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Abstract

With the rise of ecommerce and the increase in volume of business pro-

curement carried out electronically, double auctions have received much

attention. This attention has been largely in the area of economics, but,

increasingly, is in the area of computer science. However, there is no such

thing as “the double auction”. Instead there is a profusion of terminology

and a wide variety of different market institutions that are all, confus-

ingly, described as “double auctions”. This paper aims to identify some

order in this profusion. First, the paper aims to document the terminol-

ogy and to identify the variety of market institutions that are grouped

under the “double auction” heading. Second, the paper describes some of

the theoretical and experimental work that has been carried out on dou-

ble auctions. Finally, the paper sketches some of our recent work which
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aims to synthesize a common set of experiments from those detailed in

the literature.

1 Introduction

In recent years, double auctions have become a topic of much interest in both the
economics and computer science literature. While work from the economics side
can be seen as part of the steady progress of auction theory from simpler kinds of
market, such as Dutch auctions, to more complex markets, that on the computer
science side seems to be driven by the growth of ecommerce. With many new
electronic markets starting up, computer scientists are increasingly involved
in building market systems. Furthermore, market-based techniques [6, 71] are
finding application as general approaches to resource allocation, often through
the creation of artificial (in the sense that they do not involve the exchange of
money) markets.

From some of the descriptions of the double auction institution that one often
finds in the literature describing this recent work, it is easy to get the impression
that “the double auction” is a single concept like the English or Dutch auction1.
However, on looking more closely into the matter (for example when trying to
implement such a market), it quickly becomes clear that there is a wide range of
different variants of the double auction. The first aim of this paper is to lay out
some of these variations, and, in particular, the differences between them. The
second aim of this paper is to describe some of the theoretical and experimental
work that has been carried out on double auctions, some of which has been
unjustly ignored by a computer science audience, and to identify what this
work does and does not tell us (with an eye to spotting places where additional
experimental work is necessary).

It should be noted that this paper concentrates on a specific segment of
the literature on double auctions. It focusses on work that is concerned with
abstract markets — typically simple commodity markets — rather than the
detail of specific markets (though it does describe the operation of the New
York Stock Exchange at some length), on work that examines the equilibrium
properties of such markets, and, especially, on work that deals with how traders
make descisions on how to make offers. It is not, for example, interested in
the kind of detailed modelling of financial markets explored in [50] or [?]. This
interest reflects our wider interest — which is in the design of new traders and
the interaction between such designs and the designs of markets rather than in
understanding existing markets.

1.1 Terminology

We start by considering the description of the double auction market given by
Friedman [14], which kicks off the influential volume [15] describing work from

1Though there are variants of both the English and Dutch auctions, the range of this
variation is small.
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the Sante Fe Insitute conferences on double auctions that were held in 1990 and
1991.

We deal with interactions between agents, traders, and commodities that
they own. We will usually deal with two commodities, the good and money.
Sometimes this will be extended with additional kinds of good. All goods are
taken to be indivisible, while money is divisible. The interactions between the
agents lead to exchange, a process whereby the traders freely alter the allocation
of commodities, without changing the total quantity of the commodities. Thus
traders may choose to swap a good for some quantity of money, and the amount
they choose is related to the value the trader places on the good. This value is
known as the trader’s private value or limit price. The latter terminology comes
from the fact that if a buyer pays more than its private value, or a seller accepts
less, then it considers it is trading at a loss.

A market institution defines how this exchange takes place. It does this by
laying down rules about what the traders can do (which comes down to specify-
ing what messages they can exchange) and rules for how the final allocation of
commodities given the actions of the traders. When the allocation of commodi-
ties changes, a process known as the market clearing, the difference between
the final and initial allocations is the net trade, and this has a component for
each trader in the market which shows the change in the amount of money and
good that they hold. The minimal net trade is when two traders have non-zero
components, and any trader that has a non-zero component has an associated
transaction price (which we will also sometimes call the trade price)—the abso-
lute value of the money component divided by the good component2. Traders
with positive good components are buyers, those with negative good components
are sellers. Typically we will deal with so-called one-way traders, meaning that
traders are either buyers or sellers but not both.

So far we have not said much about what form the market institution takes.
Friedman [14] defines an auction as a market institution in which messages from
traders include some price information—this information may be an offer to buy
at a given price, in the case of a bid, or an offer to sell at a given price, in the case
of an ask—and which gives priority to higher bids and lower asks. We can allow
only buyers or only sellers to make offers, in which case the market is one-sided,
or we can allow both, in which case it is two-sided. A double auction is a two-
sided auction, and from here on we will only deal with double auctions (though
many of the distinctions we identify could apply to other kinds of market as
well)3.

1.2 Structure

Now, given this set of definitions, we are ready to proceed with the cateloging of
the double auction literature. The structure of this paper is as follows. Section 2
identifies the varieties of market that one can find in the literature, and Section 3

2Neither component is allowed to be zero if the other is zero.
3Friedman [14] distinguishes quasi-auctions as well as other kinds of market—a quasi-

auction has most of the features of an auction but not all.
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describes in detail one particular double auction market, the New York Stock
Exchange. Section 4 discusses the theoretical work on some of the varieties of
double auction, and Section 5 then briefly surveys experimental work on the
double auction, leaning heavily towards work that uses artificial agents rather
than human traders. Finally, Section ?? describes some of the work we have
been undertaking which aims to replicate and relate work described in previous
sections. Finally Section 6 concludes.

2 Types of double auction

The aim of this section is to suggest a framework into which all existing work on
double auctions can be fitted, and to then identify into which part of the frame-
work that existing work fits. This suggested framework is not really new, but a
synthesis of suggested terminology and partial clasifications that are scattered
across the literature.

2.1 Attributes of double auctions

A double auction can be one-shot or it can be repeated. If it is repeated (and as
we will see below, most experimental work has looked at repeated auctions), then
the auction has several, as opposed to one, trading periods. The reason that it is
worth distinguishing repeated auctions as opposed to one-shot auctions is that
in repeated at the start of each trading period agents receive a new allocation
of commodities thus modelling [61]:

conditions of normal supply and demand

but have the scope to remember the results of trading in the previous period.
Thus, after several periods, we can expect the market to reach some kind of
steady state. In this way trading periods often correspond to calendar days,
with traders receiving new allocations at the start of each day, and so the term
“day” is often used as a synonym for “period”. Of course, running a number
of periods with the same supply and demand curve is a nicety of experimental
work — in real auctions supply and demand curves are not static, and some
work has considered such cases. For example [24] and [41] look at changes in
supply and demand in the context of the New York Stock Exchange, and [19]
consider the performance of artificial trading agents under such conditions.

The notion of periods can easily be confused with what we will call rounds
(known under several names in the literature). Often in experimental work,
bidding between traders is synchronised in rounds — in each round every trader
has the chance to make an offer. This is typically an artifact of an experimental
auction between automated traders, but one can imagine real double auctions set
up in this way, with the auctioneer controlling the submission of offers (but not
their content). There may be many rounds in a period, and the usual situation
in the literature seems to be to have sufficient rounds that every trader has the
chance to trade if they desire to.
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Figure 1: Illustrative supply and demand curves for a double auction.

In a periodic4 or discrete time double auction, clearing happens some fixed
period of time after the auction starts. This clearing might happen several
times in each trading period, or may happen just once at the end of the trading
period. The classic example of a discrete time double auction is the call market
or clearing house5 used to determine the opening prices on the New York Stock
Exchange. Traders submit bids and asks until the end of the trading period and
these are used to determine the supply and demand curves for commodities.
Example supply and demand curves, taken from [6], are shown in Figure 1.
These are based on having traders A, B, C, D and E all looking to supply 10
goods with limit prices of $15, $20, $25, $30, and $35 per good respectively, and
F, G, H , I, and J looking to buy with limit prices of $15, $20, $25, $30, and $35

respectively. If the trade price is set below $15, no seller will be prepared to
trade, while if the price is between $15 and $20 then only A will trade, and so
on. Similarly, at a price above $35 no buyer will trade, while at prices between
$30 and $35, only J will trade, and so on.

Once these curves are established, they are used to set a price for trading,
the price at which supply equals demand in this case6. The price at which
supply equals demand is known as the equilibrium price, and in the case of
the market in Figure 1 is a price of $25. In this kind of auction, it is an
insitution external to the traders—the clearing house that gives the market
one of its names—that is the entity that decides the trade price. In other

4“Periodic” in this sense does not, confusingly, relate to whether an auction operates over
one or many periods in the sense described above. As a result, we will prefer the term “discrete
time” to “periodic” in this paper.

5Though “call market” and “clearing house” seem to be the most common names for a
discrete time market, [38] also class such entities as “batch markets”. Note that Friedman
[14] uses “call market” to indicate a market that clears just once, while a “clearing house” is
a market that clears many times.

6Though as [40] explains, as as we will discuss below, the New York Stock Exchange doesn’t
work quite like this.
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kinds of auction the traders themselves set the price, and we will distinguish
the two cases as institutional price-setting and non-institutional price-setting
respectively. Similarly either the traders themselves or the institution can decide
when allocations will change. The traders can do this by indicating acceptance of
a bid of ask, and the institution can do this by encoding it in a rule, for example
that traders whose bid and ask values cross (in other words where a buyer is
willing to pay more than a seller is asking for) must trade immediately. We
distinguish these cases as institutional trade-determination and non-institutional
trade-determination respectively. Both of these are aspects of clearing.

Whatever form of clearing is used, the effect of the discrete time form of the
double auction is that all traders establish their final allocations at the same
time. (The final allocation may be the same as the intial allocation of course).
The continuous or open-outcry double auction, in contrast, does not have a
specified time for clearing. Instead, in non-institutional trade-determination,
buyers and sellers can choose to accept a bid or ask, and then update their
allocation, at any point in time. In institutional trade-determination, the insti-
tution effectively has to try to clear the auction (which means find a bid and
ask that cross) any time a new bid or ask is made by a trader. As Friedman and
Rust [16] note, the New York Stock Exchange traded as a call market until the
1860s and its move to continuous trading was driven by growth intrading vol-
ume7, suggesting that it is superior throughput that is the reason for selecting
the continuous rather than the discrete-time form of the double auction. How-
ever, there can be a cost for this increased throughput—as Gode and Sunder
[21] show for their zero-intelligence agents (see below) the expected efficiency of
a call market is higher than that of a continuous double auction, and is is easy
to verify that this will be the case for other trader behaviors as well.

The rules of the institution thus define the way that the market clears,
and the division between markets using different kinds of clearing is the most
obvious distinction to be made between double auction variants. However, there
are other important distinctions. One of these is what conditions, if any, that
the market puts on successive bids and asks. Gode and Sunder [20] give a typical
rule when they say that:

. . . any buyer can enter a bid by stating his or her identity, unit price
and quantity. The same buyer or other buyers can subsequently raise
the bid.

Here unit price is the price that a buyer is prepared to pay for a single good,
and this is constrained to increase from bid to bid until a transaction occurs.
Such a restriction is called a bid/ask improvement rule in [21]. Cliff [6] notes
that since this rule is enforced by the New York Stock Exchange, (nyse) it is
often referred to as the nyse rule (or, as in [48] as “New York rules”).

Obviously, in order to be able to ensure that they make a higher bid (or
lower ask which is the natural complement of a higher bid), every agent needs
to know what other agents bid and ask. However, this kind of knowledge is not

7See footnote 24 for more on this.
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always available. In a classic open-outcry market (and here the classic market is
the commodity trading pit at the old Chicago Board of Trade [16]), every trader
is able to hear every bid and ask made (or at least has the potential to do so)
8. However, less priviledged traders [14] do not have access to current trades.
Something similar is the case at the New York Stock Exchange, where specialists
[25] have complete access to all bids and asks for a type of good (and there is one
specialist for each type), while floor traders are allowed to check the unmatched
bids and asks, so some will periodically have this information while others will
only know the value of the highest unmatched bid and lowest unmatched ask
([77] states that this is the most common information provided by a continuous
double auction). This latter kind of information is known as the bid-ask quote.
It is also possible to imagine traders just having information about the price
at which the last trade was conducted (which bounds the winning bid and ask
rather than giving it precisely) or having no information at all (so any offer has
to be based on the trader’s private value alone). Taking all of these together
we can characterise an auction by the kind (or kinds) of information provided
to the traders.

