not carry over to multiple-unit problems. Indeed, the resulting price
vector can differ from the minimum equilibrium price vector, and the allocation
value can differ from the optimal, by arbitrarily large amounts [32].

2 We adopt the terminology introduced by Milgrom [18]. The same strategy concept is
also referred to as “myopic best response”, or “myopically optimal”, or even “myoptimal”
[12].
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Name Job Length Deadline Value

Agent 1 1 2 5

Agent 2 2 2 8
Table 1
A simple problem illustrating the pitfalls of SB (Example 1).

Example 1 There are two agents, with values as shown in Table 1. The bid incre-
ment isε = 1. 3

One admissible straightforward bidding path leads to a state in which agent 2 is
winning both slots at prices(4,3). Then, in the next round, agent 1 would bidb2

1 =
4. The auction would end at this point, with agent 1 receiving slot 2 and agent 2
receiving slot 1, both at a price of4.

In this example, SB leads to a result with value 5, whereas the optimal allocation
would produce a value of 8. Adding slots and agents would enable constructing
slightly more complex examples, magnifying the suboptimality to an arbitrary de-
gree.

4 Alternative Bidding Strategies

We have seen that straightforward bidding fails to guarantee high quality alloca-
tions except in highly restricted problems. It is also quite easy to show that straight-
forward bidding is not an equilibrium strategy in general.

Consider again Example 1. With SB agents, the mechanism reached quiescence at
prices(4,3). However, it is not rational for agent 2 to stop at this point. If, for exam-
ple, it offeredb2

2 = 5, the auction would end (assuming agent 1 is a straightforward
bidder), and agent 2 would be better off, with a surplus of−1 rather than−4.

It is clear that SB is not a reasonable candidate for a general strategy in the simul-
taneous ascending auction for simple scheduling.

4.1 Equilibrium Strategies in the Scheduling Game

Finding equilibrium strategies for even the relatively simple scheduling problem we
have defined is a daunting task. First, the strategy space is enormous. An agent’s
preferences are described by a job length plus a potentially different payoff value

3 We adopt this unit bid increment and specify integer values for achieving jobs in all
subsequent examples as well.
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for each ofM deadlines. Therefore, the space of joint preferences is(M + 1)×N
dimensional. The state information that agents have consists of the price-quote his-
tory. When the bid incrementε is small relative to the range of agent valuations, the
number of bidding rounds can be quite large. Each round will generate anM-vector
of current bid prices~β. The strategy space is all functions mapping the Cartesian
product of the space of preferences and the space of all price-quote histories into
a vector of next-round bids. Finding an optimal strategy by enumeration will be
computationally infeasible for any nontrivial problem instance in this class.

We might hope that thoughtful reflection on the structure of the scheduling problem
might lead us to a workable set of plausible strategies, within which the search for
an optimal strategy would be manageable. However, our first example above rules
out SB as a candidate, and even a small amount of further exploration reveals that
best-response behavior in simple examples is highly sensitive to the realizations of
agent preferences, and to the strategies of other agents.

A desirable approach to search for optimal strategies is to analytically derive them
from the optimality criterion and certain axiomatic restrictions on rationality. Un-
fortunately, optimal strategies are rarely found for problems of even moderate com-
plexity, such as ours. At least one difficulty in interesting schedule problems that
we believe makes analytic derivation of optimal strategies extremely difficult is the
presence of complementarities in preferences: that is, the value to an agent for a
given slot typically depends on whether or not the agent acquires one or more other
slots. This presents the agent with the so-calledexposure problem, where in order
to obtain the combination it prefers it must expose itself to the risk it will get caught
paying for a far less desirable (in our scheduling problem, completely worthless)
subset. Managing such exposure presents a complex risk assessment and decision
problem, and we have as yet seen no evidence that a general solution is forthcom-
ing.

Rather than restrict our analyses of scheduling mechanisms to their performance
when agents implement ad hoc bidding strategies we know are arbitrarily far from
optimal, we propose a method for directed search to find improved strategies. The
idea is not complicated. In our work to date, we select a set of candidate strategies,
and then evaluate their performance against each other through a statistical simula-
tion based on an evolutionary game. Strategies are assigned population frequencies,
and samples of agents compete against each other. Strategies that perform relatively
well are rewarded with higher population frequencies. Thus, through what amounts
to a structured Monte Carlo simulation, poor strategies are weeded out.

We describe our evolutionary game tool in greater detail in Section 5 below. First,
we illustrate our specification of the strategy space with a concrete example.
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4.2 Variant Strategy: “Sunk Awareness”

We showed in Example 1 that in some problems agents following a straightforward
bidding strategy may stop bidding prematurely. A bit of reflection indicates why
straightforward bidding is failing in this situation. In a given round, agents bid on
the set of slots that, at the current ask prices, will maximize their surplus. If no
configuration of slots would yield positive net surplus, the agent chooses not to bid,
because the alternative is to earn negative surplus. However, this behavior ignores
outstanding commitments: the agent may already be winning on one or more slots.
If the agent drops out of the bidding, and others do not bid away the slots the agent
already is winning, then its alternative surplus is not zero, but negative the sum of
bid prices for the slots the agent wins. Thus, this failure of straightforward bidding
is due to ignoring the true opportunity cost of not bidding.

