Goal Oriented Extensive Games

Vittorio Amos Ziparo

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Universita di Roma “La Sapienza”

Ziparo@dis.uniromal.it

Institut far Informatik
Albert-Ludwigs-Universitat Freiburg

ziparo@informatik.uni-freiburg.de

ABSTRACT

In this paper we propose a framework for MultiAgent plan-
ning where heterogeneous self-interested agents, which in-
habit a partially observable strategic environment, pursue
possibly conflicting goals. We base our framework on Ex-
tensive Games: a Game Theoretic tool for analyzing the be-
havior of interacting agents. Compared to other approaches,
we try to narrow down the sources of uncertainty to the ac-
tions performed by other agents. Moreover, communication
is an integral part of the model and allows reasoning of dis-
tributed knowledge and action synchronization.

1. INTRODUCTION

In recent years increasing interest has been devoted to the
study of organization of intelligent agents and the interac-
tions among them. This is due to several motivations vary-
ing from the increasing development of networking infras-
tructures to the growth in the complexity of the problems
to be addressed.

In this paper we focus on MultiAgent planning, which is the
problem of finding a plan of action for a set of agents in
order to reach a set of goals, given a specification of their
initial state and actions.

In particular, we present a MultiAgent Planning framework
for self-interested heterogeneous agents with different goals
and different reward functions. For each agent i we define
a set of goal states valued by a function w;. The utility for
reaching a state s is defined for each agent ¢ as:

ui(s) = vi(s) — ci(s) (1)

where c;(s) is the cost for agent ¢ of reaching s, and its

valuation of the state s is defined as:

w;(s) if sis a goal state for agent i.
vi(s) =< —F if sis a fail state. (2)
0 otherwise.

where —F' is a negative reward.

‘We may consider as a particular case the one where every
agent has the same set of goals and the same valuation of
their worth. Nevertheless, the utility for a state may still
differ from agent to agent depending on the effort it spent
to reach it.

We assume that agents inhabit a partially observable en-
vironment, because their sensors may not be able to give
them access to the full description of the state at each point
in time. Thus the description of the state is generally incom-
plete and the agents may need to gather information locally
at execution time in order to achieve their goals.

From a global perspective, during execution, the current
state can be reconstructed for the system with certainty but
will be in general incomplete because some information may
not have been gathered yet.

From a local perspective, the environment is deterministic
except for actions of other agents. We refer to such an
environment as strategic. In particular, we assume that
agents are not able to perceive actions performed by the
other agents.

Agents are thus uncertain, when reasoning about action se-
lection, about which actions the other agents may have per-
formed and about which information they have gathered.

To reduce the uncertainty, communication actions may be
used. These actions have a cost and are explicitly repre-
sented in the model.

The remainder of this paper is structured as follows. We
first give some examples in Section 2 to motivate our ap-
proach. Then we focus on strategic reasoning in Section
3, where we show a Game Theoretic model (and a related
solution concept) called Extensive Game, which is capable
of representing the relevant aspects addressed by the prob-
lem. Although this model is very powerful, it is infeasible to

write it down by hand for realistic scenarios. For this rea-
son, we provide in Section 4 a compact representation, using
a Strips-like formalism and show how a particular subclass
of the Extensive Games can be built from it. Finally, in
Section 5 we present a discussion of the framework and a
proposal for future work on the topic.

2. EXAMPLES

In this section we show two MultiAgent scenarios to moti-
vate our approach. Let’s first think of a set of agents embed-
ded into PDAs, which have to organize a schedule for some
users. The users will provide some goals such as to organize
some meetings or go skiing.

The agents will have to coordinate in order to organize for
the meetings but will also have to plan the activities for the
users. An agent will prefer to organize the meetings in its
user’s office rather than incurring in the cost of having him
to move from an office to an other. Moreover, a schedule
where there is more free time for lunch or which reserves
some time to leisure activities will be preferred to one which
does not.

The agents will be self-interested in the sense that they want
to maximize the utility of their user. Maximizing the utility
of their own user may go against the interest of other agents
(i.e. of their users). There will thus have to be some strate-
gic reasoning which will have to take into account the use
of communication in order to synchronize the activities and
reveal some private information.

For example, one may want to condition their plans on some
exogenous event he is aware of. This may be to set a meeting
on one day depending if his flight is confirmed or if he finds
a substitute for a lecture. On the other hand, the user may
not want the agent to reveal all his private information or
his schedule for privacy reasons. Thus reasoning about when
and about what to communicate is necessary.

