An Algorithmic Approach to Specifying and Verifying
Subgame Perfect Equilibria

Frank Guerin
Department of Computing Science, King'’s College,
University of Aberdeen, Aberdeen AB24 3UE, Scotland.

f.guerin@abdn.ac.uk

ABSTRACT form of an agent interaction protocol, and published for agents to
Game theory is a popular tool for designing interaction protocols mspt_act. This VV_OUld allow the workings of the p_rotocol to be made
for agent systems. Itis currently not clear how to apply this to open public so that (i) the pehgwour of agents enacting the prOIOC.OI can
agent systems. By “open” we mean that foreign agents will be free be testt_a_d to determln_e if they are Comp'y'“g W't.h. th(.e published
enter and leave different agent systems at will. This means that ru_Ies;_ (i agent§ can inspect the PUbI'ShEd specification to dete_rr-
agents will need to be able to work with previously unseen proto- mine its properties and hence their best strategy. For the machine

cols. There does not yet exist any agreement on a standard way ir{ea_dable language, we propose an algorithmic representation, as it
which such protocols can be specified and published. Furthermore,'S likély to be the most succinct way to represent most types of
it is not clear how an agent could be given the ability to use an ar- games. A protc_)col written in this language consitutes a specm_-
bitrary published protocol; the agent would need to be able to work cation Of_ be_h.aV|our for ag_ent_s, and they can be te_sted_ for co_mph-
out a strategy for participation. To address this we propose a ma- ance as in (i); however, this kind of compliance testing is relatively

chine readable language in which a game theory mechanism can bétraightforward and has been discussed elsewhere [4, 7, 15, 16].

: : : : Our focus will be on point (ii).
written in the form of a program. Enabling agents to automatically . S
determine the game theoretic properties of an arbitrary game is dif- -I;O d”etﬁrmlne the b;e_stjst;]ategy flog participation, an aé;ent Srt].o uld
ficult. Rather than requiring agents to find the equilibrium of the SO Y]e t ?l.gf.im.e to find the e(gllm ruirzn strzteglesk.) d%r.nplljtlr;g
game, we propose that a recommended equilibrium strategy profile’Nash_€quilibria is an open problem [12] and can be difficult [5,

will be published along with the mechanism; agents can then check 171: The solution proposed here is’ to include, with the spe'cifi-
the recommendation to decide if it is indeed an equilibrium. We Cation of the protocol, the designer's recommended strategy; the

present an algorithm for this decision problem. It is hoped that this Fecommendation should of course be an equilibrium of the game.

; ; i Because trust is an issue in open systems, agents will need to ver-
work could eventually contribute to interoperability in open agent . g U
systems y P y P g ify for themselves that the published recommendation is indeed an

equilibrium. This brings us to the idea wérificationfor mecha-
nisms.
1. INTRODUCTION Given a published game and strategy profile, an agent will need
Game theory is a popular tool for designing interaction protocols a procedure to determine if it is in his interest to follow the recom-
for agent systems. It allows a sort of social engineering for agents; mended strategy. This is a much simpler problem than finding an
we can design the rules of a system so that the agents will have anequilibrium from scratch. Essentially, it is the difference between
incentive to reach the outcome we desire. All of this rests on the (i) checking every possible combination of values for a set of pa-
assumption that the rules of the system and their game theoreticrameters, and (ii) checking every possible value of one parameter
properties are common knowledge amongst the agents. This is finewhile all others are held constant, and repeating this process for
if we are designing a closed system, where we (the agent designereach parameter. The first is exponential in the number of param-
know the rules, and we program the agents with knowledge of the eters, while the second is polynomial. The number of parameters
game they will be participating in. It is currently not clear how to here corresponds to the number of players in the game, and the pos-
extend this work to open agent systems. By “open” we mean that sible values of each parameter correspond to the strategies agents
foreign agents will be free enter and leave different agent systemscan play.
at will. This means that agents will need to be able to work with The main contribution of the paper is an algorithm which can
previously unseen protocols. There does not yet exist any agree-take, as input, an algorithmic representation of (i) a game and (ii) a
ment on a standard way in which such protocols can be specifiedstrategy for each agent, and decide if the strategies are a subgame
and published. Furthermore, it is not clear how an agent could be perfect Nash equilibrium of the game. It is hoped that this work
given the ability to use an arbitrary published protocol; the agent could eventually contribute to interoperability in open agent sys-
would need to be able to understand the rules and to work out atems, allowing agents to participate in foreign institutions and to
strategy for participation. Thus our area of work is in providing understand the rules there.
the theoretical infrastructure needed to enable game theory mecha- Section 2 describes the syntax and program semantics of SMPL
nisms to be employed in open multi-agent systems. This amounts(Simple Mechanism Programming Language), a machine readable
to specifyingandverifyingthe mechanisms in a way appropriate for language for publishing both games and strategies. In section 3.1
agents. In this paper we will restrict our attention to pure strategy we build on this program semantics, and define the game repre-
subgame perfect Nash equilibria in games of complete information. sented by an SMPL program. Section 4 shows how subgame per-
Firstly, for specification we will need a machine readable lan- fect Nash equilibrium can be defined and presents the algorithm
guage in which a game theory mechanism can be written in the

for deciding if a published strategy profile is an equilibrium of a

. : X local : int h =
published game. Section 5 looks at related work, and Section 6 c?v(\:/ﬁ out Z . ::nhzgﬁ;m e}rg?inte%er
concludes with a discussion of the limitations of the work and di- g1 = BLo N
rections for future work. [£o: choosen 1..2;41: crp < a : L2