We refer to this property of straightforward bidding as “sunk unawareness”. Agents
are bidding as if the incremental cost for slots they are currently winning is the
full price. However, since they are already committed to purchasing these slots (if
another agent does not raise the bid price), the cost is sunk, and the incremental
cost is zero.

Given this clear failure of straightforward bidding, we have parameterized a family
of strategies to permit agents to account to a greater or lesser extent for the true
incremental cost for slots they are currently winning. We call this strategy “sunk
aware”. A sunk-aware agent bids as if the incremental cost for slots currently win-
ning is somewhere on the interval of zero and the current bid price. In Section 6,
we report on our experiments to discover the optimal setting of the sunk awareness
parameter.

We now formalize the sunk-aware strategy family. Define agentj ’s perceived price
for slot m to bekβm if the agent j is currently winning slotm, andβm+ ε other-
wise. The sunk awareness parameter isk ∈ [0,1]. If k = 1 the strategy is identical
to straightforward bidding. Atk = 0 the agent is fully sunk aware, bidding as if
it would retain the slots currently winning with certainty. Intermediate values are
consistent with bidding as if the agent puts an intermediate probability on the like-
lihood of retaining the slots it is currently winning.

5 Searching for Restricted Equilibria

We explore bidding strategies for our scheduling market by searching within a small
set of candidate strategies for a Nash equilibrium (with respect toex anteexpected
payoffs), then extending the search to new strategy sets. To do this we first con-
vert our game from extensive to strategic form, by using Monte Carlo simulation to
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generate an expected payoff matrix for every combination of the strategies playing
against each other. Given the expected payoff matrix, we find Nash equilibria with
one of three methods: replicator dynamics (an evolutionary tournament),GAMBIT

(a computational game solver), or amoeba (a function minimization search algo-
rithm). In the remainder of this section we describe each of these tasks.

5.1 Generating Payoff Matrices

We have implemented a simulator for the mechanism described in Section 2. We
estimate the payoff matrix for arestricted game, in which agents are permitted to
play only strategies drawn from a restricted set.

An instance of the restricted game is defined by

• the auction rules (e.g., simultaneous ascending bid; minimum bid incrementε),
• a number of slotsM,
• a number of participating agentsN,
• the distribution of agent preferences, and
• a finite setSof strategies permitted to agents.

Each strategy is a function that maps agent preferences plus available auction in-
formation to a set of bids. For our simulations, we construct agents implementing
selected strategies. We calculate the expected payoffs with respect to specified dis-
tributions from which agent preferences are drawn. See Section 6 for specifics on
the preference distributions.

As discussed in Section 4.1, the space of strategies is enormous. In the present
work, we explore a very restricted region of this space. First, we consider onlyreflex
agents: they consider only information from the current auction round (prices and
which slots the agent is winning), not from previous rounds. We further consider
only a specific parameterized family of strategy functions defined on this restricted
space of preferences and information. Our family of strategy functions is based
on SB, generalized in six dimensions: sunk awareness, price monotonicity belief,
price time bias, reluctance, price aggressiveness, and slot aggressiveness.4 For the
explorations reported in this paper, we vary only the sunk awareness parameter (k).

With the game parameters and agent strategies specified, we compute the expected
payoff matrix. An element in the matrix is anN-vector of expected payoffs associ-
ated with a particularstrategy profile. A strategy profile for anN-player game is a
list of the specific strategies that each player follows. For example, in a five-player
game in which two players play with sunk awarenessk = 0.5 and the others play

4 The terms are suggestive of the intent of the corresponding parameters. The precise spec-
ification of these parameters is omitted for space.
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k = 1, the profile is{0.5,0.5,1,1,1}. There is a distinct element in the payoff ma-
trix for each of the

(N+|S|−1
N

)
possible strategy profile combinations, where|S| is

the number of permissible strategies.

To estimate an entry of the expected payoff matrix, our Monte Carlo simulator
repeatedly draws preferences and assigns them to agents, simulates the auction
protocol for the given strategy profile to quiescence, and averages the resulting
surpluses. Note that this means that the values used in the payoff matrix are only
estimates. In Section 7, we consider the problem of determining how sensitive the
derived equilibria are on the sample sizes used to estimate the payoff matrices.

