
A Fast Analytical Algorithm for MDPs with Continuous
State Spaces

Janusz Marecki, Zvi Topol and Milind Tambe
Computer Science Department

University of Southern California
Los Angeles, CA 90089

{marecki, topol, tambe}@usc.edu

ABSTRACT
Many real-world domains require that agents plan their future ac-
tions despite uncertainty, and that such plans deal with continu-
ous space states, i.e. states with continuous values. While finite-
horizon continuous state MDPs enable agents to address such do-
mains, finding an optimal policy is computationally expensive. Al-
though previous work provided approximation techniques to re-
duce the computational burden (particularly in the convolution pro-
cess for finding optimal policies), computational costs and error in-
curred remain high. In contrast, we propose a new method, CPH,
to solve continuous state MDPs for both finite and infinite hori-
zons. CPH provides a fast analytical solution to the convolution
process and assumes that continuous state values change according
to Phase-type distributions. This assumption allows our method to
approximate arbitrary probability density functions of continuous
state transitions. Our experiments show that CPH achieves sig-
nificant speedups compared to the Lazy Approximation algorithm,
which is the leading algorithm for solving continuous state MDPs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent Agents—
decision theory

General Terms
Algorithms

Keywords
Continuous State Markov Decision Process, Convolution, Expo-
nential Probability Distributions, Phase-Type Distributions, Plan-
ning with Limited Resources, Value Iteration

1. INTRODUCTION
Recent advances in robotics have made aerial, underwater and

terrestrial unmanned autonomous vehicles possible [1]. Many do-
mains for which such unmanned vehicles are constructed are un-
certain and exhibit inherent continuous characteristics, such as time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

required to act or other continuous resources at the disposal of the
vehicles, e.g. battery power. Therefore, fast construction of effi-
cient plans for agents acting in such domains characterized by con-
strained and continuous resources has been a major challenge for
AI research [3].

A continuous state MDP is a natural way to represent a decision
process over continuous space of states, i.e. space for which vari-
ables may take on continuous values. Unfortunately, generating
optimal policies tractably for such MDPs and addressing their con-
tinuous states is a challenge. Three main classes of solutions have
been offered to address this challenge: discretization, uniformiza-
tion, and discretization-free approximation. The first approach dis-
cretizes the continuous state and solves the resulting discrete MDP
using standard MDP solvers. Unfortunately, such discretization can
lead to an exponential blow-up in the number of states. Another ap-
proach of this type discretizes the transition function. For instance,
time-dependent MDP or TMDPs [2] include a continuous time di-
mension in the state space, but assume that the transition probabil-
ity distribution function is discrete. The authors provide a dynamic
programming algorithm for TMDPs to compute an exact solution
for a time-dependent value function with finite time horizon. Un-
fortunately, transition function discretization significantly restricts
the domains where TMDPs may be applied.

Uniformization [5, 8] is a discretization-free approach for solv-
ing continuous time MDPs. Uniformized continuous time MDP
can be solved using standard policy or value iteration techniques.
This approach was further generalized to propose a discretization-
free planning algorithm for Generalized Semi Markov Decision
Processes [9]. However, these approaches do not allow the planner
to keep track of the time elapsed since the beginning of plan exe-
cution. Therefore, such approaches are not well-suited for contin-
uous state finite horizon problems, i.e. problems with deadlines or
bounded resources. More recently, [6] suggested a discretization-
free approximation approach called Lazy Approximation. This ap-
proach avoids the restrictions of TMDPs by allowing arbitrary tran-
sition probability distribution functions to be approximated using
piecewise constant functions (PWC). During value iteration, those
are convoluted with PWC rewards to produce piecewise linear func-
tions that are then approximated using PWC functions. However,
their value iteration computations remain costly.

In contrast, we propose CPH (“continuous (= C) state MDPs
through phase-type (= PH) distributions”), a novel solution method
that adds two major contributions: first, instead of discretizing the
transition function or using a PWC approximation, we rely on Phase-
type distributions [7], which can approximate arbitrary transition
functions using Markov chains with exponential transitions. This
allows CPH to be applied to problems with arbitrary probability
density functions over continuous state transitions. Second, our al-

gorithm exploits properties of exponential distributions, which are
the basic building blocks of Phase-type distributions, for perform-
ing very efficient Bellman updates via an analytical solution to the
required convolution process. CPH achieves significant speedups
over Lazy Approximation, currently the fastest method for solving
continuous state MDPs.