. local b : integer whereb = 0
2. SMPL: SIMPLE MECHANISM ownin asp :channel[l.]of integer
PROGRAMMING LANGUAGE H Ags :: | ownout aps :channel[l.] of integer

mo : await|az, p| > 0;
ple Mechanism Programming Language). It is copied from the my : chooseb 1..2;ma : ap2 <= b : m3

This section presents the syntax and semantics for SMPL (Sim- {
Simple Programming Language (SPL) of Manna and Pnueli [9],

with some modifications. We do not directly give a semantics to r local plyrl, plyr2: integer where 7
SMPL in terms of games; instead we first describe a standard pro- plyrl = plyr2=0
gram semantics for SMPL, in terms of the sequences of states it ownin ap;,aps : channel[l..] of integer
could produce, then in the next section (Section 3) we use the pro- ownout au,p,az p: channel[l1..] of integer
gram semantics to describe the game represented by the SMPL pro- M po: awaitjap| > 0;p1 : apy = plyrl]
gram. SPL was chosen as the basis for our approach for two rea- po: Qop < (j; '

sons: firstly it is a theoretical language, and hence extremely simple ps aV\;ait|ap2\ > 0;ps: apo = plyr2
(as opposed to using Java, for example); secondly, it was originally H Agp ps: ifplyrl=1Aplyr2=1

designed for specifying reactive systems, hence it is well adapted thenpe : av.p < (—1,—1)

to modular specification, where it is important to keep track of the pr: ifplyrl=1 A plyr2 = 2
communications passed between each module, and the variables then ps : av.p < (—6,0)

local to each particular module. Space constraints force the pre- po: if plyrl =2 A plyr2 = 1

sentation here to be terse; a reader not familiar with this style of then pio : av.p < (0, —6)
semantics may wish to consult the original. To help the reader to pir: if plyrl=2 /\’plyr2 -9

get a feel for the language, Figure 1 gives a very simple example then pia : au.p < (—3,—3) : p13

of an SMPL program describing the classic prisoners’ dilemma in-
volving two agents and the principal, as in the following normal
form representation:

Figure 1: A simple game of two agents playing prisonérs’
dilemma.

in andown out are for asynchronous communication channels for

1 (Cooperate) 2 (Defect) input and output respectively. A channel is a variable whose value
1 (Cooperate) -1,-1 —6,0 is a list of integers. We identify channel variables as follows;
2 (Defect) 0,—6 —-3,-3 will be an input channel for ageatind an output channel for agent

j; i.e. only agent can read from this channel, and only aggnt
can write to it. Each non-principal agehimust have an output
channelap; to send messages to the principal; agemtay also
have an input channel;, » on which to receive messages from the
principal. Finally, the principal must have a special channelp
which he can write to once at the end of the game, to determine
the utility received by all agents. There are no other channels. We
allow no communication channels between other individual agents;
everything must go through the principal. This is because we need
to have a global history of the game to uniquely identify a game
state, and that will come from all of the messages received by the
principal.

The messages exchanged are simple integers. Ageimboses an
integer,1 or 2, and sends it to the principal. The principal reads
input channeb p 1, storing the result in the variabfyrl. He then
informs agent2 that it is his turn, reading agerts action into
plyr2. Finally the utilities are calculated and sent to the special
channely, p.

2.1 SMPL Syntax

A program has the following syntax:

p .. | Ao [declaration[¢:: S]] |l -
" | || Agp :: [declaration[¢p: Sp; Lp:]]

Basic Statement Description

It consists of a number ahodulesrepresenting each of the agent
processes. EacHg; is an identifier for an agent in the game and

u:=e assignmentassign value to variableu

eachsS; is a statement which may itself be composed of other state- chooseu c;..co choosea value in the interval for variable
ments. Label; is the location of part of therogram control vari- await ¢ wait for Boolean expression
ablejust before execution of the statemeht and/; is its location a<s=e sendexpressiore on channeh
just after. It is required that the module of exactly one agent will o =« receiveon channeb and store in variable
begin with achoosestatement. The final agenti¢» above) has a if cthen Sy conditionalstatement
special status and is known as thréncipal; no choosestatements elseS:
may appear in his module. if ¢ then Sy one branch conditionadtatement

A declaration is a sequence déclaration statementwith the S1;...; 8% concatenationsequential execution
following syntax: while cdo S repetitionof s

< own in|own out|local > variable ..., variable: typewhere ¢, .
| | SRR yp 4 Statements may be basic or compound. A compound statement

Statements in the program may only refer to variables declared inis enclosed in parentheskes.] when it is a sub statement of a larger

the declaration. Initial values for variables may be specified by the statement except when the compound statement has a line to itself.
optional assertiomvhere ;. Keywordlocal is for variables used Sub statements within concatenation statements are separated by
by this program, not accessible to any other agent. Keywonas semicolons which we omit if there is a line break.

2.2 SMPL Program Semantics system) ifs” satisfies the initial conditio® and if each state’ "
The semantics are defined via a transition system. The transi-iS accessible from the previous statevia one of the transitions’

tion system has variables corresponding to the program’s variables,n the system. Ifitis a finite computation then there will be a final
and it has transitions which describe how those variables changeStates™ which has no successor state. A computation is a sequence

as program statements are executed. The program will identify a Of states that could be produced by an execution of the program.
transition system, and the transition system will define the possible For €xample, playing the equilibrium path for the program of Fig-
sequences of states it could produce. Thus the semantics of a protre 1 would produce the following sequence of states:

gram is given in terms of possible sequences of states (of variables) ~ {{f0,m0,10), A, A, A, A,0,0,0,0} —