5.2 Evolutionary Search for Equilibria

In his original exposition of the concept, Nash [19] suggested an evolutionary inter-
pretation of the Nash equilibrium. We use thereplicator dynamicsformalism, intro-
duced by Taylor and Jonker [29] and Schuster and Sigmund [27]. If the probabilities
in a mixed strategy are cast as proportions of a large population of agents playing
the corresponding pure strategies, then an agent population that has reached a fixed
point with respect to the replicator dynamics will be a candidate symmetric mixed
strategy Nash equilibrium. Weibull [31] shows that for two-player, two-strategy
games, fixed points of a broad class of replicator processes are Nash equilibria if
neither strategy is extinct. ForN-player games, the set of fixed points that are lo-
cally asymptotically stable (all states sufficiently close converge to the same state)
are a subset of the set of Nash equilibria (NE) [8]. A fixed point (i.e., a stationary
state) is a population in which every pure strategy with more than zero representa-
tives in the population does as well in expectation againstN−1 strategies drawn
randomly from the population asN strategies drawn randomly from the population
do against each other. In other words, every pure strategy is doing as well as every
other, given the population proportions.

This definition suggests an iterative (evolutionary) algorithm for finding an equi-
librium in NE. We choose an initial population proportion for each pure strategy in
the permissible set, and then update them in successive generations so that strate-
gies that perform well increase in the population at the expense of low-performing
strategies. The proportionpg(s) of the population playing strategys in generation
g is given by

pg(s) ∝ pg−1(s) · (EPs−W),

whereEPs is the expected payoff for pure strategysagainstN−1 players all play-
ing mixed strategies according to the population proportions, andW is a lower
bound on payoffs (e.g., the minimum value in the payoff matrix) which serves as a
dampening factor. To calculate the expected payoffEPs from the payoff matrix, we
average the payoffs fors in the profiles in which it appears, weighted by the prob-
abilities of those profiles. The probability of a particular profile(n1, ...n|S|), where
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ns is the number of players playing strategys, is

N!
n1! · ... ·n|S|!

· p(1)n1 · · · p(|S|)n|S|.

If the population update process reaches a fixed point, then the final population
proportions are a candidate mixed strategy equilibrium. We verify directly that the
candidate is indeed a static Nash equilibrium by checking that the evolved strat-
egy is a best response to itself.5 In all the experiments reported here, this process
indeed reaches a fixed point and these fixed points always correspond to Nash equi-
libria. However, we have found examples for which the replicator dynamics do not
converge and the population proportions cycle.

5.3 Solving Payoff Matrices with Gambit

GAMBIT [17] is a tool for solving finite games. It takes the full matrix represen-
tation of a strategic form game and proceeds by iteratively eliminating strongly
dominated strategies and then applying the simplicial subdivision algorithm [16] to
enumerate all Nash equilibria.

The problem with usingGAMBIT in its current implementation is that it cannot take
advantage of symmetry in a payoff matrix. This means that the matrix will consist
of |S|N cells.6 The other approaches described in this section take advantage of a
sparse representation of the payoff matrix that exploits the symmetry and requires
only

(N+|S|−1
N

)
cells. For example, withN = |S|= 5, symmetry reduces the number

of distinct profiles to 126, versus 3125 for the full matrix representation.

5 Friedman [8] has shown in a fairly general setting that a dynamically stable equilibrium
of the evolutionary game is also a Nash equilibrium of the static game. However, we cannot
strictly rely on this result. First, our numerical results at best identify anapproximatefixed
point, with a finite error tolerance (typically10−10). Second, a fixed point is only a nec-
essary condition for a Nash equilibrium; sufficiency requires verifying that the fixed point
is Lyapunov stable. There is also a regularity condition for Friedman’s results—that the
dynamics are continuous, not discrete in time—that we do not satisfy (though Friedman
conjectures that the generalization holds).
6 This computational burden is not trivial. For example, in many experiments we have run
on five-player/five-strategy games,GAMBIT took hours or sometimes days to find all the
Nash equilibria when it could find them at all.
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5.4 Searching for Equilibria with Amoeba

One of the many characterizations of a (symmetric) Nash equilibrium is as a global
minimum of the following function from mixed strategies to the reals:

f (p) = ∑
s∈S

max[0,u(s, p)−u(p, p)]2,

whereu(x, p) is the payoff from playing strategyx against everyone else playing
strategyp. The function f is bounded below by zero and in fact for anyp ∈NE,
f (p) is zero. This is becausef (p) is positive iff any pure strategy is a strictly better
response thanp itself.

For our experiments, we use an adaptation of the amoeba algorithm [24] developed
by Walsh et al [30]. Amoeba is an implementation of the Nelder-Mead algorithm
[20] for highly nonlinear function minimization.