2. ILLUSTRATIVE DOMAIN
We use a rover application to illustrate our planning problems,

which is a simplified version of the one used in [3]. A rover has
to maximize its reward in the next ∆ = 4 time units. The states
of the MDP correspond to the locations of the rover: its start lo-
cation (start), site 1 (site1), site 2 (site2), site 3 (site3) and its
base. The rover can perform two actions at each location: It can
move to the next site and collect a rock probe from there. It re-
ceives rewards 4, 2 and 1 for collecting rock probes from sites 1,
2 and 3, respectively. It can also move back to its base to perform
a communication task, which drains it energy completely and thus
makes it impossible for it to perform additional actions. It receives
reward 6 for performing the communication task. The times that it
takes to move to the next site and take a rock probe or move back
to base and perform the communication task are uncertain due to
varying navigation times on the rough surface. They are all dis-
tributed according to an exponential probability distribution with
λ = 1.

Figure 1: Simplified Mars rover domain

3. CONTINUOUS STATE MDPS
Our continuous state MDPs are similar to the ones used in [6].

For simplicity, we assume that their states have only one continu-
ous dimension, namely action duration time, whose value decreases
exponentially as actions are executed. It is important to understand
that this is not a restriction since we show how to handle arbitrary
action duration times using Phase-type distributions. Our model is
extendible to multiple continuous components, similar to [4, 6].

3.1 Model
S denotes the finite set of discrete states of our continuous state

MDPs and A their finite set of actions. Assume that the agent is in
discrete state s ∈ S with a deadline t > 0 time units away (= with
time-to-deadline t). It then executes an action a ∈ A of its choice,
transitions with probability P (s′|s, a)p(t′) into discrete state s′ ∈
S with time-to-deadline t− t′ and incurs reward R(s, a, s′) if t−
t′ > 0. The execution time t′ of the action is distributed according
to the exponential probability density function p(t′) = λe−λt′ . If
t′ ≥ t then the deadline is reached and execution stops. The agent’s
objective is to maximize its expected total reward until execution
stops.

We can use a version of value iteration [2] to solve this problem.
Let V ∗

s (t) denote the largest expected total reward that the agent
can obtain until execution stops when it starts in discrete state s
with time-to-deadline t ≥ 0. The agent then achieves its objective
by executing action:

arg max
a∈A

X
s′∈S

P (s′|s, a)

Z t

0
p(t′)((V ∗s′ (t− t′) + R(s, a, s′))dt′)

in discrete state s with time-to-deadline t > 0. Value iteration can
be used to obtain the values V ∗

s (t). It calculates the values V s
n(t)

using the following Bellman updates for all discrete states s and
iterations n. It then holds that limn→∞ V n

s (t) = V ∗
s (t) for all

discrete states s and times-to-deadline t ≥ 0:

V 0
s (t)= 0

V n+1
s (t)=

8<:
0 if t ≤ 0
maxa∈A(

P
s′∈S P (s′|s, a)R t

0 p(t′)(V n
s′ (t− t′) + R(s, a, s′))dt′) otherwise

Unfortunately, value iteration cannot be implemented as stated
since the number of values V n

s (t) is infinite for each n. This pa-
per remedies this situation providing an efficiently implementable
version of value iteration, that is based on four key contributions:
First, we show that the value functions V n

s can be represented with
a small number of real numbers each. Second, we show how the
Bellman updates can efficiently transform the representations of the
value functions V n

s into the representations of the value functions
V n+1

s . Third, we show for how many iterations n∗ to run value
iteration to ensure that the error maxs∈S,t≥0 |V ∗

s (t) − V n∗
s (t)| is

less than a given constant ε > 0. Fourth, we show which actions
the agent should execute according to the value functions V n∗

s .

3.2 Notation
We define our continuous state MDP for time interval X =

(0, ∆]. Policy π is a mapping from s ∈ S into set of pairs 〈Xs
j , as

j〉,
j = 1...Is for some number of time intervals Is where {Xs

j }j=1...Is

is a partitioning of X and as
j ∈ A. For each interval Xs

j we
have some function Γs,j(t) that models maximum expected re-
ward for as

j executed in state s with t time to deadline. Γs,j may
be different for j = 1...Is. Value function V n

s is a Piecewise
Gamma (PWΓ) function represented by Υs. Formally: Υs =def

{〈Xs
j , Γs,j〉}j=1...Is such that Υs(t) = Γs,j(t) = V n

s (t) for j
s.t. t ∈ Xs

j . We write Γs if Is = 1. A policy π∗ is optimal if
Υπ∗

s (t) = V ∗
s (t) is greater than Υπ′

s (t) for any π′ over all s ∈ S
and t ∈ X .