In a continuous double auction it makes sense for traders to get some in-
formation about prices, and indeed this kind of feedback is seen as “a major
feature” [61] since it is the only way a trader can identify how others value the
good and therefore decide how to bid (in other words bids and asks are taken
as indications of private values) and as Rust et al. [55] point out, this allows
auction participants to learn about one another’s preferences. Although some
call-markets do not issue price quotes—Friedman and Rust [16] point out that
this effectively reduces the call market to a kind of sealed-bid auction—it makes
sense for them to offer such information for the same reason. The importance
of being able to learn is hard to overemphasize. The double auction, whether
continuous or periodic (provided there is more than one period):

. . . appears to be too complex a game to yield a clear game-theoretic
solution [21]9

Since it is so hard to predict how other traders will behave in this kind of market,
it is not possible to figure out the best way to behave before the auction starts
— the only way to determine the best way to behave in a double auction is to
learn that behaviour as the auction unfolds.

Another related issue is what happens to unmatched offers. Clearly if a
trader changes its bid or ask, then the old one will be discarded, but should
anything be done to ones that are (or haven’t yet been) updated at the time

8This is the kind of market described in [48] where:

Typically bids are tendered verbally. An auctioneer, upon hearing a bid (offer)
writes the bid (offer) and the index of the agent on the chalkboard. The bid
(offer) is repeated verbally and the floor is then open for new bids and asks.

9This sentiment is echoed by [55], and supported by the fact that all attempts to analyse
double auctions that we are aware of, for example [21, 59, 77], only try to analyse call markets
and do so under very restrictive assumptions.
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Figure 2: Illustrative supply and demand curves for a double auction.

the auction clears? Unlike the situation with price quotes, there are just two
choices. Either the unmatched bids are left open until either they are filled or
the auction closes, giving a persistent shout auction—a feature that [66] argue
is true of real continuous double auctions—or they can be cleared as in [21] and
[6].

The first quote from Gode and Sunder [21], above, also illustrates another
distinction that can be made between types of double auction. Some are, implic-
itly or explicitly, single unit markets which only allow traders to bid or ask for
individual items at a time. Others are multi-unit markets which allow traders
to bid and ask on several units (and indeed change the number of units between
offers). Single unit markets can, and often in experimental work do, include
agents that wish to trade multiple units, but only trade a single unit at a time.

Another important distinction between different markets is what mechanism
is used to establish the price at which a trade occurs (as opposed to when a trade
can occur and if it does when it can, as discussed above). In situations such
as that in Figure 1, there is a single price at which trading will be acceptable,
$25, and so this will be the trading price. However, in the market described by
Figure 2, there is a price tunnel between $20 and $25—any price in this range
will be acceptable. Price setting mechanisms are required because in general
supply and demand curves overlap as in Figure 2. These mechanisms, in the
main, make most sense where price-making is institutional. In double auctions
with non-institutional price-setting, the price is usually determined by the first
offer to be made of the pair of offers that end up being matched — the second
offer is considered to be an acceptance of the first.

In call markets, it is typically the case that several buyers and sellers have
bids and asks that match when the market clears. Since they are all trading
identical goods (at least in all the markets and studies we are considering here
this is the case), there are two obvious ways we can decide the trading price for
each matched pair—either we can choose one price and apply it to all trades, or

8
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we can choose prices for each trade individually. The first is generally termed
a uniform price [77], the latter a discriminatory price. One can easily see
arguments for both choices. Uniform price auctions ensure that no trader is
discriminated against because of a wayward bid (caused by a misreading of the
market for example)10. Discriminatory price auctions ensure that the price a
trader pays is determined by its bid and that of its trade partner, and supposedly
this reflects their amount that they value the good being traded.

Continuous double auctions are, almost by definition, discriminatory-price11,
although it is possible to imagine some kind of institutional price setting that
matches traders continuously, but then sets the trade price uniformly at the
end of the trading “day”, perhaps to the equilibrium price that the market
reaches12. Discrete-time auctions are typically uniform-price, with transaction
price set to the price that gives equilibrium, but one can also imagine a discrete-
time auction in which prices are set using a discriminatory mechanism (though
there is no obvious reason for doing this).

Whether an auction is uniform or discriminatory priced, it needs to have a
mechanism for choosing the price, and there is no standard mechanism for doing
this. Instead a number of different mechanisms have been proposed and studied
in the literature. [77] studies the application of the mth price mechanism to a
uniform-price call market—here the trading price is that of the mth highest bid
at clearing, a price that will be less than or equal to the highest matched bid
(obviously) and thus greater than or equal to the lowest matched ask. [59] also
studies a version of the the call market. In this variation, offers are sealed and so
only known to the auctioneer, and the so-called k-double auction mechanism (k-
da) rather than the mth price mechanism is used to set the trade-price between
the lowest matched bid and highest matched ask13. For the k-double auction
mechanism we choose a value k between 0 and 1, and then set the price to be:

kb + (1 − k)a

where a is the ask, b is the bid, b > a, and [a, b] is the interval in which a
price can be selected. One could either apply this mechanism in a uniform-
price auction (where the interval is taken across all matching bids and asks)
or in a discriminatory auction, and it is also possible to use it in a continuous
double auction. [77] call the parameter κ rather than k when it is used in a
discriminatory rather than a uniform-price rule.

10Though its bid will typically help to set the trading price, through a mechanism like
picking the mth price.

11Indeed Madhavan [38] distinguishes continuous and discrete-time auctions precisely by
the fact that continuous auctions use discriminatory-pricing and discrete-time auctions use
uniform-pricing.

12We have recently [47] been looking at a form of auction which, though discriminatory
price, tries to learn the equilibrium price, and in doing so sets the transaction price in a way
that is affected by previously matched offers as well as the ones involved in the transaction.

13The lowest matched bid is the lowest bid to exceed at least one ask, and the lowest
matched ask is the lowest ask to exceed at least one bid. Thus these two offers are the ones
on the boundary of trading, and a price that is set between them will be acceptable to every
trader with a matched offer.
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The version of the k-double auction obtained when k = 1, and the price is
determined by the lowest matched bid, is called the buyer’s bid double auction
(bbda) [58]. A variation on this, the modified buyer’s bid double auction (the
mbbda [32], or mda [59]), where the price is determined not by the lowest
matched bid, but by “the lowest bid to the left of the intersection of the supply
and demand (curves)”14 [32], has also been studied [32, 59]. Note that both
the buyer’s bid and modified buyers bid double auctions involve sealed bids, in
contrast to the open bidding of a typical call market, and since the buyer’s bid
double auction is that obtained by running a k-da with k = 1, this mechanism
is also known as the 1-da. we should note that although the k-da mechanism,
as introduced, works with sealed bids, there seems to be no reason why it should
not work perfectly well for an open-outcry market.

A k or κ double auction treats all trades of a given type alike — the parameter
sets the fraction of profit that goes to buyer and seller, and all buyers and sellers
get that fraction. The buyers bid double auction and the modified buyers bid
double auction behave in the same kind of way. The mechanism described above,
where the price of a trade is the price of the bid or ask that was made first, and
so it “on the table” when the match occurs, will clearly allocate all of the profit
in the transaction to the trader who made the deal possible. This trader can be
either buyer or seller, so this mechanism does not reduce to any version of the
k or κ double auction.

Another aspect that needs to be considered is the timing of the offers made.
In much of the theoretical work that has been carried out, it is assumed that
offers are made simultaneously, since this simplifies the analysis), creating a
kind of double sealed-bid auction. Real markets, in contrast, deal with offers
that arrive over time, allowing traders to make inferences from the offers made
by others. Indeed, in many of these markets market quotes play an important
role in providing information that allows traders to decide on what prices to
offer.

Now, so far we have assumed that all trading takes place between peers—
between agents that either buy or sell—and that the auctioneer organises the
market but does not trade. However, there are markets in which the role of
auctioneer is taken by a market maker who also makes trades. [38] distinguishes
between quote-driven and order-driven markets. The latter are the kinds of
auction that we have discussed up to now, markets in which traders submit
orders and these are either matched with existing orders, or wait on an order
book until a matching order is received by the auctioneer. Quote-driven systems,
like those that operate on nasdaq and the London Stock Exchange (lse), are
continuous dealer markets in which traders who wish to execute an order can
trade directly with the market maker — it is part of the market maker’s job to
provide liquidity in this way, always buying or selling goods on demand. While
the continuous dealer markets on the lse, nasdaq and the specialist part of
the nyse have only one market maker per type of stock (the specialist for that
stock), other markets, for example the Chicago Board of Options Exchange

14In other words the bid that is the next highest bid after the lowest matched bid.
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(cboe), operate as multiple dealer markets [36] where several market makers
operate and traders choose which one to deal with. From the traders’ point
of view, the advantage of a quote-driven system is that they can always find
out what price they will trade at before submitting an order (the current quote
price), whereas in an order-driven system prices need not be determined until a
match is made.

So, to summarise, we can distinguish between double auctions by answering
the following questions:

• Is the market a quote-driven or an order-driven (auction) market?

• If the market is quote-driven, is it a specialist market or a multiple dealer
market?

• Is the market one-shot or repeated?

• Is it periodic or continuous?

• How do offers arrive over time?

• Are prices set by an institution or by the traders?

• Is the decision to trade taken by the traders or by the institution?

• What conditions, if any, are placed on successive bids and asks (is there a
bid/ask improvement rule)?

• What information about other traders offers does each trader have?

• What happens to unmatched bids and asks when a match occurs (are they
deleted, or do they persist)?

• Do the buyers want to buy one or many goods? Do sellers want to sell
one or many goods?

• How many goods are bid (or asked) for at a given instant by one of the
traders (one or many)?

• Are trades priced using discriminatory or uniform pricing?

• How are the uniform or discriminatory prices determined?

These answers to these questions will identify the point that a particular auction
occupies in the space of all possible instantiations of the parameters to which
these questions refer. The set of parameters overlaps with, and is not (com-
pletely) subsumed by the parameterization in [78] (as can be seen by comapring
the above with Table VIII [78][p. 335]).

We will finish this section with the description of a particular double auction
market taken from [37, pp. 186–92] via Smith [64, p. 945] which neatly specifies
the values of a number of the parameters described above:

After the market opens an auction for a num

11
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eh? need to check against the original text

it begins with the announcement of a price bid by any buyer or a
price offer by any seller. Any subsequent bid (offer) must be at a
higher (lower) price to be admissable. Once a bid (offer) has been
made public, that is, is “standing”, it cannot be withdrawn. A
binding contract occurs when any buyer (seller) accepts the offer
(bid) of any seller (buyer). The auction ends with a contract. If
the standing bid (offer) was not part of the contract (for example,
if a buyer other than the one with the standing bid accepted the
standing offer), the maker of that bid (offer) is no longer bound to it
unless the bid (offer) is now re-entered. Following a contract a new
auction begins when a new price bid (offer) is announced. The new
bid (offer) may be at any level, and may involve “signalling”. This
process continues until the market “day” comes to an end.

As Smith notes [64], there are a number of variations that fit within this overall
description (some of which are studied in [65]), and it is close other descriptions
that one can find in the literature (for example that in [48][p 1493]).

2.2 How to measure performance of auctions and traders

The reason behind much of the work on auctions has been to try and quantify
the performance of either auctions or traders. Here we discuss some of the
measures that are most commonly used to do this.

We start by considering the profit of individual traders. If the ith transaction
matches a buyer with private value vbi

and a seller with private value vsi
, setting

a price pi, then:
prbi

= vbi
− pi

is the profit that the buyer makes from the trade, and:

prsi
= pi − vsi

is the profit that the seller makes. If a trader does not take part in a transaction,
then its profit is 0.