5.5 Replicator Dynamics and Biased Sampling

Based on the observation that estimating the cells of the payoff matrix is far more
compute-intensive than finding equilibria, we have explored another use for our
evolutionary game simulator: as a biased-sample approach to generating the ex-
pected payoff matrix. For this method, we do not calculate the payoff matrix first,
then search for equilibria; rather, we tackle the two simultaneously. We start with
an initial set of population proportions for each pure strategy. Then, as before, we
repeatedly sample from the preference distribution, iterating our auction mecha-
nism to quiescence. However, now strategies are randomly drawn to participate
according to their population proportions. Then, after a relatively small number
of samples—long before we have confidence that they are precise estimates of
the expected payoffs—we apply the replicator dynamics using the realized aver-
age payoffs. Then, given the new population proportions, we iterate, calculating
a sequence of new generations, except that for each generation we retain the ac-
cumulated estimate of average payoffs from previous generations, and calculate a
correctly-weighted average of the old and new sample information. The iteration of
generations continues until the population proportions are stationary with respect
to the replicator dynamics.

The above procedure straightforwardly accumulates a statistically precise estimate
of the expected payoff matrix. However, the sampling is biased: strategies that are
more successful (and thus more highly represented in the population) are sampled
more often. We conjecture that this approach would be more efficient than uniform
sampling, especially for problems with a large number of permissible strategies.
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Since many of them will likely not be present in a Nash equilibrium—that is, their
population fractions will converge to zero—extensive sampling to lower the stan-
dard error of the estimated payoff would be wasteful. However, we have found it
easier to study the dynamics of our experiments when the full payoff matrix is cal-
culated to high precision before the replicator dynamics are applied, and for the
relatively small problems we simulate here the computational cost has been man-
ageable.

6 Experiments in Sunk-Awareness

We have begun our search in strategy space with a systematic exploration of bidding
strategies that vary on the sunk-awareness parameter (k). We consider parameter
settings in multiples of 1/20 from 0 to 1. For simplicity of reference, we designate
strategies by an integer from 0 to 20, such that strategyi refers to the baseline agent
with k = i/20. For all of these experiments, we used the following game parameters:

• number of slotsM = 5,
• number of agentsN = 5 (except in Section 6.4),
• bid incrementε = 1.

We varied the distributions from which preferences are drawn. The primary struc-
tural distinction we have explored is with respect to the distributions of job lengths,
λ. In the uniform model, job length is∼ U [1,M], that is,Pr(λ = l) = 1/M, l ∈
{1, . . . ,M}. In theconstantmodel,λ j is fixed at a particular value for allj (in all of
the trials we report,λ j = 2). Finally, in theexponentialmodel, we draw job length
from an exponential distribution. Specifically,

Pr(λ = l) =





2−l l = 1, . . . ,M−1

2−M+1 l = M.

In all three of these models, the deadline values for each slot are initialized as
integers∼U [1,50], but then modified to ensure monotonicity:

v(t)← v(min{i ≥ t | v(i)≤ v(t−1)}) or 0, t = λ +1, . . . ,M.

In words, iterate through the deadline values and whenever one violates mono-
tonicity (i.e., exceeds its predecessor) set it to the earliest later deadline value that
restores monotonicity (i.e., is less than or equal to its predecessor).

Finally, in Section 6.4, we explore games with varying number of agents (players)
within the exponential preference model.
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Fig. 1. Payoff matrix for strategies 18,19,20 with uniform preferences. Each column corre-
sponds to a strategy profile:{18,18,18,18,18} through{20,20,20,20,20} in lexicographic
order. Thejth dot within a column represents the mean payoff for thejth strategy in the
profile. This payoff matrix is based on over 45 million games simulated for each of the 21
profiles, requiring weeks of cpu time. The error bars denote 95% confidence intervals.

6.1 Uniform Job Length

In Figure 1 we offer a representation of the payoff matrix for the restricted game
with strategies 18, 19, 20, and uniformly distributed job length. To illustrate, the
first column represents the payoffs for the strategy profile{18,18,18,18,18}. Each
strategy in this profile receives the same payoff (since each agent is playing the
same strategy and the game is symmetric) of about1.12. The second column presents
the payoffs for{18,18,18,18,19}. When playing against onek = 19/20 agent, the
other fourk = 18/20 agents now do better than in the all-18 profile, and very
slightly better than the solek = 19/20 agent does in this profile. When one agent
deviates from 18 to 20 (third column), it does noticeably better and so do the agents
playing 18.

In Figure 2 we show the result of running the payoff matrix through the replicator
dynamics. The population evolves to all playing 20 (k = 1). This is in fact a Nash
equilibrium as can be seen by noting that the all-20 profile in the payoff matrix
(Figure 1) scores higher than any unilateral deviation. In this restricted game, 20 is
a dominant strategy (this can be verified, albeit tediously, by inspecting the payoff
matrix), and hence the only Nash equilibrium.

We have confirmed this result with bothGAMBIT and our implementation of amoeba.
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Fig. 2. First 14 generations of replicator dynamics for strategies20k ∈ {18,19,20} in a
game with uniform preferences. Strategy 20 quickly takes over the population, hence the
evolved equilibrium is (0,0,1) meaning everyone plays 20 (i.e.,k = 1).
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Fig. 3. Replicator dynamics for the same game as shown in Figure 2, but with 100 times
fewer 20s in the initial population as 18s or 19s.