it could produce. gl7m07p0>,)‘7)‘7)\7)‘72707070} -

A program identifies a unique transition systém ©, 7). The {{€2,m0,p0),2, A, A, A, 2,0,0,0} —
variables come from a universal set of typed variablesalled {{€2,m0,p1),2,A, X, 1,2,0,0,0} —
the vocabulary. From this we can construct expressions (such as {(f2,m0,p2),2,A, A, A,2,0,2,0} —
x + 3y + 4), atomic formulae (such & + 3y) > 7) andAsser- {{€2,m0,ps),2,0,,A,2,0,2,0} —
tions(such ast > y A y < 4). A states is an interpretation o, {{€2,m1,p3),2,0,\, X, 2,0,2,0} —
assigning each variablee V a values[u] over its domainy’ C V {{l2,m2,p3),2,0,\,A,2,2,2,0} —
is the set of system variables: one of these is the control variable {{l2,m3,p3),2,0,2,,2,2,2,0} —
which represents the location of the next statement to be executed, {(¢2,ms,p4),2,0,2,,2,2,2,0} —
the remainder represent program variabtess an(n + 1)-tuple, {{l2,m3,p5),2,0,2,),2,2,2,2} — ... —
wheren is the number of agents in the programl(for the prin- {{l2,m3,p13),2,0,2,(=3,-3),2,2,2,2}

Where each state gives the values of variables in this order:
{m,ap1,as,p,apsz,au,p,a,b,plyrl, plyr2}.

Control is initially at the start of each agent’s module and channels

are empty 4).

Given a fixed decision for each agent’s choice points, an SMPL
satisfies the assertioB, then it is a state from which the system Program should produce a single computation; otherwise it is not a
can start running7 is a set of transitions including one transition valid SMPL program. This means that at any state, all the agents,
corresponding to each statement in the program, as follows. Note €XCept one, should be at await statement, or should have termi-
that primed values refer to the value in the successor state, and thé'ated. This restriction ensures that we have a unique history of the
e symbol is used to add an element to one end of a list; for example System corresponding to a single state of the game. Furthermore, a
o' = o e e means that the value of in the successor state will be valid SMPL program must have no infinite computations; this en-

equal to what it was previously, but withappended to the end. sures that all games represented by SMPL programs are finite. The
program should also have a unique start state.
SMPL Statement

cipal); = has one part of its tuple to point to the location within
each agent’s module. The initial conditiéhis a conjunction of all
initial values for variables (appearingwrhere clauses), an empty
value for all channelso{ =)\) and the control variable equal to
the set of entry locations for each agent. If a statd the system

Transition Relation

ui=e

chooseu ¢;..co

m(,0)Au =enp(Y —C{2u})

ml) Ap(Y —{u}) AV o =c

3. REPRESENTING GAMES AND
STRATEGIES

. . o This section makes use of the SMPL semantics to define the
await ¢ m(€,£) ne //\ p(Y) Game represented by an SMPL program. Essentially this involves
a<=e m(f»li) N =aeenp(Y —{a}) stepping through the states of the SMPL program (as defined by
a=u m(4,€) Ala| > 0N the SMPL program semantics) untithoosestatement is encoun-

a=ued Ap(Y —{u,a}) tered, at which point a game node is created, and then the process
if cthen ¢1: S, [m(€, L) Ne Ap(Y)] v of stepping through the program states continues.
[m(€,£) A= Ap(Y)]
if cthen/y: S, [m(£,01) A e Ap(Y)] V 3.1 The Game Represented by a Program
elsels: 5o [m (€, €2) A —=c A p(Y)] Since each node in a game tree has a unique history of actions
while cdo [¢1: S£:] [m(f, &) AeAp(Y)] V taken to reach it, the tree can be represented by the set of histories.
m(£,£) AN =c A p(Y)] We will use the terms node and history interchangeably. Each ac-

tion corresponds to a message sent to the principal in our case. If
we can extract the possible message histories from the SMPL pro-
gram, then we can use them to represent the game. We can also
use the messages sent and received by non-principal agents to de-
termine the history apparent to them, and hence the game nodes
which they cannot distinguish (information sets).

This assumes that is the statement's label and its post-label.
The abbreviationn (¢, /) means a move of control from location
¢ to location?; i.e. the part ofr which now points to will sub-
sequently point td, and all other parts of remain the same. The
abbreviationp(U) means that all variables in the sgtare not
changed by this transitionY” is the set of non control variables, A history tupleH in a system oh, agents (+principal) is a tuple
soV = {n} UY. Each transition maps each state onto a set of (hg, h1,...,h,) Wherehq is the global history: an ordered list
possible successor states. If a transittomaps a state to a non- of the messages received by the principal, and each atherthe
empty set of possible successor states thé@enabled o, if it communication history apparent to agént.e. an ordered list of
mapss to the null set then the transition is disabled on stafEhe the messages sent and receivedi byVe will refer to individual
transitions in the system tell us how one state can move to the next.elements; as H [i].
A transition istakenat states if the next state is related toby the Let take Transition describe an interpreter function; it takes in
transition. an SMPL program state and an SMPL program and it returns the
A sequence of states (possibly infinit€) s*, s?, 53, . .. is called state reached after taking a single transition. This can be used to
a computation of the progran® (which identifies our transition perform any transition in the system except for the transition cor-

algorithm : runGame runs the SMPL program
inputs : prog: program
outputs :s: terminal state, ho: terminal node,
Inf: information set data
(s, m, A, H) := initialState(prog)
Inf := {(m, H[m], H[0], A)}
repeat
selecta € A # nondeterministic selection
(s,m, A, H) := takeAction(s,m,a, H, prog)
Inf := Inf U {(m, H[m], H[0], A)}
until terminal(s, prog) = True
return (s, H[0], Inf)
Figure 3: Algorithm: runGame

responding to a&hoosestatement, because the transition system
has no way to know what action an agent has taken. The algo-
rithm takeAction (Figure 2) handles the agent’s choice, updating
the system variable appropriately; it then steps through the transi-
tions usingtake Transition, until it meets achoosetransition, at
which point it stops and returns the current system state, the his-
tory, and the identity of the agent who needs to choose. The al-
gorithm additionally updates histories every time a communication
statement is about to be executed. If it is something read by the
principal then it is added t&’s history H[0], and also the sender’s.