Policy execution
Actions are atomic, i.e. they are not interruptible and last until
a transition to a new state or self-transition is observed. Conse-
quently, the policy execution algorithm (i) wakes up every small
amount of time to check if the currently executed action has termi-
nated, in which case it (ii) identifies the current discrete state s and
time to deadline t (iii) selects the correct pair 〈Xs

j , as
j〉 such that

t ∈ Xs
j and starts the execution of as

j .

4. ANALYTICAL SOLUTION
In this section we claim that if all action duration are governed

by the same probability distribution function p(t′) = λe−λt′ then:
(i) For each s ∈ S, n ≥ 0 value function V n

s can be expressed in
Piecewise Gamma (PWΓ) form Υs = {〈Xs

j , Γs,j〉}j=1...Is where:

Γs,j(t) = cs,j
1 − e−λt

“
cs,j
2 + cs,j

3 (λt) + ... + cs,j
n+1

(λt)n−1

(n−1)!

”
for some real numbers cs,j

i ∀s∈S, j=1,...,Is, i=1,...,n and λ

(ii) Each Γs,j function can be represented by a vector ~Γs,j of real
numbers and it is possible to efficiently determine ~Γs,j at iteration
n + 1 from vectors ~Γs′,j |s′ ∈ S at iteration n.

We also present a very fast Bellman update iteration for arbitrary
PWΓ function and show how to extend the reasoning to action du-
rations governed by arbitrary probability density functions (pdf).

4.1 Value Function
We first show PWΓ form of V n

s for Unconditional Policies where
action choice does not depend on current time. We then extend the
reasoning to Conditional Policies i.e. policies where action choice
depends on current time.

4.1.1 Unconditional Policies
Assume initially, that transitions between s1, s2, ..., sn, where

{s1, ..., sn} ⊂ S, are deterministic. In such a case, unconditional
policy for a starting state s1 will be a sequence of actions ~a =
(a1, a2, ..., an−1) moving the process from s1 to some ending state
sn, i.e., si

ai−→ si+1 ∀i=1,2,..,n−1. Let ri be the reward for ai ac-
cumulated upon entering si+1 ∀i=1,2,..,n−1 before deadline. De-
noting for simplicity the convolution operation by � we have (p �
Vs)(t) =

R t
0 p(t−y)Vs(y)dy, and thus (p�ri)(t) =

R t
0 ri ·p(t−y)dy.

We unfold Bellman equations for state s1:

V n−1
s1

= p � r1 + p � V n−2
s2

= p � r1 + p � p � r2 + p � p � V n−3
s3

= . . . = p � r1 + p � p � r2 + . . . + p � . . . � p| {z }
n−1

�rn−1

Since p � . . . � p is similar to the Euler’s Incomplete Gamma Func-
tion, for some constant c we have:

(p � . . . � p| {z }
n

�c)(t) = c

„
1− e−λt

„
1 +

(λt)1

1!
+ ... +

(λt)n−1

(n− 1)!

««

Thus V n−1
s1 can be represented in a compact way:

V n−1
s1 = c1 − e−λt

„
c2 + c3(λt) + ... + cn

(λt)n−2

(n− 2)!

«
= Γs1

[c1, c2, ..., cn] = [
Pn−1

i=1 ri,
Pn−1

i=1 ri,
Pn−1

i=2 ri, ...,
Pn−1

i=n−1 ri]

Thus, V n−1
s1 is a function in PWΓ form with just one component

Γs1 . In general, we can store such Γ functions in vector forms,
[c1, c2, ..., cn], e.g. We can store Γs1 in a vector ~Γs1 :

~Γs1 =

0BBB@
c1
c2
c3
...
cn

1CCCA =

0BBB@
r1 + r2 + ... + rn−1

r1 + r2 + ... + rn−1

r2 + ... + rn−1

...
rn−1

1CCCA
For our domain, the expected reward at horizons h = 1, 2, ... for return-

ing to base from any state except ”Base” is modeled by Γ1
s(t) = 6− 6e−t

(since λ = 1) and therefore ~Γ1
s = [6, 6]. For h = 2 expected reward

for moving from Site 2 consists of the reward for scanning Site 3 and fu-
ture reward for returning to base from Site 3, i.e, ~Γ2

site2
= [1, 1, 0] +

[6, 6, 6] = [7, 7, 6].

