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Abstract

This paper extends the framework of dynamic influence
diagrams (DIDs) to the multi-agent setting. DIDs are
computational representations of the Partially Observ-
able Markov Decision Processes (POMDP), which are
frameworks for sequential decision-making in single
agent settings. The Interactive Dynamic Influence Dia-
grams (I-DIDs), presented here, are computational rep-
resentations of Interactive Partially Observable Markov
Decision Processes (I-POMDPS). I-POMDPs general-
ize POMDPs to multi-agent settings by including the
models of other agents in the state space. In I-DIDs
agents maintains their beliefs over models of other
agents. They then use these models to predict the other
agents’ likely behavior and compute their own best re-
sponse given these predications. Models of other agents
could themselves be I-DIDs, DIDs, or simply probabil-
ity distributions over their actions. The possibility that
models are I-DIDs leads to recursive nesting of mod-
els. To ensure that models are always computable we
assume that the nesting is finite. The solution process
solves lower level models and incorporates the pre-
dicted behavior into the upper level ones thus convert-
ing them into classical DIDs. Since the framework is
sequential, agents update their beliefs about the world
and about the other agents as they receive new informa-
tion using Bayesian update.

Introduction
Partially Observable Markov Decision Processes (POMDPs)
emerged as the primary framework for decision-theoretic
planning in single agent settings. Solutions to POMDPs
are optimal plans which are conditional on future observa-
tions. Dynamic Influence Diagrams (DIDs) are computa-
tional representations of POMDPs which compute solutions
for finite time horizons in an on-line fashion. Interactive
POMDPs (I-POMDPs) (Gmytrasiewicz & Doshi 2005) gen-
eralize POMDPs to multi-agent settings by including mod-
els of other agents in the state space. Interactive DIDs
(I-DIDs), presented in this paper, are computational repre-
sentations of I-POMDPs, and thus generalizations of DIDs.
DIDs are themselves temporal generalizations of influence
diagrams (Howard & Matheson 1984).

Solutions of I-POMDPs, computed by I-DIDs, are condi-
tional plans which take into account the continually revised

probabilistic prediction of other agents’ behavior. The pre-
dictions are formed based on the models of the other agents.
The models can themselves be I-DIDs, or, in simpler cases,
DIDs or probability distributions over others’ actions (Gmy-
trasiewicz & Doshi 2005). The possible nesting of agents’
beliefs about each other’s models has been studied in re-
cent advances in game theory (Aumann & Heifetz 2002;
Battigalli & Bonano 1998; Battigalli & Siniscalchi 1999;
Mertens & Zamir 1985). While the nesting of beliefs could
be infinite, we assume finite nesting to ensure computability
of the belief updates.1 I-DIDs, analogously to DIDs, use a
“forward” solution method, and do not rely on computing
the value function over the whole belief simplex. In other
related work (Rathnasabapathy, Doshi, & Gmytrasiewicz
2006) we pursue that approach to solving I-POMDPs.

The solutions maximize the agent’s expected utility, and
thus do not rely on the notion of equilibrium. This ap-
proach has been called the decision-theoretic approach to
game theory by some authors (Kadane & Larkey 1982;
Myerson 1991). Thus, as in POMDPs, the solutions are in-
tended to be computed by each agent individually during
their own on-line planning effort. Briefly, the main reasons
why equilibria are not suitable for on-line sequential plan-
ning performed by the individual agents are that they are
incomplete and not unique. Equilibria are incomplete since
they do not specify an agent’s action if the agent is not cer-
tain that it is in an equilibrium. They are not unique since
there may be multiple equilibria with no clear criteria based
on which the agent could chose one of them.

