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Abstract

Pattern Matching addresses the problem of finding all occurrences of a pattern string in

a text string. Pattern matching algorithms have many practical applications. Computational

molecular biology and the world wide web provide settings in which efficient pattern matching

algorithms are essential. New problems are constantly being defined. Original data structures

are introduced and existing data structures are enhanced to provide more efficient solutions

to pattern matching problems. In this survey, we review pattern matching algorithms in one

and two dimensions. We focus on several specific problems, among them small space pattern

matching, parameterized matching, and dictionary matching. We also discuss the indexing

problem, for which the classical data structure is the suffix tree, or alternatively, the suffix

array.
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1 Exact Matching

The Pattern Matching Problem is defined as follows:

Let Σ be an alphabet.

INPUT: Text string T = t1t2 . . . tn and pattern string P = p1p2 . . . pm, ti, pi ∈ Σ.

OUTPUT: All locations i in T where there is an occurrence of the pattern, i.e., T [i + k] = P [k +

1], 0 ≤ k < m.

A naive solution to exact matching views each text position as a possible pattern start and

compares the pattern at each text position in O(nm) time. More sophisticated methods achieve

linear complexity, i.e. O(m+n). Knuth, Morris, and Pratt presented a linear-time automata method

to find a pattern in text. Boyer and Moore devised an alternate linear-time solution which jumps

over parts of text and achieves average case performance time O( n
m
).

The naive algorithm for pattern matching and its improvements such as the Knuth-Morris-Pratt

algorithm are based on a positive view of the problem; the algorithm tries to prove at each text

location that the position is an occurrence of P. In applications, T often contains relatively few

occurrences of P. Hence the negative view can fit the situation better than the positive one. An

algorithm that adopts the negative point of view quickly eliminates candidate positions by proving

that there cannot be an occurrence of P at each text location. This forms the elimination phase

of the algorithm. A separate checking phase then examines whether or not a potential occurrence

really contains P. This leads to fast algorithms because the elimination phase needs to examine

only a small fraction of T on average. The Boyer-Moore algorithm has this flavor.

1.1 Linear-Time Pattern Matching

Knuth, Morris, and Pratt developed a linear-time method to find a pattern in text [52]. We will

hereafter refer to their method as KMP. The KMP automaton maintains a failure link for each

prefix of the pattern. The failure link of a position points to its longest suffix that is also a prefix.

In other words, the failure link encapsulates the longest border of each prefix of a pattern.

The Boyer-Moore algorithm provides another linear-time solution to pattern matching [13].

Its execution time can be sublinear. It does not always examine every character of the text, but
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rather skips some of them. Generally, the algorithm achieves better speed for longer patterns.

The combination of right to left verification with left to right shifts of the pattern forms a faster

algorithm. The average case performance of the algorithm is O( n
m
) while the worst case performance

remains linear. The extra space required to preprocess the pattern is alphabet dependent, i.e.,

O(m+ ∣Σ∣).

1.2 Randomization

The Rabin and Karp fingerprinting algorithm for string matching is a randomized algorithm whose

performance is linear on average [49]. Their algorithm saves comparisons by computing the hash

value of several characters, thereby comparing a group of characters with a single comparison.

The preprocessing consists of hashing the pattern. The algorithm computes the hash value for

each substring of the text that is the same length as the pattern. Each substring’s hash value is

compared to the pattern’s hash value. When the hash values match, the pattern is compared to

the text, character by character. If the hash values do not agree, the text is surely different from

the pattern. Thus, character comparisons are often skipped. The trick is to use a hash function

that can be incrementally computed as the text is scanned. The hash value should be updatable

in O(1) time when we eliminate the leftmost character of the substring and include the next text

character to the right of the substring.

In the best case, when none of the hash values match that of the pattern, the Rabin-Karp

algorithm achieves sublinear time complexity. Yet, the Knuth-Morris-Pratt and Boyer-Moore algo-

rithms often have better performance than the Rabin-Karp algorithm when searching for a single

pattern. However, Rabin-Karp is an algorithm of choice for multiple pattern search. Multiple

pattern matching, also known as dictionary matching, is discussed in Section 2.

1.3 Witnesses and Duels

Vishkin introduced the dueling paradigm for pattern matching [68]. For pattern P, let � represent

min(length of the period, m/2). Periodicity is defined in Section 6.1. For every i, 0 < i < �,

there exists some position k, k > i in P such that Pl ∕= Pk−i. We call k a witness against i (being
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Figure 1: Duel: X ∕= Y ; therefore we cannot have Z = X and Z = Y

a period of P). Vishkin suggested the construction of a witness array in the preprocessing of the

pattern. The size of the witness array is �. Then, for every pair of close candidates in the text, a

duel is performed to eliminate one or both of the candidates. Suppose i and j are candidates and

0 < j − i < �, with ℎ = witness[j − i]. Since Pℎ ∕= Pℎ+i−j , at most one of them is equal to Ti+ℎ.

After all duels are performed, the remaining candidates are consistent. It is sufficient to compare

each text position to the corresponding position in any candidate among a consistent set. This

alphabet independent method is used for fast pattern matching in a parallel setting.

1.4 Deterministic Sampling

In 1991, Vishkin introduced deterministic sampling, which mimics randomization deterministically

[69]. The method carefully selects a pattern sample whose size is at most logarithmic in the pattern

size. Then, the sample is found in the text. For a non-periodic pattern, all but one occurrence of the

pattern within each “neighborhood” of the text is disqualified, which provides sparse verification.