4.1.2 Conditional Policies
Conditional policy for s ∈ S allows us to choose a different

action as
j depending on which interval Xs

j the remaining time t be-
longs to. We will show that for conditional policies, V n

s ∀s∈S stay
in PWΓ form. Let s0, s1 ∈ S and a ∈ A such that s0

a−→ s1.
We now show how to derive Γs0,i functions of p � Γs1,i for each
〈Xs1

j , Γs1,j〉 ∈ Υs1 . We refer to points where two adjacent Γ
functions meet as breakpoints [2]. We now show the construction
scheme for subsequent Γs0,i. For illustrative purposes let Is1=3
and Υs1 = {〈[0, t1), f〉, 〈[t1, t2), g〉, 〈[t2, ∆], h〉} as shown in
Figure 2 where x-axis represents time-to-deadline, i.e if t ≤ 0
the policy execution terminates. Also, since p � (r1 + Vs1) =
p � r1 + p � Vs1 we may start with deriving p � Vs1 and later aug-
ment it by the expected reward for the first action: p � r1 (Section
4.2).

Figure 2: Value functions for state s1

We first observe that if t ∈ [0, t1) then Γs0,1(t) = (p � f)(t).
This formula holds, since after taking action a in s0 having t time
left, we will end up in discrete state s1 with t̄ time left, where t > t̄.

If t ∈ [t1, t2) then Γs0,2 must be greater than p � g, because
transition from s0 to s1 might have taken more than δ of time. In
that case it is more profitable to perform an action whose expected
reward is described by f (not g). The function Γs0,2(t) therefore
breaks down into two parts: Γs0,2(t) = α(t) + β(t) with α(t)
associated with the expected reward given the transition takes less
than δ of time and β(t) in the other case.

α(t) =

Z t

0
p(t− y)g(y)dy −

Z t1

0
p(t− y)g(y)dy

= (p � g)(t)−
Z t1

0
λe−λ(t1+δ−y)g(y)dy

= (p � g)(t)− e−λδ(p � g)(t1)

β(t) =

Z t1

0
p(δ + y)f(t1 − y)dy =

Z t1

0
e−λ(δ+y)f(t1 − y)dy

= e−λδ

Z t1

0
λe−λyf(t1 − y)dy = e−λδ(p � f)(t1)

Γs0,2(t) = (p � g)(t) + e−λδ [(p � f)(t1)− (p � g)(t1)]

= (p � g)(t) + e−λt eλt1 [(p � f)(t1)− (p � g)(t1)]| {z }
constant1

If t ∈ [t2, ∆] we apply the same reasoning reusing the optimal
value function for previous interval. In particular, for δ2 = t − t2
value function for previous interval has to be decreased by a factor
of e−λδ2 , since δ2 time has to pass before we start using Γs0,2(t).
Consequently, finding β(t) for the current interval involves multi-
plying the value of Γs0,2 at time t2 by e−λδ2 :

Γs0,3(t) = (p � h)(t) + e−λδ2 [Γs0,2(t2)− (p � h)(t2)]

= (p � h)(t) + e−λt eλt2 [Γs0,2(t2)− (p � h)(t2)]| {z }
constant2

One can then use the same construction scheme for subsequent in-
tervals Xs1

i if Is1 > 3. Later on we refer to constanti as a break-
point smoothing factor for interval i. As we have observed, given
that f, g, h are in Γ form, also Γs0,1, Γs0,2 and Γs0,3 are in Γ form
and hence Υs0 = {〈[0, t1), Γs0,1〉, 〈[t1, t2), Γs0,2〉, 〈[t2, ∆], Γs0,3〉}
stays in PWΓ form.

For our domain, the expected reward in state Site 2 at horizon h = 2

consisted of two segments: Υs2 = {〈(0, 3.06], f〉〈(3.06, 4], g〉} where
~f = [6, 6] and ~g = [7, 7, 6]. We then have Υs1 = {〈(0, 3.06], f ′〉
〈(3.06, 4], g′〉} where ~f ′ = p � f = [6, 6, 6] and ~g′ = p � g + e−t ·
e3.06 · (p � f(3.06) − p � g(3.06)) = [7,−4.09, 7, 6]. Note that ~f ′ and
~g′ have yet to be increased by vector [2, 2] to account for the reward for
collecting samples from site 2.

4.2 Implementing Value Iteration
We now propose a fast recursive procedure, that derives value

functions using simple vector transformations. First though, we
present a technique for fast convolution of an arbitrary Γ function
with p.