Economists have traditionally been more interested in measures of perfor-
mance of an entire market than in the profit made by individuals in that market.
Given the private values of all of the agents in a market, we can calculate not
only the profit that each individual makes, but also how the total profit, or
surplus actually made, Sa compares to the maximum profit that theoretically
could be made St. This measure is the allocative efficiency, e usually expressed
as a percentage.

e =
Sa

St

A market that is 100% efficient extracts all the possible profit from the traders
that operate within it.

12
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The actual surplus is easy to compute from the profit of the individual
traders:

Sa =

n∑

i=1

vbi
− pi +

n∑

j=1

pj − vsj

for all n transactions. The theoretical surplus can be computed by establishing
the equilibrium price, p0. The equilibrium price is defined as the price at which
supply and demand are equal. In markets like those in Figure 1, as discussed
above, this is a unique price. In markets like those in Figure 2, this only defines
a range of prices, and in such cases we take it to be the midpoint of the price
range (the price that would be set by a k = 0.5 auction).

Given the equilibrium price, the theoretical surplus is computed as the sum
of the profits that would be made by buyers and sellers were all transactions to
have taken place at the equilibrium price p0 — the equilibrium profits epr of
the traders. In other words:

epr = eprb + eprs

where eprb and eprs are the equilibrium profits of all buyers and all sellers
respectively. These can be calculated as

eprb =

n∑

i=1

eprbi

where the equilibrium profit for each buyer is:

eprbi
= vbi

− p0

and similarly,

eprs =

m∑

j=1

eprbi

where
eprbi

= vbi
− p0

for each seller. Thus, overall, allocative efficiency is given by:

e =

(∑n

i=1 vbi
− pi

)

+
(∑m

j=1 pj − vsj

)

(∑n
i=1 vbi

− p0

)

+
(∑m

j=1 p0 − vsj

) (1)

Since allocative efficiency will not detect whether a market is skewed towards the
buyer or seller, alternative measures have been proposed, including the notion
of buyer and seller market-power [46]. The idea of the market-power measures is
to determine how much profit the buyers or sellers actually obtained as opposed
to how much they would obtain were the market trading at the equilibrium

13
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price. In other words, how much have buyers or sellers managed to tip things
in their favor. Buyer market power mpb is calculated as:

mpb =
1

n

n∑

i=1

prbi
− eprb

eprb

where i ranges across all n goods sold, prbi
is as computed above, and eprb is

the equilibrium profit of the buyers (as above). Seller market power mps and
equilibrium profits eprsi

and eprs are calculated similarly . Another measure
which aims to quantify the same aspect of trader performance, that is the rel-
ative profitability of the trader, is the profit dispersion measure suggested by
Gode and Sunder [20]. This is the root mean squared difference between the
actual profit and the equilibrium profit of individual traders. For m traders,
profit dispersion pd this comes to:

pd =

√

√

√

√

1

n

n∑

i=1

(pri − epri)2

where epri is the equilibrium profit of that trader, either eprbi
or eprsi

, while
pri is the actual profit, either prbi

or prsi
. Note that here i ranges across all

traders rather than just across buyers or sellers.
The main difference between these two measures is the following. In market

power calculations, profits above equilibrum for one trader will balance profits
below equilibrium for another. In other words an increase in market power for
buyers will be matched by a decrease in market power for sellers. In contrast,
any deviation from equilibrium will cause an increase in profit dispersion.

Measuring market power gives a finer-grained view of what is happening in
an auction than just looking at allocative efficiency, but it is still an aggregate
measure across all buyers or sellers. As a result, there are aspects of market
behaviour that it cannot detect. In a market with two types of buyer, say,
one that gains high profits and one that makes big losses, the market power
may come close to 1 even though it would be far from 1 (both positively and
negatively) for the two sub-populations. As a result, it can be useful to measure
the profits made by individual traders, or groups of traders, either in absolute
terms, as a proportion of total profit obtained (as in [66]), or in a way similar
to market power.

Profit is an important measure for markets, but it is also interesting to con-
sider how close real markets come to trading at the point where theory says they
will trade, that is at the equilibrium price. Again this is important because just
considering the profit (and in particular the allocative efficiency) can obscure
some strange behaviour (zi-c agents (see below) for example can trade with
high allocative efficiency but trade far from the theoretical equilibrium price).
To measure how close a market is to the theoretical equilibrium, Smith [61]

14
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introduced the idea of the coefficient of convergence15, α such that:

α =
100σ0

p0

where p0 is the equilibrium price and σ0 is the standard deviation of trade prices
around the equilibrium. This can be reformulated as:

α =
100

p0

√

√

√

√

1

n

n∑

i=1

(pi − p0)2

where pi is the trade price of transaction i.
While α gives us a way of determining, on average, how close a market

trades to the theoretical equilibrium, it will conflate two aspects of “closeness”
— the speed with which prices converge (since prices typically “scallop” [10] as
they converge on the equilibrium price), and the deviation from the equilibrium
price at which transaction prices eventually settle. There does not seem to be
a measure that captures this, so that, for example, Preist and van Tol [49] do
not have a quantitative measure with which to back up their claim that their
trading algorithm converges faster than zip, and all that they can do is to plot
transaction prices over time for a given run.

To summarize, when comparing auctions and the bidding strategies used in
them, we are typically interested in answering questions such as:

• What is the allocative efficiency of the auction?

• What is the buyer and seller market power?

• What is the profit dispersion?

• What is the profit that individual traders (or types of traders) a ccrue
during the auction?

• What is the coefficient of convergence for the auction?

2.3 Categorising some double auctions

In this section we use the attributes identified above to categorise some of the
double auctions discussed in the literature. Two things should be noted about
this. First, we don’t aim to give a comprehensive description of markets in this
section, we are more interested in showing the range of different markets that
one can find. Indeed, we only consider a handful of different markets described
by Smith [61], Rust et al. [54, 55], Gode and Sunder [20, 21], Cliff [6, 9, 7, 8],
Preist and Van Tol [49], and Das, Tesauro et al. [10, 66, 67]. Second, we
are focused on the structure of the markets not on the work carried out on
those markets, so the description of a number of the works in the literature is

15Frequently referred to as “Smith’s alpha”, as in [49].
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rather incomplete — we provide a more extensive description of this work in
Sections 4 and 5. Note that the development of electronic markets, and many of
the markets that have been studied are electronic, rather blurs the distinction
between real and simulated markets and both kinds are convered here. As a
result, some of the distinctions we identify are artifacts of the way that the
simulations are performed — aspects that will be important to anyone who is
interested, as we are, in replicating results.

We start with the market described in Smith’s classic study of competitive
market behaviour [61]16 in which the traders were all human. In the exper-
iments, each trader was given a specific limit price of a unit of a “fictitious
commodity” (all of these prices are specified in the paper) and all traders were
interested in trading a single unit of the commodity (at least in the first eight
experiments described in [61]). Buyers were constrained to purchase a unit for
less than their limit price, and sellers to accept a price no lower than their limit
price.

The market mechanism specifies that traders are allowed to make offers at
any time. Buyers make offers by calling out the price at which they are willing
to buy, sellers make offers by calling out the price at which they wish to sell.
A buyer may accept an existing offer to sell, and, symmetrically, a seller may
accept an offer to by, creating a contract. When this happens both traders take
no further part in the market until the end of the trading period. Offers seem to
be persistent — there is nothing in [61] to say they are erased by a trade as they
are in some experimental work — though presumably traders forget old offers,
and all traders can hear all offers. When traders are described as “accepting an
offer”, it indicates that the trade takes place at the price of the initial offer.

Smith ran the markets for several periods (the number varied from experi-
ment to experiment, but was typically around 4 or 5) with each trader having
their supply of, or demand for, goods replenished between periods so that the
market is one in a steady state (except for experimentally applied supply or
demand shocks). The final aspect of [61] that we will note is that in later ex-
periments (9A, 9B and 10), traders are allowed to trade two units at their given
limit price, showing that:

doubling volume in a given period is comparable to running two
trading periods at the same volume.

The simulated auction used in the Santa Fe Double Auction tournament [54,
55] comes close to being an implementation of Smith’s experimental markets. At
the finest level of detail, the Santa Fe auction is structured as a series of “steps”,
where one step allows bids and asks to be posted and in the subsequent step,
if bids and asks cross, the traders with the highest bid and lowest ask decide
whether to accept the other’s offer. A trade occurs if either makes that decision.
The trading period is a fixed number of these steps (the number is known to the

16This paper, published in 1962 reports experiments “performed over a six-year period
beginning in 1955. They are part of a continuing study . . . ”, and later experiments (some of
which are described below) deal with more complex scenarios.
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traders), and a number of these periods make a “round”, of which there may be
many. The decision to trade is made by individuals, though only the matched
individuals are allowed to trade17, and it is not clear how the transaction price
is set, though a bid/ask improvement rule does seem to be enforced. In addition
it seems (according to [66]) that unmatched bids are cleared when transactions
occur, that all traders have access to all the offers made by all the other traders,
and that only one good is bid for at a time.

Gode and Sunder’s work [20] on zero-intelligence agents concerns repeated
auctions (and each auction but one in their study were run for six trading
periods), the auction was continuous, and only a single unit was traded at a time.
Trade determination is institutional, in the sense that a binding transaction
occurs as soon as a bid and ask cross, and price determination also seems to
be institutional — as described above, the price is determined by whichever of
the bid or ask is already “on the table” when matching occurs. In addition,
unmatched offers are cleared when a transaction occurs, and only one good is
bid for at a time. All of these factors are clear from the description of the
experiments.

The remaining factors are less clear from the paper. It seems that though
Gode and Sunder consider a bid/ask improvement rule to be an essential part of
a double auction in their theoretical work [21], there seems to be no mechanism
for it in the automated traders they discuss (indeed since these are described
as having “no memory” it would seem impossible for such a mechanism to be
implemented), and it is not clear whether such a rule is applied to the human
traders in that study either. Furthermore, it is not clear what information
traders have. From the description of the experiment with human traders, it
seems inevitable that the human traders knew all the offers that had been made.
There is nothing to say whether the automated traders had this information,
but if they did, then the mechanism they used for choosing bids and asks did
not make use of it.

Somewhat clearer is the setup Gode and Sunder consider in [21]. Here they
analyse two kinds of double auction, a synchronized auction, which falls some-
where between the classic discrete time auction and a continuous double auction,
and a continuously clearing auction (called continuous in [22]), which is much
closer to a classic continuous auction. In the synchronized auction, all traders
are simultaneously polled for offers — so that traders do not know other traders’
offers when they make their own — and if the highest bid and lowest ask cross,
then a binding transaction takes place. (Note that it is not clear what happens
if several traders tie for the highest bid or lowest ask.) If the highest bid and
lowest ask don’t cross, then traders are polled again and submit new bids under
a bid/ask improvement rule. As soon as there is a transaction, all unaccepted
bids and asks are cancelled, and the process is repeated until the pre-specified
end of the period. If all matching bids and asks were cleared after a poll, then
this auction would be close to come implmentations of discrete time auctions.

17As the authors point out, these are the same rules as adopted by the aurora system
developed by the Chicago Board of Trade.
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The continuously clearing auction is intended to be closer to a real auction
where

the timing of . . . bids and asks is determined by the free will of
individual traders, and a transaction is completed as soon as a bid
and an ask cross, without waiting for the remaining traders in the
market to submit their bids/asks.

To simulate this, Gode and Sunder model traders making offers by randomly
sampling traders, without replacement, to make an offer, so every trader gets
to make an offer before any trader makes a second offer (so there is still some
synchronisation). As soon as a bid and ask cross a transaction is executed,
and all unaccepted offers are cancelled, and if the first round of bidding doesn’t
result in a transaction, further rounds are carried out with the order in which
offers are solicited being randomly generated each round.

In the continuous auction, a trader is randomly picked to make an offer,
that may update the highest bid and lowest ask. In [22], the authors distinguish
between the trading being picked with and without replacement (in the usual
probabilistic sense). When traders are picked without replacement, no trader is
able to make a second offer before all other traders have made their first offer,
and there a clear rounds of offer-making. With replacement, a given trader
may be allowed to make an arbitrary number of offers before any other trader
gets to make an offer (though this is, of course, unlikely), and there are no
clear rounds. [22] also introduces an auction that Gode and Sunder call semi-
continuous (or hybrid. In this form of auction, traders are polled for offers as
in the synchronized auction. Then offers are randomly selected from this pool,
as in the continuous auction, and the current highest bid and lowest asks tested
to see if they cross. This selection is carried out without replacement.