A periodic pattern can be reduced to a non-periodic pattern as follows. Suppose � is the length

of the period. The pattern prefix p of size 2� − 1 is a non-periodic string. Search for p in the

text and link neighboring occurrences of p if the linking character is present. The verification of

candidates consists of determining if a chain is long enough to form a pattern occurrence.

The deterministic sample is a set A of positions of the pattern and a number x, such that if the

positions match a candidate i in the text, then all other candidates in the interval [i−x+1, i+m
2
−x]

are eliminated. The deterministic sample is crucial for very fast string matching algorithms since

a very small deterministic sample can be found.

How is the sample constructed? Consider P shifted and stacked m
2
times. Since the pattern is

6



Figure 2: A 2-size deterministic sample for 8 shifts: A = 2, 4 and x=6

not periodic, the copies are all different and every column contains at least two different symbols.

Choose any witness between the first and last copies; let it be column j. Select the less frequent of

the two symbols, which can occur in at most half of the copies. Eliminate the columns that have

a different symbol in the witness column. At most, half of the copies remain. This procedure is

repeated at most log m
2
times until only one copy remains at row x, 1 ≤ x ≤ m

2
. The procedure to

find a small deterministic sample can be parallelized. Figure 2 shows a deterministic sample for a

pattern.

Galil compares efficient pattern matching to the task of hunting lions in the desert [31]. He

uses a process called a diet to limit the size of the lions being sought in the desert. The number of

positions to search is also limited. The algorithm is work optimal, which means it finds a pattern

of size m in a text of size n in constant time with n processors. This method is based on Vishkin’s

deterministic sampling.

2 Dictionary Matching

The Dictionary Matching Problem is defined as follows:

Preprocess a set of of pattern strings D = {P1, P2, . . . , Pk} called a dictionary.

Subsequently, for every INPUT: text string T = t1t2 . . . tn.

OUTPUT: All locations in the text where there is a match with any pattern in the dictionary.

A naive solution to the dictionary matching problem would search for each pattern in the text

independently. Then, the text is scanned k times. More clever solutions examine the text only

once, achieving linear time complexity.
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2.1 Aho Corasick Automaton

Aho and Corasick [1] extended the KMP automaton to pose an efficient solution to the dictionary

matching problem. We will hereafter refer to their method as AC. The AC automaton finds any

element of a set of k patterns, each of size m, in a text of size n in O(km) preprocessing and

O(n log ∣Σ∣ + occ) search time, where there are occ occurrences of patterns in the text. If the

patterns are of different sizes, the preprocessing time is proportional to the sum of the lengths of

the patterns. The search time depends on the size of the alphabet, but is not related to the number

of patterns in the dictionary. The transition function of the KMP automaton is determined solely

by the current state while the AC automaton’s transition is a function of the current state and the

character encountered. The number of branches emanating from a node is limited by the size of

the alphabet.

The AC automaton can be built in linear time for integer alphabets as described by Dor and

Landau [25]. Construction of the automaton is strictly proportional to the dictionary size and does

not depend on the alphabet size. Search time still includes the log factor. The new algorithm is

based on an observation regarding the failure function of KMP and AC. That is, the failure function

is closely connected to the generalized suffix tree of the patterns. The automaton is constructed

with the use of suffix arrays to sort the patterns, as well as suffix trees to gather information about

the relationship between the patterns.

Breslauer has an approach to dictionary matching that does not only use equal/unequal com-

parisons [14]. This way the log factor in the AC algorithm is eliminated and the algorithm is truly

linear in the size of the text. The algorithm compares the symbol in the current text position to

the median of the alphabet symbols that appear in all potential occurrences in the column which

is aligned with this text position.

In dynamic dictionary matching, the dictionary can change. An efficient algorithm must ac-

commodate efficient insert and update operations on the dictionary. The first parallel algorithm

achieving optimal amortized work for dictionary matching and updating the dictionary, in the case

of an unbounded alphabet, was presented by Muthukrishnan and Palem [60]. Ferragina and Luzzio

offer an algorithm with superior complexity bounds [27]. Their results also apply to dynamic
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parameterized dictionary matching.

2.2 Faster Dictionary Matching

Expected sublinear search time is achieved by the Boyer-Moore algorithm in the search for a single

pattern. Similarly, algorithms have been developed to solve multiple pattern matching in time

smaller than the size of the text.

The Commentz-Walter algorithm [18] combines the ideas of the Aho-Corasick and Boyer-Moore

algorithms to form an algorithm that is generally faster than the AC automaton. A trie is built for

the reversed patterns to mimic the right to left scanning of a pattern. Shifts are based on the value

of the matching characters and its appearance in the patterns. The preprocessing, which consists

of setting up the trie and the shift function, is still linear in the size of the dictionary.

Wu and Manber use the Boyer-Moore technique in dictionary matching to skip segments of text

that cannot contain any pattern occurrence. They work with blocks of the pattern and the text

rather than individual characters. The shift table is computed for hash values of pattern blocks.

In the text scanning phase, the hash value of each text block is looked up in the table. [71]

Kim and Kim describe a bit-theoretic approach that offers an improvement over the Wu-Manber

algorithm [51]. Their algorithm is based on a compact encoding and hashing scheme for the

patterns.

3 2D Matching

The Two Dimensional Pattern Matching Problem is defined as follows:

Let Σ be an alphabet.

INPUT: text array T [1 . . . n, 1 . . . n] and pattern array P [1 . . .m, 1 . . .m].