Several equilibrium based approaches to multi-agent de-
cision making have been put forward. One such frame-
work is Multi-Agent Influence Diagrams (MAIDs) frame-
work (Koller & Milch 2001). MAIDS describe a multi-agent

1A question frequently asked in this regard is: What is the ap-
propriate level on which the nesting of models should be termi-
nated? On this issue we would like to make few brief points. First,
the question is really about the level of detail included in describ-
ing the models of other agents. Second, this is analogous to the
issue of choosing the level of detail used to model the environment
in classical POMDPs. Third, the choice of information to include
in the model is a matter of trading off computational resources and
the quality of the solution obtained. Finally, in POMDPs and in
I-POMDPs alike, the solutions may depend on the level of detail
included.



setting using influence diagrams with multiple decision and
reward nodes. They capture the information about the en-
vironment, the decisions the agents can make, and the re-
wards each agent will receive. The solution concept used in
MAIDs is an equilibrium.

Influence Diagram Networks (IDNs) are a generalization
of MAIDs which relax the assumption of common knowl-
edge of the game (Gal & Pfeffer 2003). In an IDN, the first
agent (say i) considers the possibility that the second agent,
j, may be misinformed about the game they are playing in
various ways. If so it is assumed that j would compute and
act according to a “false” equilibrium. In this case, i should
not respond with any of the corresponding equilibrium be-
haviors but instead compute its best response to the proba-
bilistic mixture of the alternative equilibrium behaviors of j.
Agent i may also entertain the possibility that j models agent
i in a similar manner. This gives rise to a recursive structure
which is assumed to always terminate with equilibria solu-
tions at the leaves. Like MAIDs, IDNs are not suitable for
sequential planning – they involve no belief update over time
and are static recommendations as to the agent’s behavior.

Other work includes Multi-Agent Markov Decision
Processes (MMDPs) which focus on coordination in teams
of agents with a common reward (Boutilier 1999). In
MMDPs the state space encompasses the, a priori given, co-
ordination mechanisms agents could use. The agents delib-
erate about (and learn) the best coordination mechanism to
use. Related are decentralized POMDPs (DEC-POMDPs)
which computes a joint equilibrium policy for agents with a
common reward function by a central controller (Nair et al.
2003; Bernstein et al. 2002). The resulting policies for each
agent are then distributed to them for execution.

In contrast to the teamwork frameworks, (Littman 1994)
presents a framework using Markov decision processes and
reinforcement learning applied to two player zero sum sto-
chastic games. This approach assumes perfect observability
of all agent’s actions and perfect observability of the one’s
own reward from the previous time step. Optimal policies
can be found efficiently. The reinforcement learning ap-
proach to multi-agent games is further explored in (Hu &
Wellman 1998), intended for general-sum stochastic games.
There, agents learn and converge on an equilibrium play, but,
if there are multiple equilibria, there is no guarantee that the
agents arrive at the same one.

Yet another approach is presented in (Emery-Montemerlo
et al. 2004). It presents an approximation technique for
multi-agent games in which decisions at each time step are
computed by each agent using the same framework with one
step look-ahead. The value of the plans beyond the look-
ahead are approximated using a heuristic. The models of the
other agent are taken from a finite pre-specified set, assumed
to be common knowledge.

(Chang & Kaelbling 2001) presents a hierarchy for cate-
gorization of decision making and modeling other agent(s)
based on the sizes of the game’s history used during decision
making. The most general category is H∞ x B∞, denot-
ing that an agent considers the entire available history and
allows its models of another agent to consider the entire his-
tory as well. I-POMDPs are in this category because beliefs
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Figure 1: A Two Time Horizon Dynamic Influence Diagram

used in our approach are sufficient statistics for any obser-
vation history.

Single Agent Decision Making
A partially observable Markov decision processes (POMDP)
(Boutilier, Dean, & Hanks 1999; Hauskrecht 2000; Kael-
bling, Littman, & Cassandra 1998; Monahan 1982) of an
agent i is defined as

POMDPi = 〈S,Ai, Ti,Ωi, Oi, Ri〉 (1)

where: S is a set of possible states of the environment, Ai is
a set of actions agent i can execute, Ti is a transition func-
tion – Ti : S × Ai × S → [0, 1] which describes results
of agent i’s actions, Ωi is the set of observations that the
agent i can make, Oi is the agent’s observation function –
Oi : S × Ai × Ωi → [0, 1] which specifies probabilities of
observations if agent executes various actions that result in
different states, Ri is the reward function representing the
agent i’s preferences Ri : S × Ai → R.