In Cliff’s work on zero-intelligence plus (zip) agents [6, 7, 8, 9]18 the auction
is repeated and continuous, and there are no persistent shouts—all bids and
asks are cleared when a trade takes place. Furthermore, as described in [6,
pp. 100–111], the way that the auction is simulated is quite specific. At each
simulation round or “trading session”, one agent from those currently able to
trade is randomly selected to make an offer for a single unit. All other agents
are made aware of this offer. If the agent that made the offer was a buyer, then
all sellers are polled to see if they want to respond by accepting the offer. If
one seller does want to take advantage of the offer, then trading takes place at
the price suggested by the first agent, just as in [20]). If several agents respond,
one is chosen at random to complete the trade. If the agent originally picked
ot offer was a seller, then the symmetric process follows. Rounds are repeated
either until either no more buyers or no more sellers can trade, or until some

18These four papers overlap to a large degree. Without knowing the history of their writing,
it seems that [6] was written first as a complete summary of the original work (including a
listing of the code used to run the simulations), [9] was a slimmed down version without the
background on market-based control and background economics, and then [7] and [8] were
then extracted out as conference papers (the former introducing zip traders and the latter
identifying problems with zi-c traders).
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limited number of rounds has passed without a trade. Note that, as in [20],
offers are cancelled by a trade.

From this description, we can see that the market is synchronised, with each
round producing at most one trade. However, the auction that is created is
neither a continuous double auction nor the kind of auction described in any
of the work above. It comes closest to being a continuous double auction, but
differs since at each round some traders are not able to make an offer — those
traders of the same type, buyer or seller, as the agent originally picked to make
an offer. The fact that all agents see the offer minimises the effect of this, but
the approach makes it impossible for one trader, a buyer say, to scoop the offer
made by the randomly picked agent at the start of the round. For example, if
that randomly picked agent is a buyer, no other buyer can step in with a higher
bid before the sellers respond19.

Preist and van Tol [49] build directly on Cliff’s work, examining the per-
formance of a similar kind of trader, and so use much the same experimental
structure. Time is again divided into “rounds”, with all agents having to make
an opening offer at the first round, and any agent being able to update its of-
fer at a later round (unless of course it has traded), simulating a continuous
auction. Offers persist unless updated. Offers that cross are cleared just as in
Smith’s work, and Preist and van Tol argue both that their market is close to
Smith’s — differing in that automated traders will not forget past offers — and
is more flexible than Cliff’s.

All the markets described so far have been designed for ease of carrying out
experiments with automated traders rather than for realism. As a result, that
of [61] is the only one that has been a true continuous double auction of the kind
one finds operating in real markets. Das, Tesauro et al. addressed this issue
[10, 34] explicitly, going to great lengths to ensure that offers could be made
at any time and in real time, also allowing for persistent offers. The market
runs over several trading periods (15–16 periods, each of 3 minutes duration),
with private values being held constant for some periods and then changed.
Other market parameters were as follows: a single unit was traded at a time,
players had several units to trade in each period (8–14) and units/money were
replenished at the end of each period, trades occurred as soon as bids and asks
crossed, the transaction price was the price of the first of the two offers, a
bid/ask improvement rule (again called the “nyse rule”) was in force.

Further work by these authors [66, 67] used a similar setup20, with the
exception that real-time simulation was replaced by a discrete-time simulation.
The discrete-time model generalises that of previous work, picking agents to be
active in a given time-step with some probability αi, so that at any point there

19Imagine we have three agents that have still to trade, buyer1 with private value 20,
buyer2 with private value 30, and seller1 with private value 10. If buyer1 is picked to offer,
and offers 15, then seller1 may well accept before buyer2 can make the offer of 25, say,
preventing an outcome with greater surplus.

20Though the description of the setup in [67] suggests that experiments were carried out
under a broader range of conditions, without persistent offers for example, the results given
were under broadly the same conditions as above, with the exception of the discrete event
simulation described here.
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can, in theory, be any number of agents active at a given time (when there are
two or more, their offers are handled in a random order).

What we can see from this cross-section of work is that research has aimed
to be representative rather than strictly reproducing markets that really occur
— for example the fact that many approaches enforce some synchronization of
offers — but has covered a range of subtly different markets, something that
makes it hard to directly compare the results of the work. This problem is
exacebated, as we will see in Section 5 when we look at experimental work
using these markets, because the performance of the traders is determined in
different ways as well. However, before we look at the kinds of results that have
been obtained with these different setups, we will look at a specific market in
some detail.

3 The New York Stock Exchange

Have described in the abstract some of the different kinds of double-sided mar-
ket, it is interesting to consider a concrete example of such a market in the form
of the New York Stock Exchange (nyse). The description given is drawn from
that in [26]. As hinted at above, the nyse is rather more complex than anything
we have described so far.

Physically the nyse is split into the upstairs and downstairs markets, where
the downstairs market is the main trading floor (we will come back to the
upstairs market later). The main trading floor is split into a number of rooms21,
throughout which are spread seventeen trading posts. It is at the trading post
for a specific stock that the specialist for that stock works, and it is at the post
that the trading crowd for that stock will gather. The trading crowd is made up
of floor brokers. Floor brokers are allowed to trade in any stock and to operate
at any trading post, but typcially concentrate on a few posts and trade only in
the stocks traded at those posts.

Trading on the nyse takes place between 9.30am and 4pm est Monday to
Friday. After opening, trading in each stock takes the form of a continuous
auction22, with each specialist receiving all offers for the stock in which they
deal, and maintaining the order book that records such offers. The specialist
supervises the trading process, makes matches between buyers and sellers, and
is responsible for crowd control amongst the trading crowd. As described above,
the specialist is required to trade when necessary, and can also trade when it
is advantageous to do so, but as [40] points out, the volume of trade involving
specialists is now a minority, less than 20% by 2000. The vast bulk of trades
are direct between brokers.

When the exchange is not open for trading, orders continue to arrive elec-

21These rooms are called “The Garage”, the “Main Room”, the “Blue Room” and the
“Expanded Blue Room” [26].

22Though, as [38] puts it, “for some thickly traded stocks, the market has been described
as a continuous double auction” which suggests that the market in most stocks is too thin to
be regarded as a true cda.
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tronically, and are stored in the Opening Automated Report Service (oars),
which matches bids and asks. In addition, prior to opening, floor brokers who
want their orders to figure in the opening may pass orders to the relevant spe-
cialist, and these are also entered into oars23. When the market opens, the
specialist sets a single price at which initial trades must be executed, and this
price may be some way from the price at which the market would theoretically
clear given the public bids and asks [40].

Thus we can think of the nyse, at a first approximation, as using a call
market to establish opening prices, and then trading as a continuous double
auction — the approximation relating to the fact that this description ignores
the role of specialists — and this is often the way that the nyse is presented.
These aspects of the nyse are common in other stock exchanges. [38] reports
that the open-outcry system for stocks on the Paris Bourse, the Swiss Option
and Financial Futures Exchange (soffex), the Frankfurt Stock Exchange, the
Computer Assisted Trading System of the Toronto Stock Exchange and the
Computer Assisted Routing and Execution System of the Tokyo Stock Exchange
all operate as continuous double auctions, while discrete-time auctions are used
to open the nyse and the Tokyo Stock Exchange. Other stock markets operate
purely as discrete-time systems, the Arizona Stock Exchange, which operates
as a Wunsch auction [44].

The role of the specialists in the nyse is studied in detail by [25], who both
expand on their role in the institution, and examine empirical evidence about
their activity in the market (which, for example, suggest that they are typically
good short-term traders but not particularly good long term traders). Special-
ists are required to maintain price continuity—which basically limits successive
price changes to one eighth of a dollar—and to act to stabilize the market, buy-
ing when the price drops and selling when it rises. These requirements expose
the specialist to sudden markets shocks, but this disadvantage is offset by the
fact that the specialist has complete knowledge of the order book—the specialist
has to allow floor traders to view the order book, but the book is not widely
displayed so the specialist has a significant advantage in terms of information
[40]—and gets to see incoming electronic orders before these are posted in the
order book.

The upstairs market [39] is an informal market that aims to deal with large
blocks of shares (where a “large block” is well over 10,000 shares) by negotiating
a price between potential buyers and sellers. The idea seems to be that it may
be hard for the trading floor to absorb such blocks, though as [26] points out,
only around 15% of total trade is arranged through the upstairs market.

There is one final quirk of the nyse that is worth noting. The exchange itself
is a not-for-profit organization, founded originally in 1792 24, that is owned by

23As described in [40], brokers may make orders for the open without being physically
present, and may choose to participate in a certain percentage of the specialist’s opening
trade instead of placing a standard limit order.

24According to [2, page 310], the recent authorative history of New York City, trading in
public stocks began two or three years prior to 1792, with most stock being sold off in a form
of English auction. Sales were nominally public, but most stock was purchased by “jobbers”
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those who trade in it, so-called seatholders25. Seats are limited—there were
originally 1, 060 seats, and this number was expanded to 1, 375 in 1932 and
1, 366 in 1953—and seatholders are the only people allowed to operate on the
floor of the exchange, either as specialists, floor traders or brokers as they wish26.
Since 1978, seats may be leased, and this is now relatively common, but seats
may also be bought and sold (seats were first traded in 1869), and this trading
itself takes place through an ongoing auction market run by the nyse. This
market is theoretically continuous, and the bid and ask quotes are posted on
the trading floor, but seats are thinly traded.

or “dealers”, who bought for themselves, and “brokers”, who bought for clients. Auctions
were held several times a week — [2] give the example of the auction run by the partnership
of Bleeker and Pintard, which was held at the Merchant’s Coffee house, three times a week at
1pm and three times a week at 7pm — and between auctions deals were done direct between
the various brokers and jobbers in the “curb market”. In the summer of 1791 these extra-
auction dealings were held under a sycamore tree on Wall Street, in September of that year,
as the volume of trade increased, the auctioneers, jobbers and brokers agreed a set of rules for
stock trading, and in February 1792 the first “Stock Exchange Office” was opened on Wall
Street.

Shortly after this, in March 1792, the fledging stock exchange, which was still operating as
an English auction, collapsed, largely because the market had been manipulated on a massive
scale — partly by the auctioneers, partly through rumor-mongering by speculators — and
stock was greatly over-valued. During the fallout from the collapse, a group of dealers and
brokers agreed not to trade stocks by English auction, and in May a further group made
the“Buttonwood Agreement” (“buttonwood” being a New England name for a sycamore)
setting a minimum commission rate and stating that preference in trading be given to other
signers [2, page 311]. By May of 1793, the market was being held upstairs at the Tontine
Coffee House, at the intersection of Wall Street and Water Street, where it remained until
1827 (along with the curb market, which continued outside).

By 1817, [2, page 445], the volume of trade was such that the Buttonwood Agreement was
revoked and the stock market was reorganised under the auspices of the new New York Stock
and Exchange Board. During this time trading was still carried out at the Tontine Coffee
House, but, in 1827, the exchange moved into the newly built Merchant’s Exchange building.
This building burnt to the ground in the great fire of 1835 which devastated lower Manhattan
(also claiming the Coffee House) and the Stock Exchange had to find alternative accomodation
until the Merchant’s Exchange was rebuilt several years later. The Stock Exchange then
remained in the Merchants Exchange, side-by-side with out exchanges like the New York
Produce Exchange until it finally moved into its own building in 1865 [2, page 877].