THEOREM 1. If ~Γ = [c1, c2, ..., cn] then for function p � Γ we
have the vector of coefficients

−−−−→
(p � Γ) = [c1, c1, c2, ..., cn]

PROOF. Let there be functions Γ1, Γ2, ..., Γn such that:
~Γ1 = [cn]nk=1, ~Γ2 = [cn−1 − cn]n−1

k=1 , ~Γ3 = [cn−2 − cn−1]
n−2
k=1

. . .

~Γn−1 = [c2 − c3, c2 − c3]; ~Γn = [c1 − c2]
Observe that Γ = Γ1+Γ2+ ...+Γn. Since convolution is distribu-
tive: p �Γ = p � (Γ1 + ... + Γn) = p �Γ1 + ... + p �Γn. Because
−−−−−→
(p � Γ1) = [cn]n+1

k=1 and
−−−−→
(p � Γi) = [cn−i+1−cn−i+2]

n−i+1
k=1 we

get
−−−−→
(p � Γ) = [c1, c1, c2, ..., cn].

Bellman update iteration for PWΓ value functions and determin-
istic discrete state-to-state transitions has the form: V n

s = p � (r +
V n+1

s̄) where r is the immediate reward upon entering s̄. Given
V n

s̄ is composed of segments Γs̄,i |i∈Is̄ we construct segments
Γs,i |i∈Is̄ of V n+1

s in the following way:
(i) For each interval, we add the convoluted future value functions
by techniques described in Theorem 1:

~Γs,i ← [~Γs̄,i[1] | ~Γs̄,i] (1)

Where [A | B] is a concatenation of A and B and ~Γs̄,i[1] accesses
the first coefficient c1 of ~Γs̄,i

(ii) For intervals i > 1 we add to ~Γs,i breakpoint smoothing value
for interval i 1. We modify ~Γs,i as follows:

~Γs,i ← ~Γs,i − [0, constanti, 0, ..., 0] (2)

(iii) Finally, for each interval we add the p�r. Since from Theorem
1,
−−−−→
(p � r) = [r, r] we have:

~Γs,i ← ~Γs,i + [r, r, 0, ..., 0] (3)

In the non-deterministic case if P (si|s, a) = pi ∀si∈S then ~Γs =P
si∈S pi ·~Γsi It follows from equations (1), (2) and (3) that, in the

general case, when immediate rewards and non-deterministic tran-
sitions are considered, value functions stay within the PWΓ form.

4.3 Extension to Phase-type distributions
If action duration time pdfs are exponential with different λ val-

ues, we use uniformization to establish a common λ.
Whenever a duration time pdf for an action a at state si moving

the process to state sj is non-exponential, for each link (si, a, sj)
we use a Phase-type distribution graph [7] (denoted by PH). A PH
graph is directed and often cyclic, its nodes are called phases and
links between phases are transitions with exponentially distributed
durations (Figure 3). We then use the techniques described by equa-
tions (1), (2) and (3) for each phase, in order to derive V n

si
from V n

sj
.

If the original MDP is acyclic, the new MDP can have cycles lead-
ing to infinite horizon policies. The next section shows that despite
such cycles, we can plan for a finite horizon while bounding policy
error.

1Because 2nd coefficient of ~Γ actually decreases Γ function (it is
multiplied by−e−λt), breakpoint smoothing value should decrease
this coefficient so as to increase the value of Γ.

Figure 3: Phase-type approximation for an action with dura-
tion p(t) = N(2, 1). P is the discrete state transition probabil-
ity and r is the reward for successful transition

4.4 Error Analysis

Infinite Horizon Error
Both Phase-type distributions and uniformization introduce self-
transitions. Consequently, we have to plan for infinite action hori-
zon. We now calculate for how many iterations n∗ value iteration
needs to run at least to ensure that the infinite horizon approxima-
tion error is smaller than a given constant. This analysis does not
take into account the error introduced by approximating the proba-
bility distributions over the execution time with phase transitions.

We now introduce the notation needed to determine n∗. We de-
fine Rmax := maxs′,s∈S,a∈A R(s, a, s′), α := λ∆ and sn :=P∞

i=n
αi

i!
. (Notice that s0 = eα and s1 = s0 − 1 = eα − 1.)

