Progress Toward an Inexpensive Real-Time Testbed
The Pinball Player Project*

(Presented at the Real-Time Education Workshop, 1997)

Dayton Clark
Department of Computer
& Information Science
Brooklyn College/CUNY

Brooklyn, New York 11210
dayton@brooklyn.cuny.edu

Abstract

The Pinball Player Project is nearing completion
of its first phase—construction of a working prototype.
The immediate purpose of the project is to develop an
inexpensive testbed for real-time programming—a de-
vice within reach financially and technically of any
Computer Science or Computer Engineering depart-
ment. This paper discusses the need for such a testbed
and the rationale for the particular model (a pinball
machine and o PC). We also report on the status of
the project and our thoughts for dissemination and use
of the testbed within the real-time educational commu-
naty.

1 Introduction

The major programming or systems areas of Com-
puter Science reached profound levels of maturity in
the 1950’s, 60’s and 70’s. That is, fundamental theo-
retical questions were posed and answered and signif-
icant tools were developed to exploit and complement
the theory. Consider Table 1 which lists significant
developments in several systems areas. The anomaly
in Table 1 is computer networks, but by in large net-
works did not exist at all until the mid-to-late 60’s.

The ability to control real-world processes by com-
puter became a reality with the advent of the mini-
computer at about the same time as the early net-
works, the mid-to-late 60’s. Yet, even today, for de-
velopers of real-time systems there are very few tools
available and very little consensus within the real-time
community as to which tools. Even if one adjusts for
the late start of real-time systems, the area seems over-
due for galvanizing events like those in the Table 1.

*This project was supported in part by a grant from the
Office of Naval Research (N00014-96-1-1057), by PSC-CUNY
Research Award Program (665006) and by Brooklyn College.

The theory of scheduling real-time tasks has pro-
gressed nicely. There is wide-spread consensus on real-
time scheduling algorithms. However, even here, the
early date of the ground-breaking work (Liu and Lay-
land in 1973 [liu73]) raises the question, where are the
development tools?

The major reason for the slow maturation of the
field is that real-time programming is difficult. The
imposition of inviolable external time constraints in-
creases the difficulty of “normal” programming in a
qualitative manner. This cannot be over-emphasized.
However, we feel that a significant contributor to the
slow development of real-time programming is more
mundane. Specifically, the problem is the lack of ac-
cess to computer controlled real-time systems brought
about by the high cost of such systems. This lack
of access greatly reduces the number of programmers
who are exposed to real-time systems in their educa-
tion thereby reducing the general knowledge of and
interest in the problems of real-time programming.
Typical research into real-time systems and the at-
tendant programming is in military, avionic, space or
robotics where the devices are expensive and unavail-
able to many colleges and universities. They are ex-
pensive both in initial cost and in maintenance, re-
quiring skilled personnel to keep them operational.
An example of this is provided by the robotic hand
developed by the University of Utah and MIT in the
mid-1980’s for use in research into robotic manipula-
tion [3]. This exquisite device was an order of mag-
nitude more expensive than the rather ordinary com-
puter equipment needed for control experimentation
and was consequently available at only a handful of
laboratories across the country.

The goal of the Pinball Player project is to de-
velop a complete package (control and development

Area Development Date
Scientific Computing FORTRAN late 50’s
Standard numerical libraries late 60’s
Languages and Compiling Backus-Naur Form late 50’s
Algol early 60’s
LL & LALR parsers late 60’s
Operating Systems Synchronization early 60’s
Virtual memory late 60’s
Layering late 60’s
Database Systems COBOL early 60’s
Relational databases early 70’s
Artificial Intelligence LISP (symbolic programming) early 60’s
Frames early 70’s
Computer Networks Arpanet early 70’s
Internet protocols early 80’s
OSI paradigm early 80’s

Table 1: Significant Developments in Various Systems Areas

computer(s), the controlled device(s), sensors, actua-
tors, interfaces, and basic software) that can be put
together from commonly available items and without
exceptional mechanical or electronic engineering for
under US$10,000. The experiences gained from cre-
ating such a system will be shared with the academic
and research communities at large so that many insti-
tutions can develop and expand on the initial system.

The next two sections present the rationale for the
plant and computing platform chosen for the testbed.
Section 4 describes the current state of the project.
The following section describes our vision of how the
Pinball Player could be used educationally. Finally,
we draw some conclusions in Section 6.

2 Why Pinball?

Selection of an appropriate system to control is crit-
ical to the success of the testbed. The system must
have a real-time component. In addition, the system
must be inexpensive and safe and the control must
be simple enough to be within the reach of students
and complex enough to be challenging. There are
also advantages in a system that can be controlled
by humans as well as by a computer. If students
are able to control the system themselves (i.e., as hu-
mans) the highest level problems and strategies can be
intuitively grasped. Human controllers also provide
a ready benchmark for the success of the computer
controller. And finally, with a human controllable
plant, investigation of control strategies involving hu-
man training of the computer controller is feasible.