The second scenario we present is a Rescue scenario inspired
by the competitions at RoboCup [4]. In a Rescue Environ-
ment, a group of heterogeneous agents seek victims in an
unstructured environment (i.e a disaster scenario like a de-
structed building after an earthquake). In order to identify
a victim correctly, robots have to provide three types of ev-
idence out of six possible ones.

The robots have different sensors to prove evidences (e.g.
recognize human form or sound signals) and different ac-
tuator capabilities (e.g climbing stairs or opening doors).
This suits well to real scenarios where it is very hard to
build robots which have both many sensing capabilities and
a good mobility.

Thus cooperation and coordination will be necessary be-
cause agents, on the one hand, cannot achieve their goals
alone, on the other hand, may conflict with one another
while taking actions.

This is a cooperative setting where agents have the same
goals and agree on their valuation. On the other hand, we
assume that robots are provided by different organizations,
which may be willing to rescue as many victims as possible

but may not want their robot to take all the risks for doing
this. In fact, robots may get damaged or destroyed during
the rescuing operations in such a dangerous environment.
This will result in a competitive situation, where agents try
to minimize their risks given that the rescuing goal must be
achieved.

From now on, for the simplicity of the resulting games, we
will refer in our examples to the Rescue scenario.

3. EXTENSIVE GAMES

In this framework we are interested in studying the inter-
action of self-interested decision makers which are rational
(i.e. pursue well defined exogenous objectives) and reason
strategically (i.e. take into account their knowledge or ex-
pectations of other decision-makers’ behavior).

This topic has been studied successfully in the Game Theo-
retic literature [7] which provides a set of analytical tools for
understanding these phenomena. Most of these tools consist
in a model of the problem, usually called game, and a set of
solution concepts which can be applied to the game.

Thus, the first step for building our framework consists in
finding an appropriate class of models capable of represent-
ing the relevant aspects which we would like to address and
that were discussed in Section 1. We have chosen Finite Ex-
tensive Games with Imperfect Information for this purpose.
In the remainder of this section we will give a brief overview
of this tool, based on [7].

An Extensive Game is a detailed description of the sequen-
tial structure of the decision problems encountered by the
players in a strategic situation. In these games, agents are
not informed about the moves the other players will per-
form. Furthermore, players may be imperfectly informed
about some of the choices that have already been made and
about the other players’ private information.

Before introducing the formal definition of Extensive Game,
we will provide some notation which will be used throughout
this paper: We define a profile a z = (z;);en as a collection
of variables for each player. For any profile z = (z;);en and
any i € N, we let x_; be the list (x:);cn\ (i} of elements of
the profile x for all players except i. Finally, a sequence of
profiles will be defined as z*.

We are now ready to define an Extensive Game [7]:

Definition 1. An Extensive Game has the following com-
ponents.

e A finite set N (the set of players).

e A set H of sequences (finite or infinite) that satisfies
the following three properties.
— The empty sequence) is a member of H.
— If (ak)k:L,,,,K € H (where K may be infinite) and
L < K then (a*)=1,..1 € H.
— If an infinite sequence (") satisfies (
H for every positive integer L then (a”

k)k:l,. L €

a .
)ae1 € H.

Each member of H is a history; each component of
a history is an action taken by a player. A history
(a*)E_, € H is terminal if it is infinite or if there is
no (a®*') such that (a*)x=1, x+1 € H. The set of
actions available after the nonterminal history h is de-
noted by A(h) = {a : (h,a) € H} and the set of ter-
minal histories is denoted Z.

e A function P that assigns to each nonterminal history
(each member of H\Z) a member of N Uc. P is the
player function, P(h) being the player who takes an
action after history h. If P(h) = c then chance deter-
mines the action taken after the history h.

e A function f. that associates after every history h for
which P(h) = ¢ a probability measure f.(- | h) on
A(h), where each such probability measure is indepen-
dent of every other such measure. f.(a | h) is the
probability that a occurs after the history h.

e For each player: € N apartitionZ; of h € H : P(h) =4
with the property that A(h) = A(h') whenever h and
h' are in the same member of the partition. For I; € Z;
we denote by A(I;) the set A(h) and by P(I;) the the
player P(h) for any h € I;. Z; is the information par-
tition of player i; a set I; € Z; is an information set of
player 4.

e For each player i € N a preference relation >=; on lot-
teries over Z (the preference relation of player 7) that
can be represented as the expected value of a payoff
function defined on Z.