If it is something read by another agerihen it is only added td's
history Hi].

Note that because we are writing an algorithm to interpret an-
other program, we have two sets of variables. To avoid confusion,
variables describing the state of the prograumg will be prefixed
by “s.” for examples.u means the variable within the program
prog. Variables without prefixes are part of our algorithm, and not
prog.

The terminal function returnsTrue if the state passed as the

prefix of hs and its length is one less. The set of all succes-
sors of a node is given by the functich Nodes having an
empty set of successors are terneaninal

The utility functionU gives the utility of a terminal node;

it is obtained by first creating a set of tuples which relate a
terminal node to its corresponding terminal program state.
® = {(ho, s) | (s, ho, Inf) = runGame(prog)}.

U(ho) £ utility(s) where(hg, s) € ®.

The information set functiod maps each nonterminal node
to the set of nodes in the same information set as it; it is
obtained by unifying all possiblénf sets.

Z = {(m, hm, ho, A) | {(m, hm, ho, A) € Inf and
(-, -, Inf) = runGame(prog)}.

I(ho) £ {n|{m, hm,n, A) € T and{m, hm, ho, A) € T}.

e The mover functionM maps each game node to the agent
who has the move at that node; it is given b§(ho) £ m
such thatim, -, ho,-) € Z.

Note that an SMPL program can only represent a game of per-
fectrecall. This is because the history apparent to an agensed
specify agent’s information sets. It is assumed that the apparent
history determines what game nodes agenan distinguish be-
tween. Hence it is impossible to specify a game which would place
two nodes, with the same apparent history, in different information
sets. Neither is it possible to have the principal artificially send ex-
tra messages to agento make the history different; the idea of
publishing the game is that the entire SMPL program is available
for inspection by any participant, hence agéntould be aware
that the extra messages it received did not affect the game state.

first parameter is a terminal state of the program passed as the sechpart from this restriction, SMPL can be used to represent any

ond parameter; it returnBalse otherwise. A terminal state is one
where no location in the control variable is pointing tezt@ose
statement, and no transition is enabled; i.e. the program is not wait-
ing for any agent to make a choice.

Figure 3 shows a tiny algorithm that runs the game to find the
global histories and apparent histories produced by all possible
computations. The only reason for not putting this together with
the previous algorithm is that we want to uggeAction alone
later. This algorithm includes nondeterministic choice, so it can
give several possible answers.

TheinitialState function will take a game program as a param-
eter and will return a 4-tuples, the initial state of the game pro-
gram; m, the agent who has the move, the set of actions to
choose fromH, the initial history tupled = ([],[],...,[]). The
utility(s) function returns the utility of a terminal statethis is a
simple matter of looking at the value of the chanagl p, within
S.

DEFINITION 3.1. An SMPL progranprog represents the fol-
lowing finite extensive form gande = (T, U, I, M):

e The game tre@’is the sef{ ho | (m, hum, ho, A) € Inf where
(-, -, Infy = runGame(prog)}; i.e. we take all the possi-
ble outputs from running the algorithmunGame on prog,
this means taking all possible choices for the nondetermin-
istic selection of an action; then from the 3-tuples returned,
we look at the finallnf and we collect all the global histories
ho that are in there. These are all the possible nodes of the
game. A nodé: is a successor node of a noblgiff h, is a

finite imperfect information game (this follows from the Turing-
completeness of SMPL).

3.2 The Strategy Represented by a Program

For a given game, a strategy is a function mapping each in-
formation set owned by agento an action. A restricted version of
the SMPL syntax can be used to writsteategy program

in history : array [1..] of integer;
out action : integer;
declaration; S

strat; ::

The program must have exactly one input (for the history) and
one output (for the action taken). As an example, the following is
the equilibrium strategy for ageftin the game of Figure 1.

in history : array [1..] of integer;
out action : integer;
action := 2

stratq ::

It is rather simple because there is only one contingency in which
the agent s called on to act. Now tetn denote a function that can
interpret the program passed as the first parameter, and run it on
the input passed as the second parameter, returning the program’s
output.

DEFINITION 3.2. Letthe SMPL programrog represent a game,
and letZ be the set of tupleén, h.., ho, A) describing its mover,
apparent history, global history and action set as in Definition 3.1.
Letstrat, be some strategy program such that for all inputghere

algorithm : takeAction returns the program state after an agent makes a choice
inputs : s: state, m: mover, a: action, H: history tuple, prog: program
outputs : s: resultant state, n: mover, A: actions available, H: history tuple

Lo:= s.m[m], wherel, points to a statement
of the form#y: chooseu ci..c2 41:
andu is a state variable of

lets.u:=a

let s.r[m] := £1:

repeat

if The enabled transition relation contains
an atomic formula of the form
ap; = u' e Oé;syi

wherei is some agent ang is the principal.

then HI0] := H[0] ® s.u’
HJ[i] := H[i] @ 5.0/ fi
if The enabled transition relation contains
an atomic formula of the form
Q4 p = u'e a;’p
then HJi] := H[i] ® s.u’ fi
s := take Transition(s, prog)
until s has no successor state
if terminal(s, prog) then A := {}
else n:= the positive integer such that
s.w[n] points to a statement
of the formchoosev d;..d>

A := {a|ais aninteger in the range d1..dz} fi

return (s,n, A, H)

(i,h,n, A) € T: strat; terminate$ andrun (strat;, h) € A. Then
we say thatstrat,;, describes a strategy; for agent: in the game
represented byrog, where for each node in the game tree such

that (i, h,n, A) € T :
oi(I(n)) = run(strat;, h).