OUTPUT: All locations (i, j) in T where there is an occurrence of the pattern, i.e., T [i+k, j+ l] =

P [k + 1, l + 1], 0 ≤ k, l < m.

The main application area is pattern matching in images, such as optical character recognition

and biomedical imaging.
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3.1 Bird / Baker Algorithm

The first linear-time algorithm for two dimensional pattern matching with bounded alphabets was

obtained independently by Bird and Baker, in [12] and [11], who convert the 2D pattern matching

problem into a 1D string matching problem. Each row of the pattern is viewed as a metacharacter.

An AC automaton is built for the rows of the pattern in time and space proportional to the pattern

size. Like any AC automaton, the complexity is alphabet dependent. The Bird / Baker algorithm

solves 2D pattern matching in O(n2log∣Σ∣) time and space. Not only is this algorithm online, it is

real-time since each part of the text is only examined once, as it is encountered.

Bird / Baker Algorithm:

Phase I: Preprocess pattern

Give each row of P a unique name using AC automaton of pattern rows.

Represent P as a 1D vector and construct the 1D KMP automaton.

Phase II: Row matching

Label positions of T where suffix matches row of P using AC automaton.

Phase III: Column matching

Use KMP on named columns of T to find pattern occurrences.

(Note: Phases II and III can be done simultaneously.)

The Bird / Baker algorithm easily extends to dictionary matching. If the KMP automaton is

replaced with an AC automaton, the above algorithm solves the 2D dictionary matching problem.

3.2 2D Witness Table

Amir, Benson, and Farach [4] use the concepts of dueling and 2D periodicity to perform alphabet-

independent linear-time pattern matching in two dimensions. Like its one dimensional counterpart,

the algorithm preprocesses the pattern to form a witness table, then duels are performed when the

text is scanned. The pattern is preprocessed to form two witness tables, one for each direction of

a duel. The witness table is linear in the size of the pattern. A witness is a position of conflict

between two overlapping copies of the pattern. The text scanning consists of two phases, consistency

and verification. At the culmination of the text consistency phase, all remaining candidates for

pattern occurrence are pairwise consistent. That is, they agree on the expected text characters.

The verification phase determines which of the consistent candidates are actual occurrences of the
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pattern, by comparing text characters and pattern characters. The order in which the positions are

verified is significant. Galil and Park [32] developed alphabet-independent 2D witness computation,

which can be used to improve the preprocessing of the pattern matching algorithm. Cole et. al.

[17] showed in 2004 that computation of the 2D witness table can even be parallelized.

3.3 2D Deterministic Sampling

Crochemore et. al. introduce deterministic sampling in two dimensions [21]. The authors assume

that the pattern has a “good” sample. That is, the pattern segment of size 10 ∗ log m in the m
2
+1

row beginning in the m
2
+ 1 column does not occur anywhere else in the pattern. Then, there is

a square field of fire of size m/2 around an occurrence of the special segment. That is, in a text

block of size 3m/2 × 3m/2, there can only be one pattern candidate. The candidate is found by

looking for the 1D pattern sample. Then the pattern occurrence at a candidate position is verified

naively. Since there are so few candidates, this algorithm runs in time proportional to the text size.

Furthermore, most 2D patterns have good samples. This follows from simple calculations based on

probability.

Kärkkäinen and Ukkonen describe several methods for 2D deterministic sampling [46]. They

propose a generic algorithm for 2D sampling. It consists of first selecting a sample size, a template

shape, and a sampling scheme for the given pattern and text. The scheme must provide exactly one

witness for each occurrence of P in T. The preprocessing consists of constructing a suitable data

structure to quickly find all pattern samples in a given text string. The text scanning consists of two

phases, elimination and checking. During elimination, text positions that are not compatible with

the pattern template are eliminated by using the data structure constructed in the preprocessing

stage. Candidates that survive elimination can be verified naively in the checking stage. A change

in sampling scheme results in a different concrete algorithm. A sampling scheme is designed to

minimize the number of text positions inspected during elimination, as the text is typically much

larger than the pattern. Linear samples and square samples are considered at length. Samples are

small so the extra space required by the algorithm is minimal.

Crochemore et. al. extend deterministic sampling to two dimensions [19]. It is the basis for an
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alphabet-independent parallel algorithm for 2D matching. Unlike most fast parallel algorithms for

string matching, their algorithm does not rely on 2D periodicity. Only h-periodicity (or horizontal

periodicity) is used. Like other algorithms for alphabet-independent 2D matching, the preprocessing

consists of computing witnesses for the pattern.

To classify the 2D periodicity of a matrix, two overlapping copies of the matrix are examined.

See Section 6.2 for more details. A period vector, or a symmetry vector, that is horizontal is called

a horizontal period vector or hpv of P. If P has a valid hpv, it is called h-periodic. The length of the

smallest hpv of P is the least common multiple (LCM) of the periods of the rows of P considered

as strings. As in Vishkin’s 1D deterministic sampling technique, the algorithm of [19] assumes that

the pattern is h-aperiodic. If P is h-periodic, then an h-aperiodic portion of P is preprocessed.

The preprocessing of the pattern works with blocks of width � to find a logarithmic-sized pattern

sample.

4 Pattern Matching in Small Space

Applications arise in which additional storage space is limited. Thus, effort has been invested in

developing pattern matching algorithms that are linear in time but require only O(1) extra space.

The first time-space optimal pattern matching algorithm is from Galil and Seiferas [33]. Crochemore

and Perrin developed “Two-Way String Matching” which blends the classical Knuth-Morris-Pratt

and Boyer-Moore algorithms but computes pattern shifts as needed [23].