Arcade type pinball machines fit all of the criteria.
They are readily available and inexpensive (US$100
for some as-is machines to US$2,500 for new ones).

They are safe and easily understood. The basic acts
of tracking and hitting a ball are decomposable into
pieces appropriate for instruction. The problems of
keeping a ball in play and strategies for high scores
are replete with challenges. The ability to have the
computer “watch” a human play, for training, is a sim-
ple extension of the basic computer/pinball machine
interface.

The idea of “toy” plants for real-time laboratories
is not new. Zhang etal. [zhang94] presented research
based on model train system and the author is aware of
at least one use of model trains to teach real-time pro-
gramming. Surely sentimental favorites, model trains
have significant drawbacks for use as general educa-
tional tools. Although the basic operation and setup is
simple—millions of children have or have had them—the
creation of a system that presents interesting schedul-
ing problems is non-trivial. Furthermore, maintenance
of a model train system while not requiring advanced
skills does require devotion and care. Contrast this
with pinball machines which are designed to work with
minimal setup yet to operate for long periods in un-
friendly environments with maintenance limited to the
occasional dusting and emptying of coin boxes. Fi-
nally, once one has successfully scheduled a particular
model train system, the opportunity for further in-
vestigation is limited (e.g., changing train lengths or
optimizing train schedules). With a pinball machine,
every play is different and one can always strive to
lengthen the time balls are kept in play. Furthermore,
enhancements such as using multiple balls or obtain-
ing a higher score (as opposed to simply keeping the
ball in play) are rich with problems beyond the basic

pinball play.

Another source of toy testbeds is the many the
small mobile robots that are available commercially
or can be constructed (see Mobile Robots: Inspiration
to Implementation [jones93]). The emphasis in these
systems is on the electro-mechanical design more than
the computer control and the mechanical design is of-
ten meant to eliminate or side-step the need for time-
critical control. The control of multiple cooperating
or competing mobile robots would present many real-
time control problems but for general ease of use and
setup we have chosen the pinball machine.

3 What Platform?

The choice of which computer to use for control
of the pinball machine is clear. The IBM PC and
its clones are ubiquitous. Every school has some and
probably many of them on hand. New PC’s now cost
under US$2,000 and old ones are often discarded long
before they are unusable. Students and faculty are fa-
miliar with the normal operation of PC’s. Adapters
for control and sensing devices are plentiful and in-
expensive. The architecture of the PC is open, which
will facilitate the development of special purpose hard-
ware. Note that our goal of developing a testbed that
can be easily setup and maintained proscribes the ex-
tensive use of special purpose hardware. But, once
a testbed system is installed we expect and encour-
age students and faculty to experiment with hardware
modifications to the testbed. We know of no other
computer that would serve as well as the testbed’s
computer.

Selection of appropriate software platform is not
as straight forward as the hardware and is in fact
very much an open question. We are currently using
FreeBSD[1] a freely distributed version of Unix with
its roots in BSD variant of Unix from the University
of California at Berkeley. We are attracted to it be-
cause it is distributed in source form, it is familiar to
us, and is inexpensive. FreeBSD has some support for
real-time processes and supports a POSIX compliant
threads library[2].

There are many operating systems for the PC ar-
chitecture. We have considered the better known and
a brief summary of our thoughts on them follows. The
PC’s native operating systems from Microsoft (DOS
and the various Windows) and IBM (0OS/2) are ob-
vious choices. However, we feel it is important that
the testbed’s operating system be as open as possible.
We feel it is important avoid hindering experimenta-
tion with hidden and/or immutable characteristics of
a non-real-time operating system. So, despite their
widespread familiarity we feel these operating systems

Figure 1: The pinball machine

are inappropriate. For similar reasons we are not us-
ing commercial versions of Unix (Solaris and SCO’s
Unix). Commercial real-time operating systems such
as VxWorks by Windriver Systems are also possibil-
ities, but we have opted not to use one of these be-
cause of their proprietary nature, lack of familiarity,
and cost. There are other free Unix systems, most
noticeably Linux, our choice in this cases is mostly a
matter of our own familiarity.

It is important to recognize that our use of FreeBSD
is not an endorsement of FreeBSD as a real-time oper-
ating system. Rather, with the soup of constraints and
options available to us, we have found FreeBSD to be
the most useful platform for developing the testbed.
In fact, our difficulty in selecting an operating system
goes to the root of the motivation for this project,
namely that with respect to software there is little
consensus as what tools should be used.

Our prototype version will be based on this plat-
form but we fully expect that if the project is adopted
by other institutions that other operating systems will
be used. In particular we would hope that support
arose for the standard PC operating systems, DOS

Figure 2: The pinball machine playing area

and Windows, other free operating systems such as
Linux, and hopefully for real-time operating systems.

4 Current Status

This section describes the current status of the de-
velopment of the prototype system. We present first
the hardware, our pinball machine, control computer,
the sensors and the actuators.