A profile of strategies is represented Brat = (stratq, strats,
... strat.), wherec is the number of agents; it is a tuple of strat-
egy programs, one for each agent. We will refer to the individual

elements astrat|:].

4. VERIFYING SUBGAME PERFECT

NASH EQUILIBRIA

The following is the standard definition of a SPNE [2]. It is first
necessary to define an NE. Strategy profilés a NE if, for all

playersi,

ui(ai, 072‘) > ui(si, 0'77;) forall s; € S;
u;(...) the utility obtained by ageritif the strategies .. .are

played in the game.

o the strategy irr which is to be played by agent
o—i the strategies i which are to be played by all

other players (not playe).

S the set of possible strategies for agént

Strategy profiles is a SPNE if the restriction of to G is a NE

Set value of state variable v to action a.

mth component of s.7 to point to ¢;:

At this point exactly one transition is enabled
(we never have more than one enabled,

one is always enabled after a choose)

Note: all these variables belong to s.

Update global and apparent histories

with action received by Principal

Update apparent history
with action received by ¢

Now one of the locations in s.7
must point to a choose statement.

Figure 2: Algorithm: takeAction

functionU to all nodes of the game tree. For a nonterminal node
U(n) = U(neo(I(n))); i.e. n’s utility is the same as the utility
of the successor node reached by taking the action recommended
by the strategy profile. An ageiis utility at a noden is U(n)[i];
if all agents followo, then this is the utility this agent can expect to
get once node is reached. A simple inductive proof on the length
of histories shows that this is true. Take the longest histories as
the base case. Now the inductive step/itorrectly describes the
expected utility for all nodes of lengththen it must also be correct
for nodes of lengthi-1. This is clear because all of the successors
of ani-1 node, being of length have a corredV/, and thelU at an
[-1 node is simply copied from its successor nodeshyhich is
what is expected to be played.

We define the functionnazU (n) as follows: if n is terminal
thenmazU (n) = U(n); if n is nonterminal then:

fori = M(n) : mazU(n)[i] = mIélg.();) (mazU(m)[i])

fori # M(n) : mazU(n)[i] = mazU(n e a(1(n)))[i]

Again, the same type of simple inductive proof can show that

mazU (n)[i] is the maximum utility that ageritcan expect to get,
once noden is reached, if all other agents follow the strategies

and agent takes optimal actions at each node. Information sets
do not matter here because the agent knows the strategies of other
agents, so he knows exactly which node he will be at in any in-

of G for every subgame G. A subgame is any branch of the game formation set. It is possible that the valuerefizU (. . .)[i] at two
tree which starts at a singleton information set and does not cut anypodes, in an information set belonging to agemtay each be rely-

information set.

ing on different actions being taken in that set; this is not a problem

We now look at an alternative definition in our framework, and - pecausenazUy. .)[i] for the closest common ancestor will take
then prove its equivalence. We extend the domain of the utility o the value of only the greatest of these two, and so it is a value

9'This of course makes the language of strategy programs unde-that really is achievable for agentvithout requiring the agent to
cidable, but there should be no problem in determining that casesact differently at two nodes in an information set.

of practical interest are in the language.

Requirement 1 (for strategy profilec and a game) For all
agentsi, and for all game nodes which are the root of some
proper subgame aff (i.e. n is in a singleton information set, and
the subgame which starts there does not cut ary'sfnformation
sets),mazU (n)[i] < U(n)[d].

CLAIM 4.1, A strategy profiler is a subgame perfect Nash equi-
librium (SPNE) for a gamé iff Requirement 1 holds.

Proof The “if” part (by contradiction): Assume Requirement 1
holds, butz is not a SPNE fofs. Sinceo is not a SPNE, there must
exist a proper subgant@, of G' and a strategy;, for some agent,
such that for the restriction 8f ando to G, u;(ss, 0—3) > ui(0o).
Let r be the root node off;. The value ofmazU (r)[i] cannot be
less than the value af;(s;, o—;) in the restriction taG, because
maxU derives from optimal actions, and these cannot be worse
than s;'s actions. The value ot/ (r)[i] is equal to the value of
u; (o) in the restriction taGs, hencemazU (r)[i] > U(r)[i], vio-
lating Requirement 1 (contradiction). The “only if” part (by con-
tradiction): Assumer is a SPNE forG, but Requirement 1 does
not hold. If Requirement 1 does not hold then there is some dgent
and nodel, whered is the root ofG , a proper subgame ¢f, such
thatmazU (d)[¢] > U(d)[¢]. We simply build a restricted strategy
s; (restricted taGs) which takes actions which will result in utility
mazU (n)[:] from any node: in G5 (given that opponents are fol-
lowing o_;). Now, taking restrictions t67: w;(s;, 0—;) > us(0),
violating the requirements for SPNE (contradictioll).