We also find that the replicator dynamics converges to the unique Nash equilibrium
from various initial population proportions (for example, see Figure 3). Note that
the strategyk = 1 corresponds to straightforward bidding (no sunk awareness).

6.2 Constant Job Length

It is not the case thatk = 1 is always a dominant strategy. This follows immediately
from the discussion above (Section 4) for the unrestricted game. Even when we
restrict strategies to straightforward bidding extended only by the sunk awareness
parameter (k), we can find environments in whichk = 1 does not dominate.
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In our experiments with constant job length, we fixλ j = 2 for all j, and we con-
sider a slightly larger set of strategies. In our first run, we consider strategies 16,
17, 18, 19, and 20. We present the evolutionary dynamics for our estimate of the
expected payoff matrix in Figure 4. The payoff matrix required 22 million game
simulations for each of the 126 strategy profiles. When run through our replicator
dynamics, the system evolves to{0.745, 0.255, 0, 0, 0} which constitutes a mixed-
strategy Nash equilibrium. Convergence to this equilibrium is robust to a variety of
different initial population proportions. Note that in this environment, the baseline
sunk-unaware strategy is not even supported. Instead, the most sunk-aware (i.e.,
lowestk) strategies have greatest weight in the mixed strategy.GAMBIT reveals
that strategies 19 and 20 are dominated.

We have not successfully verified that this is a unique equilibrium;GAMBIT (which
attempts to find all equilibria) was not able to find a symmetric equilibrium for this
game after days of cpu time (it did find one asymmetric equilibrium). Amoeba takes
about 15 minutes to find this equilibrium.
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Fig. 4. Replicator dynamics for strategies20k ∈ {16, ...,20} in a game with uniform pref-
erences but a fixed job length of two. The evolved Nash equilibrium is (0.745, 0.255, 0, 0,
0).

Given that 16 was the most heavily represented strategy when the game is restricted
to the 16–20 range, it is natural to investigate whether lower values might perform
better still. We tested the above game with a broader but coarser grid of strategies:
0, 8, 12, 16, and 20. We show the evolutionary dynamics in Figure 5 based on a
payoff matrix estimated by eight million simulations per profile. The evolved Nash
equilibrium is for everyone to play 16. According toGAMBIT , strategies 0 and 8
are dominated, and everyone playing 16 is the only Nash equilibrium.

This game stressed two of our solution methods: it tookGAMBIT about a day of
runtime to reach its conclusion. The amoeba algorithm did not find any Nash equi-
libria at all (though it identified a mixed strategy close to pure strategy 16 as nearly
in equilibrium).
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Fig. 5. Replicator dynamics for strategies20k ∈ {0,8,12,16,20} in a game with uniform
preferences but fixed job length of two. The evolved equilibrium is (1,0,0,0,0)—i.e., every-
one play 16.

6.3 Exponential Job Length

Our final variation on the agent preference model applies exponential preferences.
We present the evolutionary dynamics for the strategy set 16–20 in Figure 6, which
is based on a payoff matrix estimated from 22 million samples per profile. The sys-
tem evolves to{0, 1, 0, 0, 0} (i.e., everyone play 17), which is a Nash equilibrium.
This equilibrium is robust to initial population distribution using our evolutionary
method. Amoeba does not find this equilibrium, but again identifies a nearby mixed
strategy as close.GAMBIT determined that no strategy was dominated in this game,
and was unable to determine whether the equilibrium is unique. From this config-
uration, the exponential model yields an observed equilibrium distribution fork
intermediate between the uniform and constant models.

6.4 Varying Number of Players

The experiments reported above all employ a five-player game configuration. We
have performed further trials varying the number of agents (N = 2,8,10), main-
taining the other game parameters as in our standard setup, with exponentially dis-
tributed job length (Section 6.3). The objective of this variation was to exercise the
methodology on a range of settings of game shapes, and to identify any systematic
relation betweenN and the equilibria we find.
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Fig. 6. Replicator dynamics for strategies20k ∈ {16, ...,20} in a game with exponential
preferences. The evolved equilibrium is (0, 1, 0, 0, 0)—i.e., everyone play 17.

6.4.1 Two Agents

With only two players, we can consider a larger set of candidate strategies. For this
experiment we investigated 14 strategies, defined by the set20k∈ {0,3,6,8,10,11,
. . . ,17,18,20}. This yields 105 profiles, for each of which we simulated1.2 million
games to construct the payoff matrix, depicted in Figure 7. Our replicator dynamics
(shown in Figure 8) finds the Nash equilibrium in which all agents play15. GAM -
BIT identifies this as one of three equilibria (all symmetric) for this payoff matrix.
All playing 14 is also Nash, as is the mixed strategy of playing 14 with probability
0.514and 15 otherwise. Only strategies 14, 15, and 16 survive iterated elimination
of dominated strategies. We see in Figure 8 that these are indeed the three most
tenacious strategies under our replication process.