Rytter presented a constant-space, yet linear-time version of KMP in 2003 [63]. The algorithm

relies on small space computation of both approximate periods and lexicographically maximal

suffixes, which leads to O(1) space computation of periods. Space-efficient real-time searching is

discussed by Gasieniec and Kolpakov [34]. Their innovative algorithm uses a partial next function

to save space.

An O(1) space string matching algorithm that uses deterministic sampling with KMP is de-

veloped by Gasieniec et. al. [35]. The sampling stage limits the overall number of comparisons to

2n.

A series of papers was published in the search for a small space 2D pattern matching algorithm.
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The quest culminated when the achievements of Crochemore et. al. were published [20]. Theirs

is the first alphabet independent algorithm for 2D pattern matching in linear time and small

space. Pattern preprocessing requires O(log m) extra space and the searching phase works in O(1)

space. The main concepts are 2D deterministic sampling and the innovative technique of zooming

sequences. A zooming sequence is a sequence of nonperiodic regular objects of decreasing size,

which can be computed recursively. The algorithm exploits properties of 2D periodicity.

There is a dearth of deterministic algorithms that perform dictionary matching in linear time

and small space even in one dimension. Chan et. al. [15] derived a small space dictionary searching

mechanism. The search phase of their algorithm introduces an extra log factor; it is not of linear

time. Fredriksson presented an attempt at small space dictionary matching in 2008 [29]. Exper-

imental results demonstrate that the algorithm achieves optimal average time. The algorithm is

based on a combination of compressed self-indexes [28] and backward DAWG matching [62].

5 Parameterized Matching

Baker formalized the problem of parameterized matching [9]. Her motivation was the software

maintenance problem, which seeks to identify duplication in a large software system. A parameter-

ized match between two sections of code means that one section can be transformed into the other

by replacing the identifiers of one section with the identifiers of the other via a one-to-one function.

She developed a framework to efficiently solve the problem in 1D that includes parameterized suffix

trees.

Parameterized strings or p-strings are strings that contain both ordinary symbols from an

alphabet Σ and parameter symbols from an alphabet Π. Two p-strings are a parameterized match,

or p-match if one p-string can be transformed into the other by applying a one-to-one function

that renames the parameter symbols. For example, if Π = {x, y, v} and Σ = {A,B,C}, then

S = AxAyBxyCBy p-matches T = AyAvByvCBv when x and y of S are renamed as y and v,

respectively, in T. The parameterized matching problem is that of finding all locations of the text

that p-match the pattern.

Determining if two strings p-match each other can be done with a straightforward comparison
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between the two strings while maintaining a table to represent the characters that have already been

mapped. Parameterized matching is not as simple. Baker’s parameterized suffix tree is based on

forming a predecessor string, also called next(s), which can be done in linear time. The predecessor

string of a string S has the distance between i and the location containing the previous appearance

of the symbol at each location i. The first appearance of a symbol is replaced with a 0. For example,

the predecessor string of xxyyxyx is 0101322. Two strings that p-match have the same predecessor

string. The difficulty in constructing the parameterized suffix tree lies in the possible absence of

suffix links since the distinct right context property is not valid. With a parameterized suffix tree

of the text, parameterized matching is solved in O(n∣Π∣log∣Σ∣) time.

Idury and Schäffer use a modified AC automaton to perform parameterized dynamic dictionary

matching [43]. They show that it is possible to design an automaton algorithm to solve the prob-

lem. An interesting feature of their algorithm is that it works with two dual representations of a

parameterized pattern, prev and next, and one of the representations is computed only implicitly

but never stored or printed. The time complexity of their algorithm depends on the size of the

text and the number of characters in the dictionary. The automaton is stored in space linear in the

dictionary size.

Amir et. al. point out [5] that Baker’s algorithm has an overhead that depends on both Σ and

Π. They developed an alternative algorithm for p-string matching that requires only O(n log�)

time, where � = min(m, ∣Π∣). Its complexity does not depend on Σ. Furthermore, they prove

that their algorithm achieves optimal bounds. They reduce the p-string matching problem to the

m-matching problem that is only concerned with matching the parameter symbols. The algorithm

is a modification of KMP in which the definition of the = operator is modified and works with text

blocks of length 2m.

The algorithm of Fredriksson and Mozgovoy [30] for p-string matching is sublinear on average.

Their algorithm is based on the Shift-Or and Backward DAWG Matching algorithms. BDM is opti-

mal on average. That is, its average running time is O(nlogm/m). This approach to parameterized

pattern matching easily generalizes to the case of multiple patterns.

The 2D parameterized matching problem models the search for color images that accommodates
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changing color maps. Many algorithms that solve 2D matching do not work for 2D parameterized

matching. In 2D parameterized matching there is a strong dependency between pieces of the

pattern; they cannot be evaluated individually. Air et. al. [2] solve 2D parameterized matching in

time O(n2log2m). They form a graph for each parameterized character in the pattern, with edges

between positions that are the closest occurrences of the character for some linearization of the

pattern. Then one dimensional parameterized matching is used on these linearizations to ensure

that any two elements that are chained will be evaluated to map to the same text value. Their

algorithm uses convolutions for comparison.

The algorithm of [42] is more efficient for 2D parameterized matching in large texts as it achieves

time complexity O(n2+m2.5polylogm). They use the dueling paradigm. Unlike in exact matching,

where a single witness suffices to disqualify a candidate, pairs of witnesses are used for parameterized

matching.