Then, the probability pn(t) that the execution time of a sequence
of n ≥ 1 actions is no more than t is

pn(t) ≤ pn(∆) =

Z ∆

0
e
−λt′ t′n−1λn

n!
dt
′

=
1

eα
(e

α −
n−1X
i=0

αi

i!
) =

1

eα

 ∞X
i=0

αi

i!
−

n−1X
i=0

αi

i!

!

=
1

eα

∞X
i=n

αi

i!
=

sn

eα
.

Notice that
sn+1

sn

=
sn+1

αn

n! + sn+1
=

1
αn

n! sn+1
+ 1

.

sn+1
sn

decreases strictly monotonically in n because

αn

n! sn+1
=

αn

n!
P∞

i=n+1
αi

i!

=
1

α
n+1 + α2

(n+2)(n+1) + α3
(n+3)(n+2)(n+1) + . . .

increases strictly monotonically in n. Consequently,

1 >
eα − 1

eα
=

s1

s0
>

s2

s1
>

s3

s2
> . . . > 0.

Thus,

sn <
sn−1

sn−2
sn−1 <

s1

s0
sn−1 <

s1

s0

sn−2

sn−3
sn−2 <

„
s1

s0

«2

sn−2

< . . . <

„
s1

s0

«n−1

s1.

We now use these results to show when |V ∗
s (t) − V n∗

s (t)| ≤ ε
for all s ∈ S and 0 ≤ t ≤ ∆. Assume that the agent starts in
state s ∈ S with time-to-deadline 0 ≤ t ≤ ∆. Value iteration with
n∗ iterations determines the highest expected total reward V n∗

s (t)
under the restriction that the agent can plan for executing at most
n∗ actions in any state s ∈ S. The highest expected total reward
V ∗

s (t) does not have this restriction. It can be larger than V n∗
s (t)

because the agent can plan for executing additional actions. On the
other hand, reward for the first n∗ actions that V ∗

s (t) is made of
is smaller than V n∗

s (t) because agent that plans for fewer actions
ahead will try to maximize its rewards faster. Consequently, we
want to bound the reward the agent receives for the (n∗ + 1)st
[(n∗+2)nd, . . .) action. The probability that the agent can execute
the (n∗ + i)th action is pn∗+i(t) and for each of this actions the
accumulated reward is at most Rmax. Thus,

0 ≤ V
∗

s (t)− V
n∗

s (t) ≤
∞X

i=n∗+1

Rmaxpi(t)

≤
Rmax

eα

∞X
i=n∗+1

si

<
Rmax

eα

∞X
i=n∗+1

„
s1

s0

«i−1

s1

=
Rmaxs1

eα

∞X
i=0

„
s1

s0

«i+n∗

=
Rmaxs1

eα

„
s1

s0

«n∗ 1

1− s1
s0

.

We want to bound this expression by ε from above, resulting in

Rmaxs1

eα

„
s1

s0

«n∗ 1

1− s1
s0

≤ ε

„
s1

s0

«n∗

≤
ε(1− s1

s0
)eα

Rmaxs1

n
∗ ≥ log s1

s0

ε(1− s1
s0

)eα

Rmaxs1

n
∗ ≥ log

eλ∆−1
eλ∆

ε

Rmax(eλ∆ − 1)
.

Finite Horizon Error
Although CPH is an analytical algorithm, it is not error free due
to the numerical process involved in finding the breakpoints which
we require by Piecewise Linear (PWL) approximation of V n

s . Our
experiments show that this error ξ in finding breakpoints is small.

5. CPH ALGORITHM
We now present a novel algorithm referred to as CPHSOLVER

that implements the analytical solution techniques for continuous
state MDPs. The algorithm is designed to handle one continuous
dimension, for example time.

Algorithm 1 CPHSOLVER(M, ε)

1: M←APPROXIMATEWITHPH (M)
2: M←UNIFORMIZE (M)
3: n∗ ← dlog eλ∆−1

eλ∆

ε
Rmax(eλ∆−1)

e

4: for all n = 0...n∗ − 1 do
5: Tn = GENERATETEMPLATE(n)
6: for all n = 1...n∗ do
7: for all state ∈ S do
8: CPH(M.state)

CPH algorithm starts with a continuous state MDPM and an in-
finite horizon error ε (in case of non-PH transition pdfs, APPROX-
IMATEWITHPH method has to be called). After the uniformiza-
tion process establishes the common exit rate λ the algorithm de-
termines a finite horizon n∗ within the acceptable error ε from the
optimal policy generated for the infinite horizon. Next, necessary
templates (explained later) are generated and value functions of all

Algorithm 2 CPH(M.state)