6.4.2 Eight and Ten Agents

With more than a handful of agents, it is not generally feasible to create a payoff
matrix with more than a handful of strategies. Our experiments with eight and ten-
player games employ a pool of four strategies:20k ∈ {10,14,17,20}. This yields
165 profiles for the eight-player case, for which we simulated1.5 million games
per profile. For the ten-player case there are 286 profiles. We simulated3.9 million
games per profile, which took many cpu-weeks.

The conclusion for both eight and ten players is the same:k = 1 is a dominant
strategy. In both cases, the replicator dynamics show strategy 20 overwhelming
the population within 40 generations. For the eight-player case,GAMBIT confirms
that 20 is dominant (and therefore also the unique Nash equilibrium). But for ten
players, the raw payoff matrix (i.e., the normal form without exploiting symmetry)
contains 10 million payoff values.GAMBIT is not able to use the more compact
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Fig. 7. Payoff matrix for two-player game with exponential preferences and with strategies
20k∈ {0,3,6,8,10,11, ...,17,18,20}.
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Fig. 8. Replicator dynamics for two-player game with exponential preferences with strate-
gies20k∈ {0,3,6,8,10,11, ...,17,18,20}.

symmetric representation, and in our installation, crashes trying to load this game
into memory.

6.5 Discussion

In our experiments with exponential preferences, the equilibriumk value was mono-
tone in the number of agents,N. This can be explained by observing that increasing
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N can ameliorate the exposure problem. Consider the situation when the prices pass
the threshold at which an agent stops bidding. The presence of more competing bid-
ders increases the likelihood that the stopped agent will be let “off the hook” for its
current winnings by being outbid. Therefore, it is less compelling for an agent to
treat its current winnings as a sunk cost. In other words,k should be closer to1 the
more agents there are, which is what we find here.

7 Sensitivity Analysis: Robustness to Sampling Noise

As discussed in Section 5.1, the payoff matrices used in deriving the above results
are estimates based on sampling. An important question is whether the equilibria
we find are robust or would they change with further sampling? By the Central
Limit Theorem, the mean of a sample from any distribution approximates a normal
distribution, given enough samples.7 Therefore, we have a probability distribution
for each of the expected payoffs in the payoff matrix. By sampling from these dis-
tributions independently, we can generate a new, variant payoff matrix. If many
such variant payoff matrices yield the same equilibrium results then we can con-
clude that we are insensitive to sampling noise. We expect this to be a conservative
measure of sensitivity since it treats the errors in the expected payoffs as indepen-
dent. So to the extent that the errors are correlated, we expect this measure will
overestimate our sensitivity to sampling noise. We have in fact observed informally
that our sensitivity analysis tends to report wider variances in equilibria than there
turns out to be after gathering additional samples.

Several of our results reported above are impervious to sampling noise. This was
determined by performing our equilibrium analysis on several thousand variants
and finding that the equilibrium never changed. This was the case for the uniform
preferences game reported in Section 6.1 and for the games with eight and ten
players reported in Section 6.4.2. For our other results we find varying amounts of
sensitivity. Figures 9, 10, 11, and 12 illustrate this by showing cumulative distribu-
tion functions for the equilibrium proportions of each of the strategies. The dotted
vertical lines show the mean proportion for the corresponding strategy over all the
variant payoff matrices sampled.

For example, we see in Figure 9 that for the fixed job length game reported in
Section 6.2, the mean proportion of strategy 16 is identical to the proportion found
for the maximum likelihood payoff matrix (using the actual sample means) and it
varies according to a near-perfect normal distribution. We also see that strategy 19,

7 In fact, the sample mean follows a t-distribution withn−1 degrees of freedom wheren is
the sample size. With our sample sizes in the millions, the t-distribution is indistinguishable
from the normal distribution. In other words, we can safely use the Central Limit Theorem’s
normal approximation.
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Fig. 9. Sensitivity analysis for payoff matrix for five-player game with uniform preferences
but a fixed job length of two and strategies20k ∈ {16, . . . ,20}. Compare to the replicator
dynamics for the maximum likelihood payoff matrix for this game in Figure 4.

which died out for the maximum likelihood payoff matrix has a 10% chance of
actually holding on to 5% of the population in equilibrium. Again, note that since
this measure is conservative, the true equilibrium results are actually more likely to
match those reported in Section 6 for the max-likelihood payoff matrices.