Suffix arrays are more efficient than suffix trees for many applications. Baker introduced the

parameterized suffix tree along with a linear-time construction algorithm. A linear-time direct

construction of the parameterized suffix array, with the p-LCP table was presented by Deguchi et.

al. [24]. Their algorithm is for strings drawn from Σ and Π, where ∣Π∣ = 2. There is a strong

similarity between parameterized strings on a binary alphabet and standard strings. Linear-time

algorithms for direct construction of standard suffix arrays do not work for the p-suffix array. This

is because the lexicographic order between suffixes of two strings is not necessarily preserved, even

when they share a common prefix. Their construction algorithm uses the dual of the prev function,

fw, which finds the distance to the closest occurrence of each character to its right. fw is the next

function used by Idury and Schäffer. The suffix array of fw is constructed directly from the suffix

array of the original string.

Apostolico and Giancarlo [8] investigated periodicity and repetition in parameterized strings.

When it comes to periodicity, parameterized strings are truly different objects than ordinary strings.

Yet, binary parameterized strings behave in much the same way as non-parameterized ones with

respect to periodicity and repetitions. Thus, many constructs that were originally devised for

ordinary strings naturally extend to parameterized binary strings.

15



Baker discusses methods for parameterized edit distance based on the operations of insertion,

delete, and parameterized match [10]. Parameterized matching replaces global substitution. Each

operation has unit cost. Her algorithm finds the parameterized edit distance, with efficiency close

to that of algorithms for computing the classical edit distance. It turns out that the operation

of parameterized replacement relaxes the problem to an easier problem. This is because two sub-

strings that participate in two parameterized replacements are independent of each other, in the

parameterized sense.

The problem of approximate parameterized matching is addressed by Hazay et. al. [41]. They

allow up to k mismatches. When the pattern and text are of the same size, the problem is equivalent

to the maximum matching problem on graphs. Their algorithm solves the problem in O(nk1.5 +

mk log m) time. The results extend to 2D approximate parameterized matching.

6 Useful Terminology

6.1 Periodicity

Computing the period of a string is a crucial task in the pattern preprocessing stage of most string

matching algorithms. It is stored in different forms by efficient algorithms. The sequential KMP

and BM methods compute a failure table, and the parallel string matching algorithms use witnesses.

A periodic pattern may contain several locations where the pattern can be superimposed on

itself without mismatch. We say a pattern is non-periodic if the origin is the only position before

m
2

at which the pattern can be superimposed without mismatch. If we know that a pattern is

aperiodic, we could narrow down the number of candidates for a pattern occurrence in the text in a

manner that insures that they are all “sufficiently far” from each other. Verification of a candidate

can follow in a naive sequence of character-by-character comparison, yet the time would still be

linear because the candidates do not overlap.

In a periodic string, a smallest period can be found whose concatenation generates the entire

string. A string S is periodic if its longest prefix that is also a suffix is at least half the length of S.

A proper suffix that is also a prefix of a string is called a border. There is duality between periods
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and borders. The longest border of a string corresponds to its shortest period.

More formally, a string S is periodic if S = �′�k where �′ is a (possibly null) proper suffix of �,

and k ≥ 2. A periodic string S can be expressed as �′�k for one unique primitive �. A string � is

primitive if there is no prefix u of � for which ∃k ≥ 2 such that � = uk. We refer to both � and ∣�∣

as “the period” of S, although S can have several non-primitive periods. The period of S can also

be defined as ∣S∣ − b where b is the longest border of S.

For example, consider the periodic string S = abcabcabcab. The longest border of S is b =abcabcab.

Since ∣b∣ ≥ ∣S∣
2
, S is periodic. � = abc is the period of S. Another way of concluding that S is periodic

is by the observation that ∣�∣ < ∣S∣
2
.

Main and Lorentz published an algorithm in 1984 that finds all periodic substrings of a pattern

of size n in O(n logn) time [56]. Their algorithm uses a divide and conquer approach to find the

repetitions that cross the middle character and then those on either side of the middle character.

6.2 2D Periodicity

Multidimensional periodicity is not as simple as it is in strings. Amir and Benson defined the notion

of two-dimensional periodicity based on self-overlap [3]. Although the concepts are developed for

square arrays, they can be generalized to rectangular arrays quite easily. Let A be a two-dimensional

array. A prefix of A is a rectangular subarray that contains one corner element of A. A sufix of A

is a rectangular subarray that contains the diagonally opposite corner. A is periodic if the largest

prefix that is also a suffix has dimensions greater than half those of A. This implies that A may

overlap itself if the prefix of one copy of A is aligned with the suffix of a second copy of A. Figure

3 of [3] depicts two-dimensional periodicity.

Because of the symmetry, we assign the prefix to either the upper left or lower left corners of A.

This clearly gives us two directions in which A can be periodic. We classify the type of periodicity

of A based on whether it has periodicity in either or both of these directions.

We can divide the array into four quadrants, labeled in a counterclockwise direction from upper

left, quadrants I, II, III, and IV. Given two copies of A, one directly on top of the other, the

two copies are said to be in register when some of the elements overlap, and overlapping elements
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contain the same symbol. If we can slide the upper copy over the lower copy to a point where the

copies are again in register, then at least one of the corner elements of the upper array will overlap

an element of the lower array. The element in the lower copy that is under this corner is the source.

We say that the array is quadrant I symmetric if an overlapping corner is element A(0, 0). The

element in the lower copy is a quadrant I source. Quadrant II, III, and IV symmetries and sources

are similarly defined.