4.1 Hardware

The hardware in the prototype system consists of a
pinball machine, a PC, a video input device, a digital
and analog I/O board, and interface circuitry consist-
ing of two relays connected to the pinball machine’s
flipper circuits (see Figure 3). The software consists
of the operating system (modified slightly to support
the sensors and actuators), our control software, and
some initial control strategies.

4.1.1 The Pinball Machine

The plant for our prototype is a pinball machine called
Jacks to Open. It was manufactured in the early 1980’s
by a company called Gottlieb. Figure 1 shows the
pinball machine and Figure 2 shows the playing area.

The upper third of the playing surface consists of an
obstacle course of bumpers and gates through which
the ball must travel. The purpose of the area is to
randomize the ball’s behavior. The lower two-thirds
of the playing area (roughly 45cm by 45cm) is mostly
unobstructed with only a few bumpers and gates. At
the bottom of this area are two flippers which guard
the ball’s main avenue of escape.

The only control available to the player is the flip-
pers, each of which is controlled by a normally open
switch located on the side of the machine. When a
switch is closed the corresponding flipper is driven by
a solenoid through an arc of about 90 deg to its “up”
position. The flipper stays in this position until the
switch is released. Control of the flipper is binary;
there are no intermediate positions; it is either full on
or full off.

4.1.2 Sensors

Pinball machines are designed to stimulate humans.
There are a great many audible noises and flashing
lights accompanying the play. Some of this activity
provides information to the player such as the num-
ber of balls and games remaining, the current score,
and “bonus” states in which certain actions further in-
crease the player’s score. It will be interesting in later
stages of the project to track some of the auxiliary
activities. At present we are exclusively interested in
the ball’s location so we can actuate the flippers at the
appropriate times.

The pinball machine itself has several dozen sen-
sors for keeping score and activating lights and sounds.
There are sense switches in most of the gates. Many
of the bumpers sense when the ball has struck them,
Some of the obstacles sense when the ball strikes and
then actively push the ball away. Our particular ma-
chine is monitored by a microprocessor (one would
assume that this is true of all pinball machines manu-
factured in the last two decades). Tapping the sensor
circuits is conceptually easy but it turns out that the
information they provide is of little use when trying
to hit the ball. Examination of Figure 2 shows that
the top of the play area is densely populated with
bumpers and gates and the lower portion (just above
the flippers) is sparsely populated. Thus the machine’s
sensors provide little information about the ball’s tra-
jectory as it nears the flippers, precisely when we need
it most.

So we are led to develop our own sensors. Our
original plan was to avoid video input for two rea-
sons. One reason was that video equipment tends to
be more expensive, which was contrary to the goal of

io
eft
Flipper

7|

+12 iRt

Flipper

(_)RS 275-00 _<

LM 324

RS 275]00]

&

8 9| 1

Gj
H <j
A

© D

3

Left
to PIO

Right

Figure 3: Circuitry connecting PIO to flippers.

an inexpensive testbed. The second reason was that
the immense problems of computer vision would likely
overwhelm the control problems which are the purpose
of the testbed. Two experiences led us to reevaluate
this choice. First, we experimented with various sens-
ing schemes based on broken or reflected light beams
with occasional but very sporadic good results. Sec-
ond, as our frustration rose, small cameras for use in
video conferencing over the Internet arrived on the
market. These cameras, often shaped like billiard balls
are connected directly to a computer’s parallel port
(no frame grabbing card), are able to deliver around
15 frames/second, and are very inexpensive (less than
US$100 for a black and white camera).

We installed a QuickCam camera by Connectix and
have had tremendous results. We can now track the
ball in real-time using a very simple algorithm (see
Figure 4). We detect motion by subtracting each im-
age from its predecessor and thresholding. This yields
a binary difference image which contains only the
ball’s locations in the two original images. A simple
calculation using two of these difference images yields
an image containing only the ball’s current location.
There are three drawbacks to this simple scheme. One
is that the flippers also move so we need to distinguish
them from the ball. At present, we simply ignore any
activity in the immediate region of the flippers. Sec-

ond, the pinball machine’s own lights which flash at
indeterminate times can fool our sensors. Qur current
solution is to turn off the machine’s lights. Third,
shadows cast by someone walking near the machine
may throw the sensor off. Our response is to stand
clear of the machine while it is playing. We plan to
implement a more sophisticated detection algorithm
soon which we hope will overcome these disturbances.

4.1.3 Actuators

Each of the machine’s flippers is driven by a 24 volt
solenoid. When the input circuit is closed the solenoid
pushes the flipper through an arc of approximately
90deg. The flipper remains in this position until the
circuit is opened. We have put a relay in the circuit,
in parallel with the button used to activate the flipper.
An output signal from a digital I/O board is amplified
and becomes the input to the relay. The electronics
are very simple and a program controls each flipper
by toggling a bit on the I/O board.

A common question about the project is “How do
you control the plunger which launches the ball into
play”? At this time we don’t. A device which would
pull back the plunger and then let go to launch the ball
would be interesting, but the problem is mostly a me-
chanical engineering problem and not of direct concern