4.1 An Algorithm for Checking a SPNE

We need to build the game tree by running through its program

for all possible choices. Then we can do a simple backwards induc-

tion to calculatd/ andmaz U at all nodes, and hence determine if
Requirement 1 is violated anywhere. The only potentially tricky bit

algorithm : expandBranch build the tree
#inputs : s: state, m: mover, A: actions,
H: history tuple, prog: program
outputs : Nodes
Nodes := {}
foreacha € A do
(s,m, A, H) := takeAction(s, m,a, H, prog)
if terminal(s, prog) = True
then U := utility(s)
else U := null
SuccNodes := expandBranch(s, m, A, H, prog)
Nodes := Nodes U SuccNodes
fi
node := (m, H[m], H[0], A, U)
Nodes := Nodes U {node}
od
return Nodes

Figure 5: Algorithm: expandBranch

If n is its own common ancestor, thenis the root of a proper
subgame; for such nodes we checkiifiz U exceedd/.

The getAll(S,t) function returns all elements of sétwhich
match the templaté; it returnsnull if there are none. Similarly,
getAny(S,t) function returns one element, it is used when only
one element of sef will matcht¢. ThecommonAncestor(cai, caz)
function returns the longest common prefixaafi andcas, which
may turn out to be one of the input arguments.

CLAIM 4.2. For an input SMPL progranprog, which repre-
sents a gamé;, and a tuple of strategieStrat, which represent a
strategy profiler, Algorithm checkSPNE correctly decides i& is
a SPNE forG.

is how to recognise proper subgames. This can be done during the
backwards induction phase; we define a common ancestor functionProof Sketch (by induction on the length of nodes, for the main

ca(n) as follows: ifn is terminal thenca(n) = n; if n is non-
terminal thenca(n) is the node which is a prefix of every node in
I(n) and for alls € S(n), n must be a prefix oa(s) too. Note
that a node is a prefix of itself. It is easy to see that, for any node
n, if n = ca(n) thenn is the root of a proper subgame. To see
this note that ifn is the prefix of every node idi(n) then it is a
singleton information set. Also, for any nogevhich is on a path
descending fromn in the tree, ifp had an information set which
included nodes not on a path descending frorim the tree, then
ca(p) would precede: in the tree, and thea value for any ancestor
of p would have to bea(p) or an ancestor afa(p).

The checking algorithm (Figure 4) has as inputs the SMPL pro-
gram prog which defines the game, and the strategy tugfe:t
which defines the strategy profile. In order to do the checking, it
will build a tree, which is a set of nodes. Each node is a 5-tuple:
(m, hm, ho, A, U), m is the agent who has the move at this node;

repeat loop) We must show that for each noden the game:n

is assigned the correct valuesléfn), mazU (n) andca(n). itis
simple to show that this is true for the longest nodes in the game,
because they are all terminal nodes. Then we show that if this is
true for nodes of lengtl, it is also true for nodes of length+1.
Some nodes of lengthr1 may again be terminal; for any node
among the remainder, it is clear that all elementsS¢#) are in

TP because they are lengitil and hence they were added there
in a previous iteration of theepeatloop. Using those nodes it is
straightforward to see howis assigned the correct valuesiofn),
mazU (n) andca(n). The firstfor loop gets the common ancestor
with each element of (n), note that these are retrieved from the
complete tred’, and notT?, so all nodes are present. The second
for loop gets the common ancestor with the common ancestor of
each elemenp € S(n). This time the nodes are retrieved from
T®, so they are annotated witti(p), mazU(p) and ca(p), and

hm is the history which is apparent to the agent who has the move these utility values are used to calculatén) and mazU(n). A

(this is important to determine information seta); is the global
history; A is the set of actions available to agent U records the
utility obtained if the path proceeding from this node is followed,
by taking the actions recommended by the strategy profile.
Firstly we build the tred”, using the recursive algorithrp—
andBranch (Figure 5). Next we create a new set of no@&swith
extended information; these nodes have the fgtm U, mazU, ca).
Using these we propagate the mazU andca values up the tree,

special case isazU (n)[m] wherem = M (n), this must be the
best of all themaz U (p)[m]. R

The complexity of checking depends very much on the game; let
us consider the case of a multi-stage game with observed actions,
where there are players, witha actions to choose from, and
stages. The number of terminal nodeg’¥'; to find each of these,
and their utilities, will require the SMPL program to be run each
time (although not always from the beginning). Thus it is clearly

annotating nodes df? from the bottom up, because nodes higher only feasible for games with small numbers of players and stages.
up the tree derive their utility from their descendants. Once we None of these terminal nodes can be neglected, because if any has
build a new node of ” we can discard its successors as they will a utility higher than all other plays of the game, then any strategy
no longer be needed (each node has a unique direct predecessorjprofile which does not achieve it could not be a SPNE. For this

algorithm : checkSPNE decides if a strategy profile is a SPNE of a game
inputs : prog: the program that is the mechanism, Strat: the strategy profile

outputs : True or False

(s,m, A, H) := initialState(prog)

T := expandBranch(s,m, A, H, prog)

T := sortLongestFirst(T)

)

repeat
(M, by ho, A, U) := head(T9); T := tail(T)
ca := ho; bestUtil := 0

if U # null
then mazU = U
else
Iset := getAl(T, (-, hm,-,-,-))

for eachnode € Iset do
(y-, hist,_,_) := node
ca = commonAncestor(ca, hist)

od

for eacha € A do
succNode := getAny(T,{(ho ®a),-,-,-))
TP := TP\ {succNode}
(-, mazUs, Us, cas) := succNode
ca := commonAncestor(ca, cas)
if a = run(Strat[m], hm)
then U := Us; mazU := mazUs
fi
if mazUs[m] > bestUtil
then bestUtil := mazUs[m)]
fi

od

mazU[m| := bestUtil

if (ho = ca) A (mazU[m] > U[m])

then return False

fi

fi
TP := TP U {(ho, U, mazU,ca)}
until 79 =[]
return True

get the initial state of the game’s program
T is the entire tree

T will be a list of nodes

for nodes with extended information

repeat for each node in the tree

pull the head off

start with common ancestor = this node
#if it is terminal

get its information set and common ancestor
get all nodes with same apparent history

every node in information set

we want the history of each node € Iset

to find the common ancestor

every action that can be taken

get extended information for successor nodes

we no longer need the extended information

get utilities and common ancestor of successor nodes
common to our current node and the successor node
was this successor node recommended?