Before that move, however, had come another major change in the rules of the Exchange [2,
page 899]. The massive growth in general trade in New York during the Civil War — including
much trade with the Confederacy, not all of it legal — and the concommitant growth in stock
trading meant that by 1864 the old methods of trading on the Stock Exchange could not cope
with the volume of stocks being traded. As a result:

A breakaway group of brokers established the Long Room on Broad Street where
stocks could be traded continuously and hundreds of transactions could take
place simultaneously. In addition “curb brokers” (also known as “guttersnipes”)
traded in the streets from after the New York Stock Exchange’s five p.m. closing
until the sun went down. One businessman opened an Evening Exchange, pro-
viding the only place in the world where securities could be traded twenty-four
hours a day. [2, page 899]

This seems to have been the start of trading on the nyse as it is carried out today.
25Up to 1871, members sat in assigned seats during the roll call of stocks.
26There are other roles, as described in [33] but these need not concern us here.
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4 Theoretical work on double auctions

This section surveys some of the theoretical results that are pertinent to the
study of double auctions. We start by considering work on auctions markets
as a whole, before looking at work analysing the behaviour of traders within
markets.

4.1 Market behaviour

Historically, auction theory considered single-sided auctions before double auc-
tions, and looked at clearing house auctions before continuous double auctions
(even now there is little written about the theory of cdas). This is doubtless
due to the relative complexity of the auctions — single sided auctions are, by
and large, simpler than double auctions, and among double auctions, clearing
houses are simpler to analyze than cdas — and the fact that it is natural to
analyze the simpler cases before the more complex cases. As a result of this de-
velopment, there is little theory that can directly help us in trying to understand
the functioning of ch and cda markets, and some of the work that can help
us does so indirectly, using results that were orginally derived for single-sided
auctions.

Much of the auction theory literature hinges on the existence of an equilib-
rium in which “buyers’ bidding strategies are monotonic in their types” [42],
meaning, broadly speaking, that the price a buyer is prepared to bid is a mono-
tonic function of their private value for the good in question27. The existence
of such an equilibrium can be easily obtained if private values are distributed
smoothly, independently, and symmetrically, and this is helpful in the anlay-
sis of cases which have this characteristic. However, there are plenty of cases
which do not have this characteristic, and Maskin and Riley [42] addressed
some of these. In particular, they showed that monotonic equilibria exist, un-
der some conditions on preferences, for all cases of independent private values
and, under additional conditions on preferences, when private values are affil-
iated [45]28 provided that tying bids are broken using a Vickrey action [68].
However, Maskin and Riley only considered the case of single-sided auctions.
Double-sided auctions are more difficult to analyse.

The first such analysis for a double auction was that of Chatterjee and
Samuelson [5], in the paper in which they introduced the idea of the k-double
auction29 albeit only for the two trader case. In this initial paper, Chatterjee
and Samuelson show that there is an equilibrium solution, assuming independent
private values.

Considerable work has since been carried out extending this result. First,
Williams showed the existence of equilibria in the buyer’s bid double auction [74,

27This statement is accurate enough for our purposes. For a precise characterisation, see,
for example [42]

28Which, broadly speaking, means that one trader having a higher private value for a good
makes it more likely that another will.

29Though not under this name — they refer to the price setting rule as a “bargaining rule”.
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73] — this is an easier auction to analyse since the dominant strategy for sellers
is to bid their true value, thus fixing one side of the auction and, as [56] points
out, ensuring that the market has a unique equilibrium30. The same authors
subsequently showed the existence of equilibria in the many-trader version of
the k-double auction [59], at the same time suggesting that the modified bbda
has no equilibrium. This work was followed by Jackson and Swinkels [29, 30],
who showed the existence of equilibria, though not monotonic equilibria, under
a wide range of conditions. Next, Reny and Perry [51] showed that monotonic
equilibria existed if offers are restricted to discrete values, and Fudenberg et
al. [17] showed that this result could be extended to continuous values (which
[30] argues is “a very useful approximation . . . allowing one . . . to use calculus to
characterise equilibria”) provided that the auction was large. Finally, Kadan [31]
showed that an increasing equilibrium exists for just two traders with affiliated
values.

In addition to identifying whether auctions have equilibria, it is interesting
to ask whether such auctions are efficient. we have already met the idea of
allocative efficiency (1), and we can say that an auction is efficient if its allocative
efficiency is 100%. In other words, an auction is efficient if the result of the
auction maximises the profit obtained by the traders. This notion of efficiency
coincides with the idea of maximising social welfare, ensuring that the goods
sold by the auction are obtained by the buyers who value them most, and,
symmetrically, are unloaded by the sellers who value them least.

Wilson [75] analyzed what he described as a sealed bid double auction, a
clearing house in which traders are not aware of the offers made by other traders,
and which we can describe as a multi-trader version of the k-double auction
introduced in [5]. ([75] was the first paper to consider this multilateral k-double
auction.) The main result of this paper is that the auction is incentive efficient,
meaning that there is no mechanism that traders will prefer (there is no incentive
for traders to prefer another mechanism). This result hinges on there being
enough traders in the market, which means, in practice, that the incentive
efficiency holds as the number of traders increases to ∞, and the market will
satisfy the notion of interim efficiency suggested by [27]31.

In a more general setting than we are considering, Hurwicz [28] has shown
that it is not possible to construct a mechanism that gives results that are
individually rational, Pareto optimal and strategy proof — a strategy proof
mechanism is for which no individual trader can benefit by not truthfully re-
porting their private value for the good in question. This means that always has
to take into account the fact that traders can benefit from not reporting their
valuations for goods in a truthful manner, and, at first sight, this result seems
to be a very negative one from the perspective of designing auctions. However,

30Note that all results for the bbda, the 1-da, are symmetric with those for the k-double
auction in which the transaction price is determined by the price offered by the highest asking
seller that trades, the 0-da [56].

31This means,broadly speaking, that there is no other mechanism which is preferred by any
individual in the market when those individuals do not know the private values of all other
individuals, but do know their own private value.
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its impact is limited, and researchers have worked to identify the bounds of this
limitation. For example, Roberts and Postlewaite [52] show that, as the num-
ber of individuals tends to infinity, the gain any trader can make by not being
truthful falls to zero. If the market is big enough, there is no advantage in not
telling the truth.

A related result is given by Satterthwaite and Williams [58] for the buyers
bid double auction32. They consider Bayesian Nash equilibria of this market,
assuming sellers will ask truthfully (since their offers do not affect the price
they pay, they have no incentive to deviate from truthtelling), and show that
any equilibrium strategy for buyers involves them bidding in such a way that the
difference between their bid and their private value is inversely proportional to
the number of traders. Since truthful bidding in the bbda leads to efficiency, this
result shows that the auction converges to efficiency as the number of bidders
increases. In [56], Rustichini et al. show that the result about the deviation from
efficiency also holds for the k-double auction, providing a complementary result
to Wilson’s [75] proof of convergence (the result also appears in [59]). Thus the
k-double auction is no worse than the bbda in terms of the speed with which
it converges to being strategy-proof as the number of trades increases, and
numerical results provided in [56] indicate that the inefficiency in a k-da with
six buyers and six sellers should be less than 1%. Such a market is effectively
efficient. Subsequently Satterthwaite and Williams [60] have shown that the
worst-case speed of convergence of the k-double auction is as high as is possible
for any auction.

Note that all this work on convergence to efficiency assumes that traders
have independent private values. As [56] point out, it would be better to be
able to obtain results for the case where private values are not independent — as
we have already seen, we do not yet have results about convergence to efficiency
under such conditions.

McAfee [43] has extended this line work by suggesting a mechanism, the
so-called “dominant strategy auction”, in which every trader has a dominant
strategy of telling the truth, whatever the number of traders. This mechanism is
a variation of the clearing house, with all offers being made before the transac-
tion price is set. The price is determined not, as it is in the k-double auction, by
the lowest matched bid and the highest matched ask, but by the next-to-lowest
matched bid (the next bid up) and the next-to-lowest matched ask (the next ask
down). The transaction price is set midway between these two values, and for
some sets of offers the market will clear just as a ch, while for others, those for
which the transaction price is not beween the lowest matched bid and the high-
est matched ask, the relevant traders will not trade. In this case, the mechanism
generates money, and so requires an individual to absorb this, and this failure
to be budget-balanced 33 is the price one has to pay for the strategy-proofness.

32As McAfee [43] points out, the advantage of the bbda is that since sellers always tell the
truth, it is easier to analyse this kind of auction than, for example, the ch or cda.

33A mechanism is budget-balanced if the only flow of money is from one trader to another
— a mechanism that is not budget-balanced either generates surplus for individuals other
than the traders, or, worse, requires the addition of money.
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4.2 Trader behaviour

The main point of interest with respect to traders is how they decide what
offers to make, that is “price formation”. Some of these models that have been
developed to explain price formation are purely theoretical, some are validated
against observed behavior in auction experiments, and yet others are used as
the basis for trading agents. The results we consider here are the more purely
theoretical, and those used as the basis for trading agents are considered in more
detail in Section 5.

These results on price formation are important because, while we have, as
above, results for what happens at equilibrium, as Satterthwaite and Williams
point out [59]:

no well-developed theory exists that explains how traders starting
de novo jointly learn a set of equilibrium strategies (especially of
more than one equilibrium exists). In other words, the theory does
not include a process that results in . . . equilibrium.

Mechanisms for price formation are an attempt to fill this gap.
The earliest work on price formation by traders seems to have been that of

[18], credited by [3] but about which we have been able to find no further infor-
mation. This was followed by the model proposed by Easley and Ledyard [11]34

which establishes a series of plausible heuristics. Under this model, traders start
by establishing a reservation price for their goods (which can differ from their
private value), and then adjust this reservation price as the auction proceeds.
The model is constructed in terms of assumptions about the reservation prices
rather than an algorithm for computing them, but yield (as we shall see shortly)
predictions about offers that can be tested.

According to [3], Friedman’s “Bayesian game against nature” (bgan) model
[13] has the following characteristics. First, all traders formulate a “reservation
price” for the good in question, a price that is an estimate of a reasonable price
at which to trade, and will not trade unless it is at a profit with respect to
the reservation price. Second, a buyer will make a bid if the highest bid is
lower than its reservation price, increasing that bid slightly ([3] say “a buyer
seizes the market bid”, which we take ot mean slightly betters it), and if the
lowest ask allows a profitable trade, a bgan trader will accept it. Sellers have
symmetrical behavior. Third, traders update their beliefs about possible offers
by other traders in a Bayesian way, ignoring any effect that their own offers will
have — it is this latter aspect that makes the trader behavior a “game against
nature” — using this to set their reservation prices.

Another early model of price formation is that suggested by Wilson [76],
and called the “waiting game/Dutch auction” (wgda) in [3], from which this
description is drawn. As the name suggests, this model has buyers and sellers

34This paper seems to have languished for some time before being published in [15], which
explains how Friedman and Cason [3] can suggest the above chronology while [11] makes
reference to [13] as an extant model.
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initially doing nothing, waiting to see if another trader makes an offer35. When
an offer is made, ending the waiting game, it may of course be accepted im-
mediately. If it is not, the trader that made the offer is assumed to operate as
the auctioneer in a Dutch auction, raising its bid, or lowering its ask, until its
offer is finally accepted. During the Dutch auction phase, other traders will not
make offers, and the remaining traders resume the waiting game at the end of
the auction. A key aspect of the model is the notion that each trader has a
level of impatience, which drives them to end the waiting game by making their
initial offer, and this is also used to set the transaction price — the transaction
price for a given trade splits the profit from that transaction between buyer and
seller according to the ratio of those buyers and sellers that have not yet traded.

We can also consider Gode and Sunder’s zero-intelligence traders, discussed
above, as a theory of price formation, though it is something of a stretch to
consider the random bidding of such agents as a true theory of price forma-
tion, and it is in the spirit of such theories that Gode and Sunder analyse the
theoretical performance of these traders [21] in different kids of auction. The
initial case that Gode and Sunder analyze is a synchronised double auction
— intended as an abstract description of the market from [54] — in which all
traders make offers and there is a trade if the highest bid and lowest ask cross.
If there is no trade, new offers are solicited, subject to the rule that the highest
bid cannot be reduced and the lowest ask cannot be increased36 and a trade
cancels all unaccepted offers. In this market zi-c traders will have a minimum
expected efficiency of 80.84%, and the average expected efficiency is computed
to be around 96%.