Figure 12 shows a clear need for more samples before we can give much credence to
the equilibria reported in Section 6.4.1. However, we have run a smaller two-player
experiment with nine strategies (20k∈ {0,3,6,8,10,12,14,17,20}) where 14 was
dominant and found this result to be perfectly robust to sampling noise. Therefore,
the qualitative conclusions about this game are not seriously suspect. Nonetheless,
we ran an additional three million simulations (per profile) and found some slight
changes: strategy 16 no longer survives iterated elimination of dominated strategies
and the mixed strategy equilibrium is skewed more towards strategy 14. There was
no change in the pure strategy equilibria. The sensitivity analysis with the additional
games shows greater robustness to sampling error with the additional samples.

8 Related Work: Evolutionary Search for Trading Strategies

Several prior studies have employed evolutionary techniques for the derivation of
trading strategies. Price [25] demonstrates the use of genetic algorithms (GAs) for
a variety of standard industrial organization games (e.g., Bertrand and Cournot
duopoly). In Price’s approach, the GA serves as an optimization method, employed
to derive a best response. For instance, his GA model for the duopoly games com-
prises populations of strategies for each producer, each updated separately accord-
ing to GA rules. The search is co-evolutionary in the sense that fitness statistics are
derived by joint sampling from the pair of populations.
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Fig. 10. Sensitivity analysis for five-player game with uniform preferences but a fixed job
length of two and strategies20k ∈ {0,8,12,16,20}. Compare to the replicator dynamics
for the maximum likelihood payoff matrix for this game in Figure 5.
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Fig. 11. Sensitivity analysis for payoff matrix for five-player game with exponential pref-
erences and strategies20k ∈ {16, . . . ,20}. Compare to the replicator dynamics for the
max-likelihood payoff matrix for this game in Figure 6.
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Fig. 12. Sensitivity analysis for two-player game with exponential preferences and with
strategies20k ∈ {0,3,6,8,10,11, . . . ,17,18,20}. Strategy 15 is the only one with most of
its mass significantly above zero. In Figure 8, 15 is the only strategy to survive.
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Cliff [5] applied GAs to evolve improved versions of his “ZIP” trading strategy
for continuous double auctions. Improvement in his study is defined in terms of
convergence to competitive equilibrium prices, as opposed to surplus for particular
agents. The evolutionary search, therefore, is for a high-performing homogeneous
trading policy, rather than a strategic equilibrium. In more recent work, Cliff [6] ex-
panded the search space to include a market-mechanism dimension, thus evolving
a trading strategy in conjunction with an auction rule. As above, the GA’s fitness
measure is in terms of aggregate market performance, rather than individual profit.

Using a co-evolutionary approach similar to that of Price discussed above, Phelps
et al [23] employ genetic programming to derive strategies for an electricity trading
game studied by Nicolaisen et al [21]. They then extend the model to evolve auc-
tion rules in tandem with the trading strategies. Unlike Cliff, Phelps et al. evaluate
fitness of the mechanism based on aggregate performance, while evolving trading
strategies based on individual performance.

9 Best Response to SB

The foregoing account of our experiments suggests that our approach does not es-
cape the curse of dimensionality: we cannot derive an unrestricted characterization
of equilibrium behavior in the full strategy space. However, we have shown that
focused simulations can reveal restricted equilibria in selected environments, and
we continue to work on extending this method. An approach toward more general
strategy recommendations would be to relax the restriction on one agent’s strategy
selection, while maintaining a focusing constraint on the others’. This would not
yield an equilibrium result, of course, but it might establish a best response strat-
egy tosomeenvironment the agent might face. Since prior researchers have given
this strategy substantial attention, one natural candidate assumption about the other
agents is that they are straightforward bidders. Thus, we pose the question: What is
the best response to SB? And in particular, can the best response be usefully charac-
terized as an SB variant? Unfortunately, it does not appear that this is the case, nor
that the best response has any simple form, as indicated by the following examples.
These examples demonstrate that, at least when an agent has strong priors about
the preferences and strategies of other agents, its optimal behavior can be very far
from “straightforward”.

Example 2 LetN = M = 2, with “our” agent requiring both slots for its job, which
has value 250. Suppose the other agent (by assumption, a straightforward bidder)
has job length 1, and one of the following deadline/value profiles, known to our
agent:

• (100,98) (i.e., value of 100 for slot 1 or 98 for slot 2), or
• (200,170).
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Note that our agent will be profitable in the first case, but not the second.

If our agent in Example 2 bids straightforwardly, it will eventually reach a point
where the prices reach or exceed the first of the possible profiles of the other agent’s
values. If prices go past these values, then the agent must either take a significant
loss on one of the slots and stop bidding, or proceed to pay 370 to outbid the high
profile. (If the other agent has the high profile, then the prices at the threshold point
will be (100,70), so taking the loss of 70 is preferred to going all out and losing
120.)