The solution of a POMDP is a policy which maps the ob-
servable history of the game to actions (Kaelbling, Littman,
& Cassandra 1998). A dynamic influence diagram is a com-
putational representation of a POMDP. The nodes in a DID,
like the one in Figure 1, are named for the elements of the
POMDP which they represent. DIDs perform planning us-
ing a forward exploration technique known as reachability
analysis. This technique explores the possible states of be-
lief an agent may be in in the future, the likelihood of reach-
ing each state of belief, and the expected utility of each be-
lief state. The agent then adopts the plan which maximizes
the expected utility. DIDs provide exact solutions for finite
horizon POMDP problems, and finite look-ahead approxi-
mations for POMDPs of infinite horizon.

Finitely Nested I-POMDPs
I-POMDPs generalize the POMDP framework to multi-
agent environments (Gmytrasiewicz & Doshi 2005). Agent
i considers the finitely nested interactive state space ISi,l

= S × Mj where S is the physical state and Mj is the set
of models of agent j (for simplicity, we assume only two
agents.) l is the level of nesting of i’s I-POMDP. These mod-
els may include models j could have of i, but are constrained
to be nested to the level not greater than l − 1. Particular
models may be referred to as mj or, if the models are inten-
tional (see (Gmytrasiewicz & Doshi 2005) for details) θj .

(I-POMDP) An I-POMDP of agent i, is:

I-POMDPi,l = 〈ISi,l, A, Ti,Ωi, Oi, Ri〉 (2)



An agent may receive evidence about the physical state of
the world and/or the action taken by agent j. Agent i will
compute the behavior for all the models in Mj and update
its belief over the set ISi,l given its observations. Formally,
the belief update is defined as (see (Gmytrasiewicz & Doshi
2005) for derivation):
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The τθj

function performs agent j’s belief update. The
update equation makes explicit the fact that agent i must per-
form agent j’s belief update as a part of its own.

Analogously to POMDPs, each belief state in I-POMDP
has an associated value reflecting the maximum payoff the
agent can expect in this belief state:

U(θi) = max
ai∈Ai

{∑
is

ERi(is, ai)bi(is)+

γ
∑

oi∈Ωi

Pr(oi|ai, bi)U(〈SEθi
(bi, ai, oi), θ̂i〉)

} (4)

where, ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |mj) (since

is = (s, θj)) (Gmytrasiewicz & Doshi 2005).
Agent i’s optimal action, is an element of the set of opti-

mal actions for the belief state, OPT (θi), defined as:

OPT (θi) = argmax
ai∈Ai

{∑
is

ERi(is, ai)bi(is)+

γ
∑

oi∈Ωi

Pr(oi|ai, bi)U(〈SEθi
(bi, ai, oi), θ̂i〉)

} (5)

Interactive Dynamic Influence Diagrams
Interactive Dynamic Influence Diagrams are a generaliza-
tion of Dynamic Influence Diagrams to multi-agent settings
and computational representations for I-POMDPs. They
compute finite look-ahead approximations for I-POMDPs.
I-DIDs contain some elements not present in classical dy-
namic influence diagrams (see Figure 2): hexagonal nodes,
Mj , are called modeling nodes, dotted links are the belief
update links, and double links, called policy links. Addi-
tionally, there is a chance node, Aj , representing the actions
of the other agent.2

2For simplicity we assume only two interacting agents.
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Figure 2: An Interactive Dynamic Influence Diagram

The chance node Aj contains i’s belief about j’s action.
The values of the node Mj are the possible models of j,
which themselves are I-DIDs. We assume that the set of pos-
sible models is finite.3 Node S, representing the set of phys-
ical states, and Mj together represent the interactive state
space, ISi. The link between Si and Mj captures the possi-
ble dependence between physical states and j’s models.