This analysis is followed in [21] with an analysis of an unsynchronised mar-
ket. This market is created by randomly soliciting offers from traders, and
allowing the market to clear as soon as a bid and ask cross, and more offers
are solicited until a trade takes place. As before, trades cancel outstanding bids
and asks. Note that offers are solicited without replacement, so every trader
gets to make one offer before any other trader can make two offers. In this mar-
ket, the minimum expected efficiency falls to 75%, suggesting that, in general,
continuous auctions may see lower efficiencies than call markets.

The three theories for price formation that we have just covered, those of
Friedman [13], Wilson [76], and Gode and Sunder [20] are evaluated in [3]. This
evaluation identifes testable hypotheses made by the theories — for example
hypotheses about the order in which trades should occur and the correlation
between prices — and identifies which of these are consistent with data from
laboratory experiments with human subjects. In other words, the paper tests
the extent to which these theories provide an adequate explanation of the way

35One of the predictions mde by the model is the waiting game is such that early transactions
will be between buyers with high provate values and sellers with low private values, and later
transactions will be between buyers with lower private values and sellers with higher private
values.

36The mechanism for this is not clear in [21], and at least two approaches can be imagined.
In one the traders with those limiting offers are not allowed to replace them with worse offers,
while in the other, traders are repeatedly solicited for offers until the previous limiting bids
are exceeded.
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that human traders behave. The results are not very clearcut.
Thus the data suggests that all three theories correctly predict that efficiency

will be close to 100%, and that all three correctly predict that buyers with
high private values and sellers with low private values will tend to trade before
other traders. However, Friedman’s bgan model, which suggests that traders
look to improve on offers made by others, fits the data more closely than the
others, while (rather surprisingly perhaps) the model that best fits the observed
sequence of transaction prices is the zi-c model.

Another theory of price formation is embodied in an algorithm proposed by
Gjerstad and Dickhaut [19]. This approach, called gd in the literature, picks
offers by computing the expected value of a range of offers, and then choosing
the offer with the highest expected profit. The approach looks at all the offers
that are competitive, that is all offers between the lowest unaccepted ask and the
highest unaccepted bid, and computes an expected profit for each. The value
part is easy to establish — it is just the value of the offer minus the private
value — but the probability is more complex. gd computes the probability
by looking at previous offers and considering the distribution of those offers
as an estimate of the probability that a future offer will be accepted at the
same price. In particular, gd fits a cubic to the offers in the space between the
lowest unaccepted ask and the highest unaccepted bid and then, and uses the
probabilities that this cubic generates to establish the expected profit of all the
possible offers in that space. While somewhat complex to compute (especially
the part that fits a cubic to the offers), gd (as we shall see below) comfortably
outperforms other tarding mechanisms.

A somewhat similar approach to that of gd is that proposed by Roth and
Erev [12, 53]. Here the agents also construct a probability distribution over
the set of possible offers, but do this by reinforcement learning — basically
trying the offers and seeing if they are accepted. Learning like this takes longer
([46] mentions experiments over 1000 trading periods) than for gd, but closely
mimics human learning in markets [12, 53]. A modified version of the Roth-Erev
algorithm (mre) is used by Nicolaisen et al. [46], who also describe in detail
some of the behaviours of the original algorithm that led to their modifications.
The mre approach is designed to work in call markets, and does not seem to
perform anywhere near as well in continuous double auctions.

There are many other models of price formation and we do not have room to
include them all here. Those that seem particularly worth mentioning include
the various entries in the Santa Fe tournament [54, 55] each of which embody
such a model. Some of the more interesting entries are as follows:

• Kaplan is the strategy that won the tournament. It avoids making offers,
perferring to wait until an offer is made by another trader that Kaplan
can accept at a good profit37.

37If one considers the making of bids and asks that do not match, but which are adjusted
towards each other over some period of time, as the negotiation of a deal, then Kaplan can
be described, as it is in [55] as “wait in the background and let others do the negotiating, but
when bid and ask get sufficiently close, jump in and ‘steal the deal”’.
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• Ringuette is a strategy that is very similar to Kaplan, though developed
independently, and came in second in the tournament.

• gamer is a simple strategy that always makes offers that yeld a 10%
profit.

• Truthteller simply makes offers at its private value.

• Max operates in a very similar way to gd, using past offers to compute the
probability of an offer being accepted and then computing the expected
value of possible offers38.

These, and other, strategies are detailed in [55]39. Other notable approaches
to price formation include Cason and Friedman’s “Nash robots” [4], which use
the computed Bayesian Nash equilibrium of a market (in the case of [4], a call
market in which offers are sealed) to decide what offers to make, and Madhavan’s
models of price formation in quote-driven and order-driven securities markets
[38], in the opening of a market by a specialist [40], and in more general specialist
markets [36].

We close this section with a little theory of our own. In [21], Gode and
Sunder do not discuss the performance of zi-u agents, but it is straightforward
to obtain such results, and they make a nice contrast with the results for zi-c
agents. First, it is easy to establish the profit made by a market in which just
zi-u traders are operating:

Lemma 1 Consider a market of n buyers and m sellers, all of which bid using
the zi-u strategy, where bi and sj are the private values of the buyer i and seller
j respectively, and the traders are ordered so that for all i and j, bi ≥ bi+1 and
sj ≤ sj+1.

If n > m, and trading continues until all sellers have traded, then the surplus
Sa generated by the market is such that:

i=n∑

i=(n−m)+1

bi −

j=m∑

j=1

sj ≤ Sa ≤

i=m∑

i=1

bi −

j=m∑

j=1

sj

If n ≤ m, and trading continues until all buyers have traded, then the surplus
Sa generated is such that:

i=n∑

i=1

bi −

j=(n−m)+1∑

j=1

sj ≤ Sa ≤

i=n∑

i=1

bi −

j=n∑

j=1

sj

Proof: The proof is straightforward. Consider the case where n > m. With
no budget constraint on the traders, they bid randomly. Given long enough,

38Due to a what [55] identifies as a bug in the code, Max did poorly in the tournament.
39Traders based on bgan [13] and Easley and Ledyard’s heuristic rules [11] were also entered.
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eventually every seller will make an offer that is less than or equal to that made
by some buyer, and the profit from the trade between the ith buyer and the jth
seller will be:

bi − sj

which, of course, depends only on the private values of the traders, not the offers
they made. The total surplus is just this value summed across all transactions.
The precise value will depend upon which of the excess buyers traded. The
maximum value of the surplus will be when the buyers with the highest private
values trade (the buyers with the lowest m values of i), and the lowest value
of the surplus will be when the buyers with the lowest private values trade (the
buyers with the highest m values of i). These bounds on the surplus give the
first part of the result, and the same line of reasoning when n ≤ m gives the
second part of the result. 2

An immediate corollary of this is that if the numbers of buyers and sellers is
the same, then if the market continues until trading ceases, there is no variance
in surplus, and hence in efficiency, over many iterations of the same market (as
we will see in Section 5). Note also that this result means that the efficiency of
an zi-u market can be negative.

What efficiency this surplus will translate into obviously depends on the
relationship between the private values of buyers and sellers. Making some
assumptions about the range of private values — an assumption that we can
consider defines a sensible market, one in which the supply and demand curves
cross — we can show that the efficient surplus of the market, the surplus if
trading is 100% efficient, is:

Lemma 2 Consider a market of n buyers and m sellers, all of which bid using
the zi-u strategy, where bi and sj are the private values of the buyer i and seller
j respectively, and the traders are ordered so that for all i and j, bi ≥ bi+1 and
sj ≤ sj+1. Let i∗ denote the largest value of i such that bi ≤ sj for some j, and
j∗, denote the smallest value of j such that sj ≥ bi for some i.

If i∗ ≤ j∗, the efficient surplus St is:

St =

i=i∗∑

i=1

bi −

j=i∗∑

j=1

sj

and if i∗ > j∗, the efficient surplus St is:

St =

i=j∗∑

i=1

bi −

j=j∗∑

j=1

sj

Proof: The proof is very easy. The supply and demand curves cross at the
i∗th buyer and the j∗th seller. If there are less buyers than sellers on the left
hand side of this crossing point, then all the buyers trade at equilibrium, and
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so do the first i∗ sellers. (We are assuming that the supply and demand curves
cross). If there are more buyers than sellers to the left, then the first j∗ buyers
and all the sellers will trade at equilibrium. 2

and from Lemmas 1 and Lemma 2, we can obtain the overall efficiency of zi-u
traders:

Proposition 1 Consider a market of n buyers and m sellers, all of which bid
using the zi-u strategy, where bi and sj are the private values of the buyer i and
seller j respectively, and the traders are ordered so that for all i and j, bi ≥ bi+1

and sj ≤ sj+1. Let i∗ denote the largest value of i such that bi ≤ sj for some j,
and j∗, denote the smallest value of j such that sj ≥ bi for some i.

If n < m and i∗ ≤ j∗ the allocative efficiency αziu of the market will fall in the
range:

1
(∑i=i∗

i=1 bi −
∑j=i∗

j=1 sj

)
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i=(n−m)+1

bi −

j=m∑

j=1

sj
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i=m∑

i=1

bi −

j=m∑

j=1

sj









Proof: Direct from Lemmas 1 and 2. 2

Results for the symmetrical cases can easily be obtained.
Madhavan [38] gives a result that shows that a large enough call market

can give more efficient prices than a continuous double auction, a result that
agrees with Gode and Sunder’s result for zi-c agents, where lower minimum
efficiency is expected in a continuous market. Furthermore, it is easy to obtain
the following result, which supports both the above, independent of the strategy
agents use to make offers or the size of the market:

Proposition 2 For a given set of offers from agents that do not make loss-
making offers, if the offers are made in random order, the expected surplus
generated by a ch is greater than the expected surplus generated by a cda.

Proof: Consider the bids and asks from Figure 1 being made in a ch. A
ch, which has the luxury of being able to draw up supply and demand schedules,
will match the highest bid with the lowest ask, the second highest bid with the
second lowest ask, and so on. Let us imagine that the surplus so generated is S

— this is clearly the greatest surplus that can be generated from the given offers.
It will, given the fact that agents do not make loss-making offers, never be an
over-estimate of the total possible surplus.

Now, consider that the same offers being made in a cda. If the offers arrive
such that the highest bid is made first and is directly followed by the lowest ask,
and then the second-highest bid arrives, directly followed by the second-lowest
ask, and so on, then the cda will generate surplus S, and there are other orders
of arrival that will also generate S (the two highest bids arrive, followed by the
two lowest asks followed by the same sequence as before, for example). However,
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it is also clear that there are sequences for which the surplus generated will be
less than S, and so, over all possible sequences of offers, the average surplus will
be less than S. Thus the expected surplus is less than S, and the result holds. 2

Note the restriction that traders have to bid rationally — this ensures that S

is always an underestimate of the true surplus, preventing the cda generating
higher surplus than the ch by not matching loss-making offers. In addition,
note that the condition that offers be made in random order is stronger than
necessary. The result will hold so long as offers are not only made in an order
that always generates S. Further, note that the larger the market, the more likely
it is that the continuous market will generate a lower surplus (since there are
more sequences of offers that will not be exactly the right sequence to generate
the same surplus S as the call market.

5 Experimental work on double auctions

Having categorised some of the auctions that have been studied in the literature,
we discuss the experimental work that has been performed using some of those
auctions in more detail. This leads on to some analysis of the way in which one
can quantify auction performance.

5.1 A brief survey of experimental results

The work that started the experimental study of double auctions is that of
Vernon Smith, and the first paper on this work is [61]. We have already described
this work in considerable detail above, and it only remains to say, by way of
comparison with the work described below, that it deals only with human traders
(as one might imagine given when it was carried out), and examines how well
markets work when they only have:

. . . a practical number of marketers . . .

rather than the “indefinitely large” number previously assumed necessary40.
The study concludes that even small numbers of traders allow competitive equi-
librium to be achieved. This is demonstrated by the propensity of the transac-
tion price to converge to the theoretical equilibrium price (the price at which
the supply and demand curves, defined by trader private values, cross). These
results held for a number of different supply and demand curves, suggesting a
certain degree of robustness to the results.