Let the array be quadrant I symmetric and let the upper and lower copies be in register when

element A(0, 0) overlaps element A(r, c), the source. Then there exists a quadrant I symmetry

vector v⃗I = ry⃗+cx⃗ where x⃗ is the horizontal unit vector in the direction of increasing column index

and y⃗ is the vertical unit vector in the direction of increasing row index. We can define symmetry

vectors for the other quadrants similarly.

The 2D periodicity of a matrix is described by its symmetry vectors. The length of a symmetry

vector is either the difference between the row coordinates of its endpoints or the difference between

the column coordinates of its endpoints, whichever is larger. A symmetry vector is periodic if its

length is < m/2. For the classification scheme, we need to pick the shortest symmetry vector in

each of quadrants I and II. The four classes of 2D periodicity depend on the arrangement of sources

in their respective quadrants.

A 2D pattern can be categorized by one of the four periodicity classes:

∙ A non-periodic pattern has no periodic vectors.

∙ The sources of a line periodic pattern fall on a straight line. One of quadrants I and II has

a periodic vector and the other does not.

∙ The sources of a lattice periodic pattern fall on a lattice. Both quadrants I and II have a

periodic basis vector which form a lattice.

∙ In a radiant periodic pattern, the sources are not along a line. The sources fall on several

lines which radiate from the quadrant’s corner.

Using a suffix tree of the linearized matrix, a serial algorithm can find the 2D periodicity of a

matrix in linear time and space, i.e. O(m2). The process can be parallelized within the same time
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Figure 3: 2D periodicity: sources in quadrants I and II and their respective symmetry vectors

and space complexity [3].

6.3 Conjugacy

Two words, x and y, are said to be conjugate if x = uv, y = vu for some words u, v. Two words

are conjugate if they differ only by a cyclic permutation of their letters. We can determine whether

x and y are conjugate in time proportional to the combined lengths of x and y [55].

A Lyndon word is a word which is strictly smaller than any of its conjugates for the alphabetic

ordering. In other terms, a word x is a Lyndon word if for any factorization x = uv with u, v

nonempty, one has uv < vu. A Lyndon word is primitive.

Any primitive word has a conjugate which is a Lyndon word, namely its least conjugate. Com-

puting the smallest conjugate of a word is a practical way to compute a standard representative

of the conjugacy class of a word. This procedure, often called canonization, can de done in linear

time [55].

6.4 Empirical Entropy

Consider a text T [n] with symbols from an alphabet Σ. In the Kolmogorov sense it takes O(nlog∣Σ∣)

bits to store T. A text that exhibits some kind of regularity can be stored in less space. One can

describe the compressibility of T without making any probabilistic assumptions about the data.

Manzini defines empirical entropy [58]:

Let na be the number of times that character a occurs in T. Assume 0 log 0 = 0. The zeroth
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order empirical entropy of T is defined as

H0 = H0(T ) = −
∑

a∈Σ

na

n
log

(na

n

)

.

H0n is a lower bound for compression schemes that assign a fixed codeword to each symbol in

T. If one takes into account the k characters which precede the character to be encoded next, the

definition generalizes to k’th order empirical entropy.

Let wT denote the string of symbols following the occurrences of w in T, reading T from left to

right. The k’th order empirical entropy of T is defined as

Hk = Hk(T ) =
1

n

∑

w∈Σk

∣wT ∣H0(wT ).

Hkn is a lower bound for compression schemes that assign fixed code-words to symbols based

on the preceding k characters. We have the hierarchy Hk ≤ Hk−1 ≤ ⋅ ⋅ ⋅H0 ≤ log∣Σ∣.

7 Indexing

Indexing is an important paradigm in searching. The text is preprocessed so that queries of the

form “does pattern P occur in text T?” are answered in time proportional to the pattern, rather

than the text. Two popular indexing structures are the suffix tree and the suffix array. These

data structures enable efficient solutions to many common string problems. Both suffix trees and

suffix arrays can be generalized to two or more dimensions. Recent work has compressed these

data structures, formed dynamic data structures and developed full-text indices. A full-text index

gathers all the relevant information about text so that the actual text can be discarded; it can

attain better space complexity than the original text.

7.1 Suffix Tree

A suffix tree is a tree-like structure that represents all suffixes of the text under consideration. Once

a suffix tree is constructed for a text, the search time for a pattern is linear in the pattern size; that
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is, without considering the one-time preprocessing of the text. A special character is appended to

the string before construction of the suffix tree. This guarantees that a suffix of the string cannot

be a substring of another suffix.

A suffix tree can be used to index several patterns. Either the patterns can be concatenated with

unique characters separating them or a generalized suffix tree can be constructed. The generalized

suffix tree, as described by Gusfield [39] does not mark suffixes that span several patterns. It

combines the suffixes of the individual patterns in a single data structure.

Suffix trees can be used to solve a variety of string problems. A substring of text can be

considered a prefix of some suffix of the text. Suffix trees can be applied to the problems of string

search, longest palindrome, longest common substring, and longest repeated substring. Harel and

Tarjan demonstrated that an n-node tree can be preprocessed in O(n) time to answer longest

common ancestor (LCA) queries in constant time [40]. The LCA of two nodes in a suffix tree

corresponds to the longest common prefix of the strings they represent.

Each suffix of a string corresponds to a leaf in its suffix tree. A suffix tree is a concise repre-

sentation of a trie. In a trie, or a k-ary position tree, each edge represents one character of the

alphabet. To conserve space, a PATRICIA trie collapses a node that has only one outgoing edge.