The policy link between Mj and Aj represents the de-
pendence between j’s models and j’s behavior, i.e., the
Pr(at−1

j |θt−1
j ) in Eq 3. This is not a classical link, how-

ever, because the probability distribution over actions are
obtained based on solutions (i.e., optimal actions) for each
model in Mj .

The belief update link in I-DIDs connects the Mj nodes
over time. It implements the τθj

function in Eq. 3, repre-
senting the change in j’s belief after its own observation and
action. It should be clear why this is not a classical link – it
involves computation nested at the level of j’s models.

In (Gmytrasiewicz & Doshi 2005) two simplifying as-
sumptions are made. According to the Model Non-
manipulability assumption agent i’s actions cannot directly
change agent j’s model. Therefore, there is no direct
link between Ai and Mj . According to the Model Non-
observability assumption, agent i cannot directly observe
agent j’s model. Hence, there is no direct link between Mj

and Ωi in Figure 2. However, agent i may be capable of
receiving signals which are informative about the actions of
agent j and about its models.

Formally, an interactive static influence diagram is a tuple
I −SIDi = (Ni, Ei, Pi, Fi). Ni is the set of nodes consist-
ing of five types of nodes: random nodes, decision nodes,
utility nodes, modeling nodes, and behavior nodes. There is
one modeling node and one behavior node for each of the
agents that agent i interacts with. Each node, n ∈ Ni, has
a set of possible values, Vn. The values of modeling nodes
are models of other agents. These can be either I − SIDs,
SIDs, or probability distributions over the other agents’ ac-
tions. The values of the behavior nodes are the possible ac-
tions of the other agents.

Ei is the set of edges between the nodes. Given the edges,
Ei, the function parents(n) which returns the set of par-
ent nodes of node n. For each random node, n, Pi is a
conditional probability Pr(n|parents(n)). Each behavior

3It is up to the implementation to manage the space of models,
which is potentially very large, efficiently. We describe our imple-
mentation further below.



node may have only one parent, namely the corresponding
modeling node. The links between modeling nodes and the
corresponding behavior nodes are called policy links. For
each behavior node, Aj , its policy link specifies a condi-
tional probability Pr(Aj |Mj) describing likelihoods of j’s
actions given its model.4

F is a set {µu : parents(u) → R} for each utility node
u where R is the set of rational numbers.

An interactive dynamic influence diagram is a tuple I −
DIDi = (I−SIDi, hi, Ti, P

D
i ). hi is the horizon to which

I − SIDi will be extended. Ti is the set of temporal edges
so that parents(n) include also parents in the previous time
slice. For random nodes P D

i is the dynamic extensio of Pi

in I − SIDi by including all of the nodes’ parents. The
values of the modeling nodes are now also allowed to in-
clude I-DIDs and DIDs. The modeling nodes are connected
to each other across time via a special temporal link called
a belief update link for agent j. It specifies the probability
Pr(M t

j |M
t+1
j ) which is τθj

defined above.

Solving an I-DID
Solution of an I-DID proceeds analogously to solution of
a DID. This involves building a reachability tree contain-
ing the agent’s beliefs for various sequences of its actions
and observations. In case of I-DIDs the beliefs include ones
over the models of the other agent. Using the example in
Figure 2, the models of j contained in node M t

j are solved
and impart the probability distribution to node At

j , which
corresponds to computing the Pr(at

j |θ
t
j) (this involves com-

puting OPT (θj).) The policy link then becomes a conven-
tional link between chance nodes (the node M t

j values are
now policies which are optimal for agent j.)

Now, given i’s observation at time t + 1, the probability
distributions residing in nodes At

j and M t
j are corrected. The

corrected distribution over At
j can now be used to compute

the corrected distribution over physical state, St+1. Also,
given the distribution over At

j and i’s action at time t, the
probabilities of various observations available to j in each
of its alternative models at time t can be computed.