Of course, this lone paper reflects just a very small fraction of Smith’s work
on experimental auctions (though, as the first, it may well be the most influen-
tial). Others include [35, 62, 63, 64, 65]. However, [61] is prototypical of much
of the experimental work in economics, such was Smith’s influence on the field,

40And showing that results like [75], discussed above, imply rather slower convergence than
is actually the case.
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Traders Market 1 Market 2 Market 3 Market 4 Market 5

zi-u 90.0 90.0 76.7 48.8 86.0
zi-c 99.9 99.2 99.0 98.2 97.1
Human 99.7 99.1 100.0 99.1 90.2

Table 1: Efficiency results from [20].

and provides enough variation to keep us busy—if we can test artificial agents
under all the conditions considered in [61] we will be doing very well indeed.

Other interesting experimental work with human subjects is that of Kagel
and Vogt [32], who are concerned not with the true continuous double auction,
like Smith, but with the buyer’s bid double auction bbda described above. Their
aim was to test whether the market converges to 100% efficiency as it grows, as
predicted by [59, ?], and they did this by running examples of the bbda with
two buyers and two sellers and with eight buyers and eight sellers. The results of
these experiments are compared with theoretical values (assuming the subjects
bid in accordance with the Bayesian-Nash equilibrium) and the prediction made
by zi-c traders41. The human traders are somewhat less efficient than the theory
predicts, but show a suitable increase in efficiency as the market gets larger.

The zi-c traders do rather badly compared with their performance in cda
markets, attaining around 30% efficiency in the smaller market and up to 40%
in the larger market. However, this seems likely to be because each trader only
gets to make one offer in each trading period (the fact that they are sealed
bids, of course makes no difference to zi-c traders since they ignore offers made
by other traders when choosing what to offer)—in cda markets zi-c traders
typically make several offers before attaining a match.

[4]

One interpretation of Smith’s work is that the kind of market provided by
the double auction is strong enough that it manages to generate efficient out-
comes even when assumptions like an “indefinitely large” number of traders are
violated. Gode and Sunder [20] built on this work by investigating whether the
market could cope with traders who made unintelligent offers rather than the
rational traders assumed by theory. In particular, they looked at two varieties
of what they termed zero-intelligence agents. Both of these bid randomly. zi-u
(unconstrained) agents pick a bid or ask from anywhere within a given price
range (up to 200 monetary units in Gode and Sunder’s experiments) and zi-c
(constrained) agents pick offers constrained by private value. Thus zi-c buy-
ers bid below their private value and zi-c sellers ask above their private value,
ensuring that they trade at a profit.

The results of this investigation were that while prices did not converge to
equilibrium (which one would not expect given the traders are picking prices

41[32] calls these “zi traders”, but makes it clear that these are “budget-constrained zero-
intelligence traders.
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Traders Market 1 Market 2 Market 3 Market 4 Market 5

zi-u 225.48 253.12 90.54 363.80 156.28
zi-c 28.53 49.81 15.90 60.47 19.07
Human 18.67 28.74 8.23 15.37 30.69

Table 2: Profit dispersion from [20].
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Figure 3: The four types of market defined by Cliff.

randomly) they did trade close to the theoretical equilibrium price, and the
markets with zi-c agents had high efficiency. This is a measure of how effective
the market is at generating profits for the traders. For each trade it is possible to
determine the profit for each trader (the difference between the trade-price and
their private value) and so to establish the total actual profit for the auction.
This can then be use to compute the fraction of the total possible profit that
the auction could have extracted—if the buyer with the highest private value
trades with the seller with the lowest private value, and the buyer with the
second highest private value trades with the seller with the second lowest private
value, and so on until the private values no longer cross then the maximum
possible profit is extracted. The human markets (and Gode and Sunder ran some
experiments with human markets with the same private value distributions for
comparison) traded at around 100% efficiency and zi-u traders at between 48.8%
and 90%, while zi-c traders achieved between 96 and 99.9% (averaging 98.7%
across the multiple periods and the different private value distributions)42.

Gode and Sunder also computed the profit dispersion for their experiments
(as defined above). The profit dispersion figures are given in Table 2. These
figures show that while zi-u agents have a high profit dispersion, zi-c agents
have a profit dispersion that is much closer to that of human traders.

Taken together, these results would seem to suggest that traders don’t have
to have any real intelligence. at all for the market work well. All that traders
need to do is to avoid trading at a loss43, a restriction Gode and Sunder refer to

42These results are replicated in Table 1
43As we showed above, zi-u traders can achieve large negative efficiency if the trades are

such that both buyer and seller trade at a loss, though the structure of the markets used by
Gode and Sunder largely rules this possibility out.
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d Market A Market B Market C Market D

1 201 (12) 233 (09) 138 (14) 249 (14)
2 210 (14) 234 (10) 137 (17) 246 (13)
4 199 (14) 236 (10) 135 (17) 253 (12)
6 199 (13) 232 (10) 136 (16) 251 (12)
10 201 (15) 235 (10) 137 (15) 248 (13)
30 135 (16) 250 (12)

Table 3: Mean transaction prices from [7] for trading period d using zi-c. Stan-
dard deviations are given in parentheses.

d Market A Market B Market C Market D

1 35 (09) 27 (08) 62 (17) 48 (11)
2 33 (09) 28 (07) 61 (13) 48 (10)
4 32 (09) 27 (08) 64 (15) 52 (10)
6 33 (10) 26 (07) 60 (15) 51 (08)
10 33 (09) 27 (07) 58 (12) 49 (13)

Table 4: Profit dispersion from [7] for trading period d using zi-c. Standard
deviations are given in parentheses.

as “market discipline”, the idea being that traders who don’t do this will rapidly
go bankrupt and be forced out of the market. The double auction mechanism
itself seems to be all that is required for efficient trading.

However, this result has subsequently been challenged. Cliff [6, 7, 8, 9] sug-
gests that zi-c agents trading close to the theoretical equilibrium has more to do
with the sets of private values chosen than the power of the market. For a classic
upward-sloping supply curve (more units are sold as the price increases) and a
downward-sloping demand curve (less units are bought as the price decreases) of
Figure 1, Cliff argues that the mean of the probability distribution from which
the zi-c agents pick prices is around the theoretical equilibrium price. Thus it is
no surprise that for such markets, which are exactly the kind of markets studied
in [20] (and most of the markets studied in [61]), zi-c agents trade relatively
close to the equilibrium price. This effect is exacebated by the fact that the mar-
kets used in [20] are such that there are very few extra-marginal traders—that is
traders whose private values are such that they would not trade at equilibrium.
In a “blind” market like that populated by zi-c traders, every extra-marginal
trader is a chance to lower efficiency and create trades that diverge from the
eqiulibrium price.

Cliff then tested the hypothesis that it is the private values (which determine
the shape of the supply and demand curves) that have the biggest effect on the
apparent equilibrium price by running simulations of auctions with different
supply and demand curves. In addition to the kind of markets studied by Gode
and Sunder, Cliff used markets with:
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if the last bid or ask was accepted at price P

then

if VB ≥ P then increase profit margin

if the last offer was an ask

then

if VB ≤ P then decrease profit margin

else

if the last offer was a bid

then

if V ≤ P then decrease profit margin

Figure 4: A part of the zip algorithm.

• Downward sloping demand curve and flat supply curve.

• Flat supply and demand curve with excess demand (fewer sellers than
buyers, and all sellers have a private value below that of the buyers).

• Flat supply and demand curves with excess supply (fewer buyers than
sellers, and all sellers have a private value below that of the buyers).

Giving a set of markets with the shapes plotted in Figure 3 (the precise private
values used in Cliff’s experiments are given in [6, 9]).

The results confirm Cliff’s hypothesis—zi-c agents trade a significant dis-
tance away from the theoretical equilibrium in these new kinds of market. (In
contrast, as shown by Smith [61, 62] — and in [63] as cited by [48] — markets
with human traders show no such variation when demand and supply curves
vary.) Note that Cliff reports no results about the efficiency of the zi-c agents,
and this need not be low just because trading takes place away from the theo-
retical equilibrium. To establish the allocative efficiency, we sum all the profit
made by all the agents, and divide that by the total possible profit. Thus a
buyer B and a seller S who trade at a price P when they have private values VB

and VS, contribute:
(VB − P) + (P − VS)

to the numerator of this computation, and this, of course, reduces to:

VB − VS

so the efficiency depends only on the private values of the traders, not on the
price at which they trade (providing the latter is between their private values).
In other words, high allocative efficiency depends only upon matching buyers
that have high private values with sellers that have low private values.

Instead of measuring efficiency, Cliff measured the average transaction price
(for comparison with the transaction price in theoretical equilibrium, which is
200 for the markets he studied) and the same profit dispersion measure as in

36



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

d Market A Market B Market C Market D

1 185 (19) 225 (07) 126 (20) 240 (08)

2 191 (11) 208 (05) 129 (17) 237 (09)

4 196 (06) 201 (01) 138 (19) 228 (10)

6 199 (04) 201 (01) 143 (20) 222 (10)

10 200 (02) 201 (01) 152 (21) 213 (11)

30 186 (20) 203 (07)

Table 5: Mean transaction prices for trading period d using zip, from [7]. Stan-
dard deviations are given in parantheses.

d Market A Market B Market C Market D

1 27 (09) 20 (06) 64 (19) 38 (07)
2 13 (09) 06 (04) 58 (18) 34 (07)
4 06 (07) 01 (01) 51 (19) 27 (07)
6 04 (05) 01 (01) 47 (19) 20 (08)
10 03 (06) 01 (01) 40 (20) 10 (09)

Table 6: Profit dispersion for trading period d using zip, from [7]. Standard
deviations are given in parantheses.

Gode and Sunder. These values are given in Tables 3 and 4. Clearly zi-c does
not converge well to the transaction price in markets B, C and D, and the profit
dispersion is similar to that reported by Gode and Sunder (who give no standard
deviations).

In addition to his critique of the Gode and Sunder’s work, Cliff [6, 9, 7]
provides an alternative approach, the zero-intelligence-plus (zip) trader. This
trader listens to the bids and asks being made, and depending on how these
relate to its private value, raises or lowers its bid (or ask). For example, a buyer
with private value VB operates as in Figure 4 where every buyer is bidding
above its private value by its profit margin, and every seller is bidding below
its private value by its profit margin. The increases and decreases are carried
out using a variation of the Widrow Hoff rule [72]. For full details see [6, 9].
The results obtained for zip agents are given in Tables 5 and 6, where d is the
number of the trading period a given set of values is from. It is clear from these
figures that zip agents outperform zi-c agents both in terms of how closely they
approach the transaction price (especially when given enough trading periods
to learn over) and in the levels of profit dispersion.

Preist and van Tol, working at HP labs, where Cliff carried out the work
reported above, extended his work in [49]. They started with the observation
that one of the assumptions underlying Cliff’s work, that all outstanding bids
and asks are cleared after every trade, is somewhat unrealistic for many markets.
As a result, they investigated persistent shout double auctions, and adapted the
zip algorithm to deal with this case. Their new approach, which we will refer to
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d Human gd zi-c
1–2 0.907 0.9982 0.968

1–10 0.959 0.9991 0.968

9–10 0.970 0.9992 0.967

Table 7: Efficiency for trading period d, from [19].

as pvt, was tested against zip traders in one of the markets that Cliff introduced
in [6] (the symmetric market Cliff calls “A”). Given that Cliff’s interest was
with the degree to which traders approach the theoretical equilibrium price, it
is natural that [49] should look at this also, and they use the α measure to show
that pvt agents provide a more stable solution (meaning that they have a lower
α measure, a mean value of around 0.01 compared to 0.04 for zip) and they
further claim that pvt traders approach equilibrium faster.