1: Υstate ← ∅
2: for all a ∈ Actions do
3: Υa ← ∅
4: S̄ ←DESTSTATES(a, state)
5: for all i ∈ FINDCOMMONINTERVALS(S̄) do
6: Γi ← 0; ASSIGNACTION(Γi, a)
7: for all s̄ ∈ S̄ do
8: j ← FINDLOCALINTERVAL (Υs̄, i)

9: ~Γi ← ~Γi + P (s̄|state, a) · [~Γs̄,j [1] | ~Γs̄,j]
10: if i 6=FIRSTCOMMONINTERVAL(ΥS̄) then
11: tlast =INTERVALEND(ilast)
12: const← (Γlast − Γi)(tlast) · eλtlast

13: ~Γi[2]← ~Γi[2]− const
14: Γlast ← Γi; ilast ← i
15: Υa ← CONCATENATEΓ (Υa, Γlast)
16: for all 〈Γ, X〉 ∈ Υa do
17: ~Γ[1]← ~Γ[1] +

P
s̄∈S̄ P (s̄|state, a)R(state, a, s̄)

18: ~Γ[2]← ~Γ[2] +
P

s̄∈S̄ P (s̄|state, a)R(state, a, s̄)

19: Υstate ← FINDDOMINANCY (Υstate, Υa)

states are set to 0. Finally, ∀n=1,...,n∗ we loop over all state ∈ S

and execute CPH(M.state) subroutine.
CPH subroutine is made of 3 blocks: A, B and C. Block A

spanning lines 7 − 9 implements equation (1), block B spanning
lines 10 − 13 implements equation (2) and block C spanning lines
16 − 18 implements equation (3). The CPH subroutine maintains
for each state state the list Υstate of all Γstate,i(t) functions that
are dominant for at least one point t ∈ [0, ∆]. First, after resetting
value function Υstate each executable action a in state s is ana-
lyzed (line 2). Our goal is to construct Υa, the expected reward
function at state state given a is an action to be executed. Let S̄
be the set of future states returned by the DESTSTATES function.
Each s̄ ∈ S̄ can have different Γs̄ functions dominating over dif-
ferent time intervals. In line 5 (FINDCOMMONINTERVALS call) we
determine all common intervals in which Γs̄ ∀s̄∈S̄ do not change
(e.g. if s̄1 has different Γ for intervals (0,1),(1,3) and (3,4) whereas
s̄2 has different Γ for intervals (0,2) and (2,4), common intervals
are (0,1),(1,2),(2,3) and (3,4)). After assigning action a to function
Γi (needed for policy execution phase) in line 6 we then for each
s̄ collect its ~Γs̄,j (where j is the current local interval of s̄ returned
by a FINDLOCALINTERVAL call), convolute it with p in a way de-
scribed by Theorem 1 and multiply the newly constructed vector by
P (s̄|s, a). After summing over all the states s̄ ∈ S̄ all previously
multiplied vectors, we obtain a new function Γi for the common in-
terval i of the current state s (lines 7-9). If i is not the first common
interval we still have to modify the result function by the breakpoint
smoothing value (lines 10-13). After concatenating the Γlast func-
tion at the end of the Υa list (line 15, CONCATENATEΓ function)
and repeating lines 5-15 until the last common interval is analyzed,
we increase each Γ ∈ Υa by the convoluted expected reward for
action a (lines 16-18). Finally we call FINDDOMINANCY function
which compares the constructed Υa against the currently dominant
Υstate, finds all the breakpoints and generates a new Υstate list that
contains dominant Γ functions over both Υa and old Υstate. Note,
that since each Γ has an associated action, FINDDOMINANCY also
finds the best action for state and t ∈ [0, ∆] for the current Bellman
iteration.

CPH subroutine efficiency depends on the ability to quickly find
the dominant segments of two Γ functions (line 19). We achieve
this by storing template functions Tn for n = 0, 2, ..., n∗ − 1 in a
lookup table. Each Tn is a PWL approximating e−λt (λt)n

n!
within

accuracy of ξ. If ~Γs has the size n, then Γs approximation construc-

Figure 4: Correctness of CPH solution

tion follows the scheme: Γs = ~Γs[1] −
P

i=0,...,n−2
~Γs[i + 2] · Ti.

With two PWLs constructed, we can easily find their approximate
dominancy intervals. The template construction (done only once)
takes a negligible amount of time in comparison with time needed
to perform Bellman update iterations.