We will now show a simple example from the Rescue domain
introduced in Section 2. Moreover, in this example a tree
representation for Extensive Games, called game tree, will
be presented and used to build the model.

Ezample 1. Lets consider two heterogeneous robots which
have to verify if there is a victim behind an open door, thus
sense two potential evidences (el and e2) for it. The first
robot can close the door and sense evidence el. The second
one can only sense €2 and needs the victim to be visible in
order to correctly perform the action.

We can build the game as a tree as shown in Fig. 1. The
color of non-terminal nodes of this tree represents the player
who moves at that turn. We will use red for player one, blue
for player two, and green for chance (nature). The mapping
from nodes to players that we define for this game is the
player function.

At the root node, given our implementation of the player
function, player one moves. He may choose between closing
the door and sensing property el. In the latter case, the next
move will be performed by chance, which will determine with
equal probability if the property is true or false.

If the property el is false, the game will end because there
is no victim. Each agent will be awarded with an utility.
In this case, agent one has a negative utility because of the
cost of performing the action.

close_door

sense el=F[.5]| sense el=T [.5] sense e?

(-10) (-31,-31)

sense_e?

sense e2=F[.5] \ sense e2=T [.5]

(-1-1) (29,29)

Figure 1: The game tree of a simple game from the
rescue domain

Since agent two cannot perceive the actions of the other
agent, from its viewpoint, the two nodes at which it is its
turn to play are indistinguishable and thus are in the same
information set. This is represented by the number one in
the node, which is a unique identifier of the information set
for the player. The constraint that the agent must be able
to perform the same actions at all the nodes in the same
information set is satisfied. In fact, it will sense €2 in both
cases.

It is interesting to notice that, if agent two tries to sense e2
after the door has been closed, it will fail and both agents
will get an utility which is the result of a negative reward
(for the failure) plus the cost of performing the actions. In
the other case, after its move, nature plays and determines if
the agents reached the goal (i.e. if they effectively identified
a victim).

Once the structure of the game has been defined, we must
specify what the possible plans are which agents may use
as a basis for finding a solution. These plans are called
strategies in Game Theory and are formally defined as [7]:

Definition 2. A pure strategy of player ¢ € N in an Exten-
sive Game (N, H, P, fc, (Z;),(>:)) is a function that assigns
an action in A(I;) to each information set I; € Z;.

A player may also randomize over the actions in a strategy
or over pure strategies [7]:

Definition 3. A mized strategy of player i € N in an Ex-
tensive Game (N, H, P, f.,(Z;), (>3)) is a probability mea-

sure over the set of player i’s pure strategies. A behavioral
strategy of player i is a collection 8;(I;)r,ez, of independent
probability measures, where (3;(I;) is a probability measure
over A(I;).

Thus agents must agree on set of strategies; But the question
remains which ones. Although many solution concepts in
the Game Theoretic literature exist for Extensive Games
with Imperfect Information, in this paper we will focus on
Nash Equilibria. The other solution concepts are subsets of
Nash equilibria and aim to rule out those equilibria which
are not credible. In this paper we will follow a different
approach: We will select the equilibria which maximize the
social welfare (i.e. the product of utilities) and among those
the ones which maximize the system performance (i.e. the
sum of utilities) [8].

Thus we can now define a Nash equilibrium for an Extensive
Game [7]:

Definition 4. A Nash equilibrium in mixed strategies of
an Extensive Game is a profile o* of mixed strategies with
the property that for every player i € N we have:

O(0%4,07) = O(c”;, 0;) for every mixed strategy o; of player i.

where O is a function returning the expected value of the
utility for each agent, when all commit to a profile o* of
mixed strategies.

4. A COMPACT REPRESENTATION

Game trees which model non-trivial problems are usually
huge, and it is practically infeasible to build them by hand.
It is thus necessary to find a way to represent them more
concisely.

In this section we present a novel approach for represent-
ing and building a subset of the Extensive Games which we
call Goal Oriented Extensive Games. These will be charac-
terized by having conflict-free situations. These property is
enforced while building the tree and may be acheived with
the use of communication. In fact, we introduce in our rep-
resentation communication primitives and their operational
semantics, which allow for reasoning of distributed knowl-
edge and action synchronization.