Next, i simulates j’s belief update for each of its models,
and its action and observation pair. This implements the τθj

function in Eq. 3 and updates the distribution in the M t+1
j

node. This completes the update of i’s beliefs over one time
step (i.e., implementing the τθj

function), and constructs one
branch of the reachability tree in I-POMDPs.

Given the above, the recursive character of the solution
process becomes transparent: Updating i’s own beliefs in-
volves computing solutions to i’s models of j, and perform-
ing j’s belief update, τθj

. The recursion terminates at level
not deeper than l, given the finitely nested I-POMDPi,l of
agent i.

Our implementation of I-DIDs and their solutions uses the
Netica package (Corporation 1996). Each model is spec-
ified within a DNE file. The recursion of nested models
is implemented by files containing probability distributions

4This corresponds to Pr(at−1

j |θt−1

j ) in the definition of agent
i’s I-POMDP.

over pointers to other DNE files which specify the models
of other agents.

I-DID Solution of the Multi-Agent Persistent
Tiger Game

The single agent tiger game was first introduced in (Kael-
bling, Littman, & Cassandra 1998). In this game, an agent
is confronted with two doors. Behind one is a pot of gold
(10 point reward for finding it) and behind the other is a
tiger that attacks the agent (100 point penalty). During each
time step, the agent may open either door or listen for the
tiger’s growl (listening incurs a 1 point penalty). When lis-
tening, the agent hears growls which indicate the location of
the tiger with some reliability. In the single agent game, an
agent updates its beliefs about the location of the tiger using
the growls until it becomes sufficiently certain about tiger’s
location to risk opening a door.

In the multi-agent persistent tiger game variation, first,
there are two agents facing the doors, and second, the tiger’s
location is reset with the probability of only 0.05 after
any door is opened. Agents also receive richer observa-
tions. Their observations come from the set {GL, GR} x
{CL, S,CR}. The elements of {GL, GR} represent tiger’s
growl from left and right door, respectively. The signals in
the second set represent door creak from the left, silence, and
door creak coming from the right. The creaks are informa-
tive of the action taken by the other agent. Thus, agents can
infer the other’s action from the creak signal, and use this as
an additional source of information about the location of the
tiger. Of course, a model of the other agent is needed to do
this.

Agents may have a variety of different reward functions.
Let us consider two types of reward functions: Friend and
Enemy. An agent with the Friend reward receives the sum of
the single agent reward structure (e.g. 10 + -1 = 9 if the first
agent opens the door with the gold and the second listens).
An agent with the Enemy reward receives the difference of
the single agent’s rewards (e.g. -100 - 10 = -110 if the first
agent opens the tiger door and the second agent opens the
door with the gold). When either door is opened, the tiger is
likely to switch locations with 5% probability. If no door is
opened, the tiger will stay put.

In this simple game, I-DID solutions elucidate many inter-
esting interactive phenomena. Below, we examine the opti-
mal behavior of agent i which begins the game with 99%
certainly that the tiger is behind the right door, a reward
function of Enemy, and 85% reliability of both creaks and
growls.

For simplicity, let us assume that agent i has only one
model of agent j. According to this model, first, j has
no information about the tiger’s location. Second, j hears
creaks with high reliability (95% accuracy), but its hearing
of the tiger’s growls is uninformative (uniform likelihood of
growls). Third, j has the Friend reward function. And fi-
nally, j has two models of i which are both almost certain
(99%) of the Tiger’s correct location. These models have the
Enemy reward function and the same O function as agent i.
These models are nesting level 0, so our recursion ends here.
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We examine this situation for a game of three time hori-
zons. To solve agent i’s I-DID, we must first solve its model
of j, which requires us to solve the two models j has of i
which are of nesting level 0. The solutions to the I-DIDs
of these agents are to open the door they believe hides the
gold for all three time horizons. This is because they begin
the game so certain of the tiger’s location and find it so re-
warding to get the gold that the value of acting with more
information (gained from listening) does not increase their
expected utility because it is ”wasting a turn”. Even though
these model’s are enemies of agent j, they do not model j’s
decision making process. Instead they assume uniform like-
lihood over agent j’s action.