Both the pvt traders and the zip traders on which they are based use a
relatively simple algorithm which tries to keep track of the best profit margin
for the trader, where this notion of “best” tries to balance making a big profit
with ensuring that an offer is accepted. These approaches make an interesting
contrast with the gd and mre approaches discussed above. Both the latter try
to estimate the expected value of a given offer, and so explicitly deal with both
the size of the profit margin and an explicit measure of how likely a given offer
is to be accepted.

Gjerstad and Dickhaut, whose automated gd trader was described above,
tested their approach on seven different markets44, comparing the performance
of gd with that of zi-c and human traders (the figures for human traders being
taken from [35]), and measuring both efficiency and the mean absolute deviation
of the transaction price from the theoretical equilibrium price. Values for both
gd and zi-c were averaged over 100 simulations (no standard deviation data
are given in the paper), and each simulation was run over 10 trading periods.
Because one of the features that Gjerstad and Dickhaut were interested in was
the ability of their model to respond to changes in the market, private values
were changed after five periods — every agent’s private value was increased by
$0.50 (initial values being between between roughly $1.40 and $3.50). Results
from these experiments are given in Tables 7 and 8, and show that gd out-
performs both zi-c and human traders in all cases. Furthermore, as in Gode
and Sunder’s original experiments, zi-c has a slight edge over human traders in
efficiency terms in early periods, while trading a little further from equilibrium.

All the work considered so far looked at auctions in which only one kind
of agent took part (counting human traders as one kind of agent, as studies
typically do, despite the fact that they doubtless use a range of strategies). It

44Markets named 3pda01, 2pda17, 2pda20, 2pda21, pda24, 2pda47, and 2pda53, which
Gjerstad and Dickhaut state were originally investigated by Ketcham et al. [35], but which
we cannot find described in [35]. Though one can assume they are versions of the markets
xxxxx, this is unfortuately not enough information to allow us to recreate the markets.
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d Human gd zi-c
1–2 0.101 0.077 0.276

1–10 0.050 0.045 0.237

9–10 0.022 0.040 0.209

Table 8: Mean absolute deviation from equilibrium price for trading period d,
from [19].

is also interesting, and arguably more realistic, to investigate auctions in which
traders use a variety of bidding strategies.

An interesting example of this line of work is [10] (also discussed in [34]),
which pits human traders against trading agents. Prior to this work, it had
been established that human traders quickly learnt to trade near equilibrium,
and could outperform zi-u and zi-c traders. However, nobody had compared
human performance with that of the “more than zero” intelligence traders that
had been developed. [10] pitted 6 humans against 6 agents — both types of
trading agent were both buyer and seller in all these experiments — where the
agents used modified versions of gd (mgd) and zip (mzip), the modification
being necessary to deal with an order book that was not cleared at every trade45.
mgd is described in some detail, mzip is said to be similar to pvt. Results, albeit
only on six experiments, show that agents tend to be more efficient traders
(agents managed to trade at over 100% efficiency, suggesting that they steal
profit from the human traders, while the humans traded between 65% and 97%
efficiency).

The idea of testing the performance of a mixture of human and automated
traders is also explored in [23], though in a rather different market. The market
is modelled on the US futures market, with one seller and five buyers, and the
automated traders are arbitrageurs that exploit the difference between market
prices and those offered by an external bank. The main aspect tested in the
experiment described in [23] was that of the effect of information on traders.
Results show that providing information on the automated traders to human
traders helps the convergence to equilibrium, and in cases when there is no such
information, markets with automated traders operate at lower efficiency than
those without such agents.

Comparing a range of automated trading strategies was the aim of the Santa
Fe Double Auction Tournament [54, 55]. In order to encourage a variety of
entries, the organisers offered cash prizes and attracted 30 submissions. These
entries were then played against one another, with one copies of each entry

45[34] erroneously suggests that zip needed to be modified because it was initially intended
for a call market, but close reading of [6] shows this to be false, and [10] confirms that the main
modification is to deal with outstanding orders. [34] also includes the intriiguing statement
that “We have already begin to develop a stringer bidding algorithm, gdx, that resoundingly
beats gd and zip. Informal tests indicate that gdx fares even better against humans than
gd”, but we are unware of any other reference to gdx in the literature.

39



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

pitted against copies of other entries in a series of different types of market46.
In this respect the tournament was the complete opposite of the homogeneous
set of traders in both Cliff’s and Gode and Sunder’s experiments. The aim
was also different — here the focus was on finding the strategy which gains
the greatest profit over the course of many runs of the market (and thus from
different private values).

The two top strategies in the tournament were both snipers47, that is strate-
gies which wait until a deal seems settled and then run in and steal it. The top
scoring program, named Kaplan in honour of its creator, is also very simple. It
does not bid until the gap between the latest bid and ask is less than 10%, and
then bids equal to that last ask as long as it is profitable to do so. Such a simple
strategy is surprisingly effective, and, as discussed in [54], even manages to make
good profits when bidding against large number of copies of itself. This latter
fact was established through an evolutionary tournament like that of Axelrod
[1] in which successful strategies were allowed to “breed” and unsuccessful ones
were eliminated, though this tournament also revealed that Kaplan traders are
not stable — eventually the population of Kaplan traders goes into decline.

The program that came second, Ringuette, was only just beaten by Kaplan,
ending the tournament with a payff of $394 rather than $40848. According to
[55], the payoff distributions for the two strategies are “almost identical” and
the main difference between the two is that Ringuette sometimes trades at a
loss, and sometimes fails to make profitable trades. In particular, Ringuette is
reported as trading 99% of the items it should be able to trade profitably (which
we assume means given the theoretical equilibrium of the various scenarios it
faces) while Kaplan trades 111%. [55] attributes this to Ringuette using a “more
aggresive” rule to decide when to make an offer, and it randomly overbids an
ask it aims to match, whereas Kaplan just matches it.

One reasonable conclusion that might be drawn from the Santa Fe tourna-
ment is that sniping strategies do well, but such a conclusion should be viewed
with caution. Snipers require other strategies to snipe off — as we have already
pointed out, Kaplan cannot continue to earn good profits if all other traders
use Kaplan (even though the strategy includes a mechanism that is intended
to ensure it trades if there are no traders to snipe at, a strategy that involves
starting bidding as time runs out in the auction). More correct would be to
say that sniping strategies can do well, provided that they operate in a suitable
mix of strategies49. Indeed, one of the main conclusions one can draw from all
experimental work on trading strategies is that the performance of any strategy

46In a complicated arrangement that tried to ensure that different entries were treated as
identically as possible.

47A term not in use at the time the experiments were carried out, but familiar to anyone
who uses eBay.

48Though this is a small margin, [55] points out that the difference in mean efficiency
between the two strategies is significant.

49As discussed above, [54] suggests that the Kaplan strategy does not give terribly good
results in markets in which it is the only strategy to be used, and this is backed up by results
from our own experiments. These results contrast with those reported in [66, 67] and discussed
below.
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tends to be conditional on the other strategies it operates against.
A further conclusion is that strategies that perform well do not need to

be complex. While Kaplan is not the simplest strategy that took part in the
tournament — gamer, for example, with its constant profit margin, is simpler
and and performs poorly — it is much simpler than, for example, a neural
network trader that was entered, which included 20 hidden units and 40 inputs
from various pieces of public information (and clearly does better).

Work in a similar vein to the Sante Fe tournament has recently been carried
out by Tesauro, Das and colleagues. In the search for traders which are capable
of making high profits, Tesauro and Das [66, 67] exhaustively tested five strate-
gies —zi-c, Kaplan, zip, gd, and mgd, a modified version of gd. The results
show that homogeneous sets of traders of all strategies gain high efficiency (the
highest is 0.997 for zip and mgd and the lowest is 0.983 for zi-c), that both
zip, mgd converge quickly to an equilibrium (results for gd are not given), and
that these latter two also come very close to the theoretical equilibrium price
on average. None of these results should be surprising given the right type of
market50.

These results, of course, only measure the working of the market as a whole.
To find the effectiveness of strategies for individual traders in the same vein as
the Santa Fe experiments, Tesauro and Das carried out further experiments.
First they tested whether traders in an otherwise homogeneous population
gained or lossed by changing strategy. This showed that it was never profitable
to change to using zi-c from any of the other strategies, and that it is always
better to switch from zi-c. Similarly traders can always benefit by switching
to Kaplan, but this benefit is small against gd and mgd traders. A single zip
trader always does well, except against mgd, and mgd always does well, except
against zip (and no results are given against gd).

With more balanced groups of types of agent, a number of direct comparisons
were made. Over 100 runs, the number of “wins” (where a given group of traders
gained more profit than the other group) was counted. This showed that zi-c
could defeat Kaplan, gd could defeat zi-c and Kaplan, zip could defeat gd,
zi-c and Kaplan, and mgd could defeat all the others (and by a significant
margin). This leds Tesauro and Das to the conclusion that mgd dominates the
other trading strategies, and, to some degree answers the question of what would
have happened if gd had been entered into the Santa Fe tournament. It also
reinforces the point, made above, that the performance of a trading strategy in
an auction is dependent on the other stratgies that are used in the same auction.

A more sophisticated analysis, which extends the work of Tesauro and Das,
is the heurstic strategy analysis of [69], work that is a natural extension of that
in [66, 67]51. The main idea of [69] is to apply evolutionary game theory [57]
to the kinds of results that previous authors had obtained for trading agents.
Overall the argument for the evolutionary approach is as follows. Consider a set
of traders using different trading strategies, some of these will do better than

50Though see footnote 49.
51Which is not to say that it is unoriginal—the work was strikingly original, and only seems

like an obvious extension in retrospect.
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others, and which ones do well will depend upon the exact mix of traders—this is
seem both in [66, 67] and the “breeding” work in [54]. Now, imagine a particular
trader, using a specific strategy, after some number of auctions can identify how
well traders using different strategies are performing in the current mix (taking
profit per trader using a given strategy as a measure of the performance of that
strategy). A rational trader will choose to adopt a different strategy if that
strategy is performing better, and if there are several such strategies, will pick
the one that is performing best. This will change the mix, and after some more
auctions the trader may again change its strategy. If we establish the relative
performance of different approaches for all the possible mixes (for some finite
number of agents) we can determine whether there are stable equilibrium points
that the set of traders will converge on, and what the mix is at such equilibria.

Of course, there is a huge number of possible strategies, and hence possible
mixes, that we need to consider. The second key idea in [69] is that rather
than choose an arbitrary strategy, sensible traders will stick with strategies like
gd which are known to perform well. They choose to concentrate on Kaplan,
zip and mgd, and looked at versions of the cda with 6, 12, 14, 16, 18 and 20
agents. Results show that in the 6, 12 and 14 agent cda, the Nash equilibrium
is a mixed strategy in which mgd has zero probability (in other words mgd
is outperformed by a mixture of zip and Kaplan), while in the 20 agent game
there are three Nash mixed-strategy equilibria, two of which have mgd is the
most likely strategy to be played. Furthermore, altering the payoffs slightly
(to simulate an improved strategy) suggests that a modest improvement in the
payoff to mgd would result in it becoming nearly dominant. Thus, it is clear
that the precise results one obtains from experimental work on trading straegies
seems very sensitive to the experimental conditions.

This last point is exacebated [70] by the fact that the computation of the
payoff to an agent playing a given strategy is extremely computational intensive
— it requires the running of many iterations of an auction, each with a consid-
erable number of agents participating in it. To help reduce the computation,
and to reduce the error in payoff calculation, error that will always be present
to some extent given the natural statistical variation in the strategies that the
agents employ, [70] suggest smart strategies to determine which auctions to run
in order to compute the payoffs.

5.2 Learning

5.3 What existing experimental work does and does not tell

us

6 Summary

This paper has attempted to collect and relate the bulk of the work on trading in
double auction markets. The main aim of the paper was to start in some sense to
unify the work that has been carried out in this area. That work is very diverse,
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and our aim is, by recording this diversity, to help build an understanding of
not only the patchwork quilt of results but also the gaps in that quilt. This
understanding is a necessary preliminary to our plan to provide the missing
pieces of the quilt, running experiments that make the comparisons that are
currently missing, and taking the measurements that allow such comparisons to
be made. Some initial steps in this latter line of work were also described.
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