A variant on the straightforward bidding strategy,SB′, would distinguish the two
profiles based on observed prices long before reaching the threshold of the low
profile. If the second agent has the low profile, it will never bid the price of slot 1
more than two above the price of slot 2, since the gain in surplus from winning
slot 1 is only two. If it has the high profile, however, it will bid the price for slot 1 as
much as 30 higher than the price for slot 2. Therefore, if the other agent is actively
bidding and the difference in prices between the two slots exceeds 2, the other agent
must have the higher profile. By recognizing this and stopping intelligently when
the price of the first slot reaches 4 or greater, our agent playingSB′ would lose only
1 (what it bid for the second slot).

Example 3 Consider a setup identical to that of Example 2, except that there is a
third agent with job length 1 and job value of 20 for either deadline.

SB′ behaves qualitatively the same in this example, except that it would lose 21
rather than 1 in case the second agent has the high profile. The reason is that the
third agent masks the behavior of the second, by alternately bidding up the prices
for each slot (since their value is the same to this agent). The second agent’s profile-
dependent behavior is reflected in prices only when the third agent drops out. By
then,SB′ has offered 21 for slot 2.

A “smarter than straightforward bidding” strategy (SSB′) would avoid this loss by
actively bidding in a way to distinguish the cases earlier. Specifically, supposeSSB′
offers 23 for slot 1 right away. The response of the straightforward second agent
will immediately reveal whether it has a high or low profile. If high, it will outbid
our agent, which can then drop out without having lost anything. If low, it can
proceed straightforwardly to win a profitable job.

Example 4 Consider a setup identical to that of Example 2, except that the (sole)
other agent has possible profiles:

• (150,20), or
• (200,75).

For this example, evenSSB′ cannot distinguish the two profiles until the difference
in slot prices is at least 125, and moreover in the high profile case it has offered that
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much for slot 1 when the other agent reveals itself by bidding for slot 2. It will then
be stuck with that magnitude of loss.

We require a “smarter than smarter than straightforward” bidder,SSSB′, to realize
that what it should do at this point is outbid the agent on slot 2 (a bid of 4 suf-
fices), causing it to switch back to slot 1. At this point our agent stops bidding, and
is stuck with the loss of−4 on slot 2, but this amount is quite small compared to
what it would have lost if it had stopped with slot 1. Notice that thisSSSB′ bidder
behaves exactly as a sunk aware(k = 0) SBbidder (see Section 3.2) until the dis-
tinguishing information is revealed about its opponent’s preferences, and then has
the intelligence to drop out (long before anSBbidder would stop).

Examples 2–4 clearly illustrate the point that even relatively simple (two-slot) sce-
narios with one or two straightforward bidders can call for rather sophisticated
bidding strategies in response. In fact, it is easy to construct scenarios where small
distinctions about time slots in which our agent has no interest (i.e., past its latest
deadline) resolve critical uncertainty with respect to the slots we do care about.
Thus, we tend to be skeptical that any simple strategy form will capture general
situations where information revelation is pivotal.

One might object that the foregoing examples, despite their simplicity, are unrepre-
sentative of realistic environments precisely because of the way that price patterns
reveal sharp distinctions among valuation levels. For example, the distributions of
deadlines and their values assumed in the experiments of Section 6 do not have this
property. One potentially fruitful avenue for future work would be to characterize
problem classes based on “diffuse” distributions where information revelation is
not a driving factor. It may well be that variants of SB are reasonable responses to
SB in some natural scheduling environments.

10 Conclusion

The foregoing study illustrates the difficulty of drawing conclusions about strategy
choices in even a relatively simple simultaneous ascending auction game. Straight-
forward bidding is not even approximately optimal, nor are straightforward variants
of same, even in response to other straightforward bidders. The space of strategies
is too large for analytic methods to be directly fruitful, and exhaustive simulation
studies are out of the question. Analysis and simulationcan produce results for
restricted versions of the game, however restrictions on the strategy choices avail-
able are inherently somewhat arbitrary, and results remain sensitive to particular
distributions of agent preferences.

Some may interpret this pessimistic assessment as further argument that a simul-
taneous auction design in the presence of complementarities is untenable, and pro-
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pose that combinatorial or other mechanisms of broader scope be imposed in their
stead. We agree that more coordinated market designs have advantages, and ad-
vocate use of combinatorial auctions or even direct mechanisms where possible.
Nevertheless, we observe that separation of related markets is a prevalent situa-
tion today, and expect that it will always be so, since coordinating the allocation
of all significantly related resources in the world through a single mechanism is
simply infeasible. Thus, despite its difficulty, strategic analysis of games such as
that studied here is a necessary task for those interested in market-based resource
allocation.

Although we are still far from achieving a comprehensive understanding of the mar-
ket scheduling game, we are hopeful that the techniques developed here will prove
useful tools. Specifically, through parameterization of a strategy space, sampling-
based simulation, and evolutionary search, it is possible to explore systematically
the strategic issues salient to the simultaneous auction setup, as well as a variety of
similar market games.
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