6. EXPERIMENTS
We have implemented CPH and tested it in three different ways.

Our first experiment tests the correctness of CPH’s analytical for-
mulas for the Mars rover domain. Indeed, the optimal policy for
the starting state found by CPH consists of 4 segments that per-
fectly matches the numerical result generated by Lazy Approxima-
tion (LA) running significantly slower (two orders of magnitude)
due to a very small approximation error of LA. Figure 4 illustrates
the optimal value functions for state Start computed numerically
by LA (left) and analytically by CPH (right) with the x-axis rep-
resenting the continuous variable (remaining time) and the y-axis
representing the expected reward.

Our second experiment provides a head-to-head comparison be-
tween LA and CPH for the Mars rover domain. The results are
depicted in figure 5 where the x-axis presents the L∞ error (max.
distance between two functions) between the correct optimal policy
and optimal policies generated by both algorithms and the y-axis
denotes algorithm running time in milliseconds in log scale. The
results show that CPH is up to 3 orders of magnitude faster than
LA. For example, to compute a policy less than 1% off the optimal,
which corresponds to L∞ = 0.13 for our domain, CPH needed
only 2ms in contrast to 1000ms required by LA.

Our final experiment compares CPH to LA for various continu-
ous state transition pdfs. We approximated a Weibull distribution
with β = 2, α = 1 and a Normal curve with µ = 2 and σ = 1
using Phase-type distributions and tested the accuracy of a Bell-
man iteration step for both algorithms (depicted in figure 6 with
the same axis as in 5). We fixed PWL approximation accuracy of
CPH at a small value ξ and varied PH approximation accuracy by
choosing 2, 3 and 5 phases. Our results averaged over 100 runs
confirmed that even after introducing PH approximations of Nor-
mal and Weibull pdfs in CPH, it still outperformed LA, achieving
on average a 10 fold speedup. In particular, for the Normal distribu-
tion CPH using 5 phases computed a Bellman update step with en
error of less than 0.2 in just 12 ms. In contrast, LA needed at least
100 ms for the same task. The results illustrate that we can improve
the accuracy of CPH by introducing more accurate approximations
while still outperforming LA.

7. SUMMARY
Despite recent advances in solving continuous state MDPs [6],

finding a near-optimal policy incurs significant computational ex-
pense. We presented CPH, a novel algorithm for solving contin-
uous state MDPs with either finite or infinite horizon, based on
two key ideas. First, instead of discretizing the transition func-

Figure 5: LA vs CPH (Mars Rover domain)

Figure 6: Comparison LA and CPH running time single Bell-
man update operation

tion or using a piecewise constant function approximation (which
can be restrictive or lead to high computational costs), we rely on
Phase-type distributions for modeling the transition functions. CPH
exploits Phase-type distributions for application to problems with
arbitrary probability density functions over continuous state tran-
sitions. Second, CPH exploits properties of exponential distribu-
tions, which are the basic building blocks of Phase-type distribu-
tions, to perform Bellman updates very efficiently through the use
of an analytical solution to the required convolution process. Ex-
periments on domains with different types of transition functions
show a speedup of a few orders of magnitude over the state-of-the-
art Lazy Approximation technique.

8. REFERENCES
[1] D. Blidberg. The development of autonomous underwater

vehicles (AUVs); a brief summary. In ICRA, 2001.
[2] J. Boyan and M. Littman. Exact solutions to time-dependent

MDPs. In NIPS, pages 1026–1032, 2000.
[3] J. Bresina, R. Dearden, N. Meuleau, D. Smith, and

R. Washington. Planning under continuous time and resource
uncertainty: A challenge for AI. In UAI, pages 77–84, 2002.

[4] Z. Feng, R. Dearden, N. Meuleau, and R. Washington.
Dynamic programming for structured continuous Markov
decision problems. In UAI, pages 154–161, 2004.

[5] A. Jensen. Markoff chains as an aid in the study of Markoff
processes. Skandinavisk Aktuarietidskrift, 36:87–91, 1953.

[6] L. Li and M. Littman. Lazy approximation for solving
continuous finite-horizon MDPs. In AAAI, pages 1175–1180,
2005.

[7] M. Neuts. Matrix-Geometric Solutions in Stochastic Models.
John Hopkins University Press, Baltimore, 1981.

[8] M. Puterman. Markov decision processes. John Wiley and
Sons, New York, 1994.

[9] H. Younes and R. Simmons. Solving generalized
semi-Markov decision processes using continuous phase-type
distributions. In AAAI, pages 742–747, 2004.