then propagate utilities

ho = ca if it's a proper subgame

this will be a successor node for the next iteration

Figure 4: Algorithm: checkSPNE

reason we are looking into weaker equilibrium notions, where some the area of verifying properties of games. There is however related
portions of the tree can be neglected. work in the area of specifying and solving games, and also in the
area of specifying protocols for multi-agent systems. This work

5. COMPARISON WITH RELATED WORK will be reviewed briefly now.

This paper has a similar motivation to previous work [6], buta § 1 Specifying Games
different approach. Firstly, the previous work did not tackle the Although their motivations are different to ours, a number of re-
issue of enabling agents to check the properties of published spec- '

P . . ; .~ lated works illustrate various different ways in which games can
ifications for themselves; instead it proposed an offline verification e . : S

. . . be specified. Gambit [10] can automatically compute the equilibria
which would be carried out by the agent protocol designer. How-

ever acents in open e-commerce systems miaht not necessaril of games, and it allows games to be represented in extensive form
trust’ thg rotocol F()Jlesi ner, and furth)érmore wg envisage scenar)-/Or normal form. The GAMUT [11] software has the capability to
. P gner, ' 9 generate a wide variety of games, where Java classes are written
ios where agents themselves could generate protocols on the fly, . o

to encode each type of game; The software also has the ability to

tailored for a specific auction scenario, for _example. T_hls means.output games in a form readable by Gambit. Gala [8] uses an inno-
agents need to be able to check the properties of a published SPEClative declarative language for representing and solving imperfect
fication for themselves. The second major difference is that the pre- guag P 9 g 1mp

vious work proposed that the mechanism be specified in the form information games; this allows the rules of the game to be spec-
¢ Prop i P ... ified, and removes the need to explicitly represent each possible
of a mapping from strategy profiles to outcome scenarios; this is

infeasible for all but the most simple of mechanisms; for exam- game state. This language is based on Prolog, and, similar to our
ple, if there aren agents withm strategies each, then ’there will - own, it includeschoosestatements at choice points, and is deter-

bem™ strategy profiles, and each agent's strategy could itself re- ministic if all choices are specified. Of the above approaches, the

quire an unwieldy representation. Worst of all, even extremely sim- Gala language appears to be the most promising for games with

. . .__extremely large numbers of possible states.
ple games can have an astronomical number of possible strategies.

This is why we have moved to an algorithmic representation for 5.2 Specifying Agent Communication

mechanisms. Protocols
The work of Marc Pauly [13] has had a major influence on our L
In the area of agent communication there are a number of ap-

approach. Pauly also has explicit choice statements as part of the . o .
syntax of his Mechanism Programming Language (MPL). He proVesproaches which are sufficiently general to capture arbitrary games,

game-theoretic properties for 2-player games using correctness as£($se?fs?p$h§;2cxgpli: ;?Ztggtr:?:gfngc’i \‘,?’V]I tﬁrf;ﬂ?arygmgn;rirggor;]_
sertions, via an extension of Hoare’s calculus. The main advantage) gag

of Pauly’s approach is that it offers the possibility of verifying large mur:g?gﬁz :tca;] ggzciffsl ’a\r']'g égem;Pfrﬁgﬁzt'c_)l_nhg;ep;c’mf:;ihu:; to
games without needing to construct the entire tree; the advantageI g noti u ! : pp

of our algorithmic checking approach is that it offers the possi- agent_communication, ar_nql other simila_r proposals,.are sufficiently
bility of agents checking mechanisms automatically. Two further generic to allow the specification of arbitrary games; one can spec-
differences relate to preferences and information sets. Pauly incor-Ify a game by spe_cﬁylng what agent:_‘, are aIIowgd to do at ea_ch
porates explicit preferences in the verification framework; this is protocol State.‘ While it would .be.p.oss'ble to specify our games in

absent in our framework. On the other hand, our framework al- these terms, it would add a significant overhead; we have instead
lows games with arbitrary information sets; Pauly’s is restricted to opted for a language which specifies only the essential information