In the compacted representation, an edge can be labeled with more than one character. A suffix

tree requires even less space than the compacted PATRICIA trie. The suffix tree for a string of size

n is represented in O(n) space by using indices of constant size, rather than substrings of arbitrary

length, to label the edges of the tree.

The naive algorithm for constructing a suffix tree requires quadratic time with respect to the

size of the input. Linear-time construction of the suffix tree was first introduced by Weiner in

1973 as a position tree [70]. The construction was greatly simplified by McCreight in 1976 [59].

Weiner’s algorithm scans the text from right to left and begins with the shortest suffix, while

McCreight’s scans the text from left to right and initializes the data structure with the longest

suffix. In the 1990’s, Ukkonen provided an online construction of suffix trees in linear time [67].

Ukkonen overcame the problem of extending each suffix on each iteration by introducing a special

edge pointer, *, to represent the current end of the string. For more details on the development of
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Figure 4: Suffix Trie (left) and Suffix Tree (right) of the string ACATCTTA

the linear-time suffix tree construction algorithms and the distinctions between them, see [36].

Suffix links are an implementation trick necessary to achieve linear time and space bounds in

suffix tree construction algorithms. Suffix links allow an algorithm to move quickly to a distant

part of the tree. A suffix link is a pointer from an internal node labeled xS to another internal node

labeled S, where x is an arbitrary character and S is a possibly empty substring. The suffix links

of Weiner’s algorithm are alphabet dependent as they work in reverse to represent the insertion of

any character before a suffix.

Kosaraju improved the suffix tree of Weiner to an alphabet independent data structure. Amir

and Nor [6] combined Kosaraju’s quasi-real time algorithm [54] with Ukkoknen’s algorithm in

2008, to produce a real-time linear suffix tree construction algorithm. That is, they deamortized

an existing online algorithm. Their main contribution is in changing the order in which suffixes are

inserted into the tree.

The directed acyclic graph, or DAG, is a further compaction of the suffix tree. Isomorphic

subgraphs are merged. Hence, directed edges are necessary. The DAG saves space by eliminating

redundancy in the graph, but it introduces complexity that increases the time of some applications
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[22].

7.1.1 Dynamic Suffix Tree

The suffix tree can be generalized to represent a set of strings in such a way that strings can

be inserted or deleted efficiently. We call such a suffix tree a dynamic suffix tree. An efficient

implementation for the dynamic suffix tree is described in [16]. The update operations take time

proportional to the string being inserted or removed from the tree. Yet, the tree never stores a

reference to a string that has been removed, and the space complexity is bounded by the total

length of the strings stored in the tree. Their method requires a two-way pointer for each edge,

which can be done in space linear in the size of the tree.

7.1.2 Compressed Suffix Tree

The suffix tree that was described until now requires O(n) words or O(n log n) bits. Grossi and

Vitter showed that this can be condensed to O(n) bits, forming the compressed suffix tree [38]. It

is based upon a construction algorithm for compressed suffix arrays that they introduce.

Sadakane introduced new data structures for compressed suffix trees that occupy O(n log∣Σ∣)

[65]. This is the first linear-size data structure for suffix trees that supports all operations efficiently.

Any algorithm running on a suffix tree can also be executed on this compressed suffix tree with a

slight slowdown of a factor of polylog(n). It is also based on a compressed suffix array, CSA, that

occupies O(n) bits.

7.2 Suffix Array

A suffix array stores the lexicographic order of the suffixes of the text under consideration. The

suffix array achieves greater space efficiency than the suffix tree. Augmented with an LCP array

to store the longest common prefix between adjacent suffixes, a binary search on the suffix array

can locate all instances of a pattern in the text.

The naive approach to suffix array construction is to sort the suffixes using a string sorting

algorithm. This approach ignores the fact that the suffixes are related. The worst case complexity
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of such an algorithm is proportional to the sum of the lengths of all suffixes, O(n2). A suffix

array can be built by preorder traversal of a suffix tree for the same text, and the LCP array by

constant-time lowest common ancestor queries on the tree. This indirect construction does not

achieve better space complexity than the suffix tree since the suffix tree is constructed along the

way.

Suffix 11 8 5 2 1 10 9 7 4 6 3

Index 1 2 3 4 5 6 7 8 9 10 11

Table 1: Suffix Array of the string MISSISSIPPI

Manber and Myers introduced the suffix array in 1993 [57]. Their algorithm employs a sort and

search paradigm. Simply sorting the suffixes is not enough to produce an efficient pattern search

mechanism. The precomputation and utilization of the longest common prefix (LCP) between the

suffixes make the technique very efficient. In the worst case, preprocessing text of length n requires

O(n log n) time to sort the suffixes and O(n) time to compute the LCPs. The preprocessing is all

done in O(n) space. Their algorithm achieves expected running time of O(n), independent of the

alphabet size. Searching for a pattern of length m takes O(m log n) time using a binary search

on the suffix array and the text. This is improved to O(m + log n) time using the LCP array.

The enhanced suffix array searches for a pattern of length m in O(m∣Σ∣) time. This requires an

additional array, the child table.

The efficient suffix sort is based on the doubling technique of Karp, Miller, and Rosenberg [48].

The idea is to assign a rank to all substrings whose length is a power of two. The rank tells the

lexicographic order of the substring among substrings of the same length. The method iteratively

applies a linear sorting mechanism, such as bucket sort or radix sort. The algorithm sorts each

suffix by its first k letters, then doubles k to use the results of the previous round. There are

log n phases of sorting. In total, O(n log n) work is done to sort the suffixes. Since the method is

iterative, the space is bounded by the text size. Once the suffix array has been constructed, the

longest common prefix (LCP) table can be created in linear time and space.