We represent the game in terms of: i) a description of the
initial state, ii) a description of the goals, iii) the timing
constraints of the agents, iv) a description of the actions, and
v) the number of agents. In particular, actions are described
in Strips-like fashion, with some minor extensions for non-
instantaneous actions and for dealing with heterogeneous
agents. Furthermore, we add the possibility for an action to
sense a property in the environment. The description of an
action has the following components:

e a unique action name.
e a set of agents who may perform the action.

e preconditions which must hold before the action can
be executed.

o during conditions which must hold throughout the ac-
tion execution.

e c¢ffects which must hold after the action execution.
e if it is a sensing action, the sensed property.

e a function ¢ : S x N — RT returning the time needed
for agent ¢ € N to perform the action in a given state
seS.

e a function ¢ : S X N — R returning the cost for agent
i € N to perform the action in a given state s € S.

‘We build the tree associated with the game by expanding the
reachable states for a given time horizon. This consists of a
directed graph whose edges represent actions. Furthermore,
a node has the following properties:

1. For each agent i, an information set is; consisting of
all the actions that the agent ¢ knows to have occurred.

The history h € H at the current node.
The player turn.

Current timestamp for each agent.

otk W N

If the node is terminal, an wutility u; for each agent i.

We first initialize the history of the root node and its in-
formation sets with the empty set. The first player will be
player one, and the timestamps will be set to zero. We then
expand the reachable nodes in a breadth first search.

For each node that we want to expand we apply all the ac-
tions which are applicable at the belief state of the agent
in turn to play and which can be executed within the time
constraints. The belief state and the global state can be
respectively reconstructed, applying the actions of the in-
formation set of the current player and of the history to the
initial state.

The successor node can be built from the current node ap-
plying an action in the following way: at first, we set the
history h and the information set is; of the current player 4,
by updating them from the current node with the performed
action. We then set the next player for the successor node
with the function P(h).

In order to implement the player function P, an ordering be-
tween agents defines the next player at the successor node.
For example, if we have two players, after player one, player
two will play and then player one will play again. If the
performed action is a sensing action, the player for the suc-
cessor node will be nature, while the player that would have
played at that node will play after nature moves. If there
are no applicable actions at a node, the player gives up his
turn and the next player in the ordering will play.

Nature (i.e. chance) is a special player that always plays
the same behavioral strategy whatever the other players do.
In this framework, we assume that nature may perform two
actions: One revealing that the sensed property is true and

one that it is false. In the following examples, for simplicity,
we will assume that fc(a | h) = 0.5 Va € A(h), but different
functions can be implemented depending on the domain.
The player who performed the sensing action will be able
to observe nature’s effective moves, and his information set
will be updated accordingly.

Finally, we update the timestamp at the successor node for
the player who performed the action at the current node.
This is trivially the current timestamp plus the estimated
time to perform the action.

We allow agents to continue acting also after having achieved
some goal until this satisfies time constraint. This is because
goal nodes with a higher utility may eventually be reached.

Every node which has no applicable action for any player,
and thus cannot be further expanded, will be a terminal
node. The utility values for these nodes are calculated using
formula 1.

The proposed framework is dealing with goal oriented agents.
Thus we would like to rule out all those solutions (in this
case Nash Equilibria) where no agent reaches a goal. To bias
this behavior, we collapse the subtrees that do not reach any
goal to single leaf nodes of the game tree.

It may be noticed that the constraint that A(h) = A(h'),
whenever h and A’ are in the same information set, is satis-
fied. In fact, for each information set, we will have the same
belief state and timestamp for each agent, thus the same
actions will be applicable at all its nodes.

4.1 Interactions Among Actions

To safely execute actions, we need to understand interac-
tions among them. In order to execute two actions in par-
allel, since we have no control over their rates, all the inter-
leavings must be possible. Taking into account the limited
effects of actions [1], we can define the actions as cormmut-
ing if each of preconditions, during conditions and effects of
each action is satisfiable with all the conditions that define
the other action.

Even though two actions do not commute, we can still exe-
cute them safely by suspending one action during the execu-
tion of the other. For this to be possible, the preconditions
of the suspended action have to be satisfied after the termi-
nation of the other action.