games of “almost-complete” information, i.e. where the only non- and hence represents games as simply as possible.
singleton information sets are those resulting from simultaneous
mo?/es. Preferences and information sets aregclosely related whenG- DISCUSSIONAND FUTURE DIRECTIONS
one considers our intended future application to auctions; incom- This paper opens up an interesting new area: publishing game
plete information games can be modeled as imperfect information theory mechanisms in a machine readable format, along with a
games, and hence we need information sets to obscure the knowl-claim about some properties of the mechanism (for example a pur-
edge of other agents’ preferences. ported equilibrium), and then automatically checking that the claimed
In another paper Pauly and Wooldridge [14] do take an auto- properties do indeed hold. In the future we are interested in ex-
mated model checking approach to the mechanism verification probploring this area and finding the limits of the approach. For sim-
lem, and set forth their vision for how this approach can contribute ple mechanisms the approach certainly does seem feasible. The
to the mechanism design probleof game theorists. The paper published specification of a game and strategy profile is extremely
shows, as an example, how a voting mechanism can be formalisedconcise; on the downside, the entire game tree does need to be built
and checked to see if a coalition of agents can force a deadlock in-during the verification, but this is similar to the exploration done by
definitely. It would be interesting to investigate how the checking model checkers, an approach which is currently feasible even for
of equilibria could be performed through ATL formulae. The main very large numbers of states. The algorithm presented in this pa-
difference between that paper, and ours, is with respect to the moti- per would only be feasible with small finite domains for the values
vation. Pauly and Wooldridge aim to contribute to the area of mech- which agents can choose, but as we extend these domains, we in-
anism design by providing computing tools which can make mech- tend to borrow techniques which have been successfully employed
anism specifications unambiguous, reveal hidden assumptions andy the model checking community.
automate the process of proving that the mechanisms possess de- Our current plan is for a generalisation of the current work to
sired properties. In contrast, our proposal aims to contribute to check for Perfect Bayesian Equilibrium. This would need to take
multi-agent systems; we aim not to design new mechanisms, butagents’ preferences into account. We can foresee a published strat-
to make existing ones useful to agents in open systems, by giv- egy recommendation which maps preferences to strategies; i.e. in
ing agents a way of checking the properties of a previously unseenthe form of an algorithm which can provide the following type of
game specification. recommendation to an agent: “if is your preference over out-
Apart from the above work, there appears to be very little work in comes, thery is your best strategy”. In particular, we are inter-

ested in applying the framework to auctions, and so facilitating the [12] C. Papadimitriou. Algorithms, games and the internet. In
publication of auction specifications in electronic institutions where

trading agents are free to roam between different auction houses.

Proceedings of the Annual Symposium on Theory of
Computing (STOC)pages 749—-753, 2001.

Note that verifying the equilibrium of an auction is not possible [13] M. Pauly. Programming and verifying subgame perfect

with the current framework, because firstly preferences cannot be
specified, and secondly, in an auction we should be checking for a

Bayesian equilibrium, rather than a subgame perfect equilibrium.
Ultimately we would like to explore the space of possible mech-
anisms and their properties, to find the limits of the approach; i.e.

to find the boundary where the complexity of the mechanism makes
the approach advocated here infeasible. This would give valuable[15]
information about the types of mechanisms which should be used

in scenarios with resource bounded agents.

Acknowledgements

Special thanks to Emmanuel Tadjouddine and to the anonymous

referees and for their suggestions.

7.
(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

El

(10]

[11]

REFERENCES

M. Esteva, J. Rodriguez, C. Sierra, and P. Garcia. On the
formal specification of electronic institutions. LINAI 1991
pages 126-147. Springer, 2001.

D. Fudenberg and J. Tirol&ame TheoryMIT Press, 1991.
A. Garcia-Camino, J. Rodriguez-Aguilar, C. Sierra, and

W. Vasconcelos. A rule-based approach to norm-oriented
programming of electronic institutionSIGecomm
Exchanges (Newsletter of the ACM Special Interest Group on
E-Commerce)s.5, 2006.

L. Giordano, A. Martelli, and C. Schwind. Specifying and
verifying systems of communicating agents in a temporal
action logic. InAI*IA 2003: Advances in Atrtificial
Intelligence; LNCS, vol. 282%ages 262 — 274.
Springer-Verlag, 2003.

G. Gottlob, G. Greco, and F. Scarcello. Pure nash equilibria:
Hard and easy game3ournal of Artificial Intelligence
Research24:357-406, 2005.

F. Guerin and J. V. Pitt. Guaranteeing properties for
e-commerce systems. In J. Padget, D. Parkes, O. Shehory,
and N. Sadeh, editoreNAI volume 2531: Agent-Mediated
Electronic Commerce V. Designing Mechanisms and
Systemgpages 253-272. Springer-Verlag, Heidelberg, 2002.
F. Guerin and J. V. Pitt. Verification and compliance testing.
In M.-P. Huget, editorNAI volume 2650: Communication
in Multiagent Systems: Agent Communication Languages
and Conversation Policiepages 253—-272. Springer-Verlag,
2003.

D. Koller and A. Pfeffer. Representations and solutions for
game-theoretic problemaAurtificial Intelligence
94(1):167-215, 1997.

Z. Manna and A. PnueliTemporal Verification of Reactive
Systems (Safety), vol. pringer-Verlag, New York, Inc.,
1995.

R. D. McKelvey, A. M. McLennan, and T. L. Turocy.
Gambit: Software tools for game theory, version
0.2006.01.20 http://feconweb.tamu.edu/gambit, 2006.

E. Nudelman, J. Wortman, Y. Shoham, and

K. Leyton-Brown. Run the gamut: A comprehensive
approach to evaluating game-theoretic algorithms. In
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMASages 880—887, 2004.

mechanismslournal of Logic and Computation
15(3):295-316, 2005.

M. Pauly and M. Wooldridge. Logic for mechanism design -
a manifesto. IfProceedings of the 2003 Workshop on Game
Theory and Decision Theory in Agent-based Systems
(GTDT-2003), Melbourne, Australi2003.

R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J.-J.
Meyer. A verification framework for agent communication.
Journal of Autonomous Agents and Multi-Agent Systems
6(2):185-219, 2003.

M. Venkatraman and M. P. Singh. Verifying compliance with
commitment protocols: Enabling open web-based multiagent
systemsAutonomous Agents and Multi-Agent Systems
2(3):217-236, 1999.

B. von Stengel. Computing equilibria for two-person games.
In Handbook of Game Theory with Economic Applications,
Vol. 3, eds. R. J. Aumann and S. Hdftsevier, Amsterdam,
2002.

P. Yolum and M. Singh. Reasoning about commitments in
the event calculus: An approach for specifying and executing
protocols. Annals of Mathematics and Al, To appe&003.