This solution is now incorporated into the model of agent
j. The policy of this agent is described in the Figure 3.

Since agent j learns nothing from growls it needs to rely
entirely on the actions of agent i to learn about the location
of the tiger. We can see this behavior which is appropriately
called ”Follow the Leader.” Agent j listens to the action of
agent i, whom agent j believes is going to open the door
hiding the gold in each time horizon. After it hears a creak
indicating agent i’s action, it twice opens the doors hiding
the gold.

This policy is now incorporated into the top level I-DID.
Agent i’s best response to j’s policy in Figure 3 is its own
policy of OpenRight, OpenLeft, and Listen no matter
its observations. Note that the first action in this sequence
opens the door which i believes is likely to hide the tiger!
The reason is that, given j’s “Follow the Leader” policy, it
pays off for i to deceive agent j. The cost of this decep-
tion is rewarded in the subsequent time step by agent i’s
Enemy reward function. The deception in this example is
possible because agent j’s nesting leaves it to adopt a vul-
nerable “Follow the Leader” policy. Agent i does not open
any door at time 3 due to mounting uncertainties: Agent j
has imperfect sensors. If agent j did not hear CR after the
first time step, then the agent would not have fallen for the
deception. Similarly, with all these door openings, agent i is

less certain where the tiger is located. The L action is a cau-
tious (and optimal) action due to these reasons. Even still, if
agent j does OR which would be ideal, agent i still benefits
because it is rewarded when agent j is attacked by the tiger.

Conclusion
I-DIDs are a powerful tool for deliberative agents acting
in partially observable, non-deterministic, stochastic multi-
agent environments. I-DIDs act as a computational repre-
sentation of I-POMDPs are offer all the benefits tradition-
ally associated with influence diagrams including the ability
to make statistical queries, compact representation of proba-
bility distributions, and expressing the conditional elements
of a network in a clear, graphical manner.

For even simple examples, I-POMDPs can be very com-
putationally demanding. Thus, a good approximation tech-
nique is very helpful for agents with limited memory or de-
liberating time. I-DIDs can function as a useful finite look-
ahead approximation for I-POMDPs. Depending on avail-
able resources, the look-ahead of an I-DID may be extended
or contracted, trading off optimality for computational de-
mands.

In our future work we will explore approximate tech-
niques for evaluating I-DIDs, and we will apply them to an-
alyze other interactive decision making problems.

Future Work
Chess has long been a game of interest to the AI commu-
nity for many reasons. We are particularly interested in a
variant of chess known as Kreigspiel (or invisible chess).
In this game, players do not see the positions of the other
player’s pieces. A referee announces the results of each
agent’s modes (invalid move, capture, check, etc). Much
of the existing work in Kreigspiel assumes that one’s op-
ponent behaves randomly. Our approach includes modeling
the decision making process of the adversary. We will show
interactive phenomena as well as sophisticated strategies de-
veloped from deeper modeling in Kreigspiel.

There are many social behaviors which arise in I-DIDs.
Of particular interest is the phenomenon of deception. The
example in this paper, as well as most work on deception
demonstrate its existence when the deceived agent fails to
assign non-zero probability to a model of the other agent
consistent with the true model of the deceiving agent (Jehiel
2006). We will investigate the value of planning to deceive
other agents as an interesting facet of an agent’s decision
making process. In addition, a good methodology for pre-
dicting if one has been deceived would give an agent strong
motivation to revise its belief over models of the other agent.

We are also exploring several approximation techniques
for managing the set of models an agent considers with non-
zero probability. Two of the most promising approaches are
particle filtering (Doshi & Gmytrasiewicz 2005) and quantal
response.
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