Let us assume that, for every history, actions performed by
each agent commute with the actions performed by the other
agents. In this case, the strategies are causally independent.
‘We can enforce this assumption by not expanding nodes that
correspond to histories where there is at least an action of
an agent which does not commute with at least an action of
another agent. These nodes will be labeled as failure nodes,
and a penalty will be assigned to every agent.

On the other hand, from a strategical viewpoint, if each
agent, as we assumed, cannot perceive the actions performed
by the others, the situtation in which the players are in-
volved is essentially the same as the one captured by a game
in which they choose actions simultaneously.

It is worth noticing that, although the structure of the tree
is sequential, during execution agents act asynchronously.

4.2 Communication

If the domain is tightly coupled, the commuting action as-
sumption may be overly constraining. In fact, two non com-
muting actions may sometimes safely be executed if some
ordering constraints are added. To order actions between
agents we need some synchronization primitive which can
be implemented through communication.

Let us define the set of agents which can communicate as ca
and ca; as ca—{i¢}. We will add for each agent ¢ € ca the set
of actions communicateto(r) for all r € ca; and a donothing
action. If an agent ¢ performs the latter action, it gives up
its future turns to play until it receives a communication
from an agent j. When an agent i receives a communication
from agent j, his timestamp for that node is updated with
maz(timestamp(s,i), timestamp(s, j)).

We can now expand branches of non commuting actions if
they are safe when ordered and a communication enforces
such ordering. With the use of communication, we may
now have ordering constraints between actions performed in
a local plan with actions from the other agents’ plans.

Communication may be useful, not only to suspend activi-
ties during regions of the plan, but also to enrich the local
knowledge of agents. As previously mentioned, agents may
not be informed about the actions the other agents have
performed. Moreover, the information about nature moves
is distributed upon the information sets of agents who per-
formed sensing actions. Thus, if all the local information
sets were merged, the global (incomplete) state would be
known with certainty.

The only relevant information for the strategic reasoning
in an Extensive Game are the actions which have been per-
formed. We can thus use the known performed actions as the
information to be exchanged. In particular, we can commu-
nicate any subset of the information set. By adding commu-
nication, we allow local information sets to contain actions
relative to other players.

We can thus, through the use of communication, achieve
action synchronization when necessary and have the oppor-
tunity to reconstruct locally larger portions of the global
state.

In order to avoid long sequences of communications, we con-
strain the applicability of this type of actions. In fact, we
communicate if for at least one node of the actual informa-
tion set this is informative for the recipient. To be informa-
tive means that in the sender’s information set there is at
least an action which is not in the recipient’s information
set.

As the following example shows, communication is not only
needed for informing about sensed information or action syn-
chronization, but it allows more tight cooperation when nec-
essary. In the example, for the sake of simplicity, we will re-
strict our attention to communications which inform about
the complete information set.

do_nothing

open_door do_nothing

(-0.1-1) 2 (-0.1,-0.1)

sense_e2 | do_nothing comm_to 1

y
(-01,2) (-01-1.1)

sense_el | do_nothing comm_to 2

sense_el=F[.5] \sense el=T[.5] do_nothing
(-1.1-15) (-0.6,-1.6)

sense_e? \ do_nothing sense_e2=F[.5] \ sense e2=T [.5]

(-1.1-16) (-0.6,-2.5)

sense e2=F[.5] \ sense e2=T [.5] do_nothing

(-11,-2.5) (-0.7,-2.5)

do_nothing \ comm_to_2 sense el=F[.5 \sense el=T[.5]

(-16-25)

do_nothing comm_to_1 do_nothing

(28.8,27.4)
do_nothing do_nothing
(28.3,27.4) (28.3,26.9) (28.3,27.4)

do_nothing do_nothing

4
(28.7,26.9) (28.2,26.9)
do_nothing do_nothing

(27.8,27.3) (27.8,26.8)

Figure 2: A game tree for the rescue domain using communication.

comm_to_1

do_nothing

do_nothing

(28.326.9)

comm_to_2

do_nothing

(27.8,26.9)

4.3 Example

Consider two heterogeneous robots in the Rescue domain.
The goal is to bring the evidence of a victim at a location
which is behind a door. If the victim is insight, one agent can
use a camera to look for human form (evidence el), while
the other can open a door and can sense the temperature of
objects behind the door (evidence e2). In the initial state
agents only know that the door is closed.

The time needed to perform each action is 500ms with the
cost, of one. donothing has a duration that depends on the
reception of a communication, as previously described, and
has the cost of 0.1. Communication has the cost of 0.5 and
is instantaneous (but may not be in general).

The goal states are those where both el and e2 are true and
the agents have one second to reach one of such states.

Without communication, our algorithm would produce an
empty tree because, in this case, it is impossible to reach
a goal and thus not worth playing any game. In fact, if
we analyze the game more deeply, since the applicability of
actions is based only on local knowledge, the first agent will
never know that the door has been opened and thus never
sense for the victim.

Fig. 2 shows the game tree produced by our algorithm. It
can be noticed that, due to the timing constraints, the only
possible plan starts with agent one waiting for agent two
opening the door and communicating the accomplishment
of the action.

Although a strategy for a player prescribes an action for
every information set (even though some information sets
will never be reached if every agent follows the strategies
in the equilibrium), we will define a plan as the subsets of
the strategies in the equilibrium which refer to reachable
histories.

Let us have a look at the plan resulting from one of the Nash
equilibria: agent one does nothing, while agent two opens
the door and communicates. At this point, player one senses
the property el because is informed that the door has been
opened. If the property is false, the game ends (there is no
way of achieving the goal); if it is true, player two will sense
e2. In the latter case, if the result of the sensing action is
true, both players will do nothing because there is no way
to further improve the worth of the goal.

5. DISCUSSION AND FUTURE WORK

In this paper we propose a framework for MultiAgent plan-
ning where heterogeneous agents are self-interested and pur-
sue potentially conflicting goals. We base our framework on
Extensive Games, a Game Theoretic tool for analyzing the
behavior of interacting agents.

In the MultiAgent planning literature there are several ap-
proaches which deal with self-interested agents. In partic-
ular POSGs [3] are a framework which extend Dec-POMDPs
[2] for having different reward functions for each agent. These
models are used to represent partially observable stochastic
games, where actions have stochastic effects and the envi-
ronment is partially observable.

It has been shown in [5]| that a finite horizon POSG can
be modeled as an Extensive Game. From a computational
perspective, the POSGs are very hard to solve, and our ap-
proach is to try to narrow down the sources of uncertainty
to simplify the problem.

In fact, in our framework, we assume that the only source of
change in the environment are the agents in the system and
that their actions are deterministic. Thus, we constrain our
reasoning to predicting their rational behavior. Moreover,
we mitigate the sources of uncertainty, relative to the per-
formed actions and private information gathered, through
the use of communication actions which are defined as an
integral part of the model.

‘We implemented the proposed algorithm and fed the results
to gambit [6], which is a library of Game Theory software
and tools for the construction and analysis of finite extensive
and strategic games. The preliminary results show that,
although the games we produce can represent all the relevant
aspects of the class of problems we want to address, finding
a solution is infeasible for all but trivial games. Thus, we
need to develop a more efficient algorithm for building and
solving goal oriented extensive games.

In particular, our future work involves studying the com-
plexity of the problem and designing an efficient algorithm
for solving non trivial cases. This could be achieved by
building a reduced game tree (trying to exploit the struc-
ture of the problem domain) and by finding Nash Equilibria
with some approximation technique.

6. REFERENCES

[1] M. P. Georgeff. Communication and interaction in
multi-agent planning. In A. Bond and L. Gasser,
editors, Readings in Distributed Artificial Intelligence,
pages 200-204. Morgan Kaufmann Publishers, San
Mateo, CA, 1988.

[2] C. V. Goldman and S. Zilberstein. Decentralized
control of cooperative systems: Categorization and
complexity analysis. J. Artif. Intell. Res. (JAIR),
22:143-174, 2004.

[3] E. Hansen, D. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games,
2004.

[4] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara,
T. Takahashi, A. Shinjou, and S. Shimada. RoboCup
Rescue: Search and rescue in large-scale disasters as a
domain for autonomous agents research. In JEEE Conf.
on Man, Systems, and Cybernetics(SMC-99), 1999.

|5] H. Kuhn. Extensive games and the problem of
information. Contributions to the Theory of Games II,
pages 193-216, 1953.

[6] R. D. McKelvey, A. M. McLennan, and T. L. Turocy.
Gambit: Software tools for game theory, version
0.2005.12.12, 2005.

[7] M. J. Osborne and A. Rubinstein. A course in game
theory. MIT Press, 1994.

[8] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation
Among Computers. MIT Press, Cambridge,
Massachusetts, 1994.