In 2003, three different algorithms were introduced to directly construct a suffix array in linear

time. They were published by of Kärkkäinen and Sanders [45], Ko and Aluru [53], and Kim et. al.
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[50]. Kärkkäinen and Sanders apply a divide and conquer approach to the algorithm of Manber

and Myers. First the suffix array of the suffixes starting at positions i mod 3 ∕= 0 is constructed,

then a suffix array of the other third of the suffixes is constructed. The two suffix arrays are merged

by comparison.

A suffix array with an LCP array can simulate the bottom-up traversal of its suffix tree and can

answer LCA queries. With an additional table, an enhanced suffix array can simulate top-down

traversal of a suffix tree for a full range of suffix tree functionality. This can all be done in time and

space linear in the size of the text. The LCP array can be computed by efficient range minimum

queries.

Suffix sorting algorithms can be used to perform the Burrows-Wheeler transform (BWT). The

Burrows-Wheeler transformation permutes the order of the characters and is easily reversed to ob-

tain the original string. The BWT requires sorting cyclic permutations of a string, not suffixes. We

can append to the string a special character which sorts lexicographically before every other char-

acter. Sorting cyclic permutations is then equivalent to sorting suffixes. The BWT is more readily

compressed than the original string, with either run-length encoding or move-to-front encoding.

The BWT array can be computed from the suffix array using the equations

BWT [i] = T [SA[i]− 1], when SA[i] ∕= 0

BWT [i] = T [n− 1], when SA[i] = 0

7.2.1 Dynamic Suffix Array

Recent work by Salson et. al. [66] proposes an algorithm for dynamically updating the suffix array

of a text that has been edited after the construction of its suffix array. This is more efficient

than rebuilding the suffix array from scratch. Even if the theoretical worst-case time complexity is

O(n log n), it appears to perform much better in practice than the quickest methods. The online

version has yet to be developed.

7.2.2 Compressed Suffix Array

Since the suffix array is an array of n indices, it can be stored in nlog n bits. The compressed suffix

array was introduced by Grossi and Vitter [38] to reduce the size of the suffix array from n log n
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bits to O(n log∣Σ∣) bits. This is at the expense of increasing access time from O(1) to O(log�n)

time where � is any constant with 0 < � < 1.

Sadakane modified the compressed suffix array so that it is a self-index [64]. That is, the text

can be discarded and the index suffices to answer queries. He also reduced the size of the structure

from O(n log∣Σ∣) bits to O(n logH0) bits. Pattern matching using his compressed suffix array has

the same time complexity as in the uncompressed suffix array. Grossi et. al. [37] further reduced

its size to nHℎ + o(n) bits for any ℎ ≤ �log∣Σ∣n with 0 < � < 1. A pattern can be found in

O(m log∣Σ∣+ polylog(n)) time.

Ferragina and Manzini developed the first compressed suffix array to encode the index size with

respect to the high-order empirical entropy [28]. Their self-indexing data structure is known as the

FM-index. The FM-index is based on the Burrows-Wheeler transform and uses backward searching.

The compressed self-index exploits the compressibility of the text so its size is a function of the

compressed text length. Yet an index supports more functionality than standard text compression.

Navarro and Makinen improved the FM-index [61].

Many self-indexes state their space requirement as a function of the empirical entropy of the

indexed text. This is useful because it gives a measure of the index size with respect to the size

achieved by the best ktℎ-order compressor, thus relating the index size to the compressibility of the

text. Empirical entropy is defined in Section 6.4.

7.3 Word-Based Index

Recently, optimal time and space construction algorithms have been developed for the word-based

suffix tree and suffix array. These structures can store a subset of text positions, namely the ones

that correspond to word (or pattern) beginnings. A word-based index naturally applies to a word

or phrase level index for documents written in a natural language. We assume that a text of size

n contains k distinct words delimited by predetermined delimiters. It is easy to construct a word-

based index if O(n) space is allowed at construction time. Simply index the enire text, and then

discard positions which do not correspond to word beginnings. A more clever approach limits the

working space to O(k), the size of the word index. The O(n) construction time cannot be improved
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upon since this is the time needed to scan the input. It should be noted that the more general

problem of constructing a sparse index is not as simple as that of a word-based index.

Traditional linear-time suffix tree construction algorithms rely heavily on the fact that all suffixes

are to be inserted in the tree. Thus, it was a challenge to develop a word-based suffix tree within

O(k) working space. Karkkainen and Ukkonen show how to adapt Ukkonen’s suffix tree construction

algorithm to efficiently construct a sparse suffix tree [47]. A sparse suffix tree indexes the text at

regular intervals, i.e., every jtℎ suffix. Their construction algorithm requires only O(n
j
) space, with

the usual O(n) time. The word based suffix tree is even more innovative. Anderson et. al. showed

that the word-based suffix tree can be constructed in O(n) expected time and O(k) working space

[7]. In 2006, Inenaga and Takeda [44] improved this result by providing an online algorithm which

runs in O(n) time and O(k) additional working space in the worst case. Their algorithm is based

on Ukkonen’s online suffix tree construction algorithm.

Ferragina and Fischer presented the word suffix array in 2007 [26]. Their algorithm is time and

space optimal. The construction takes O(n) time and only requires O(k) additional space. The

word-based LCP array can also be computed in O(n) time and O(k) space. The word-based suffix

tree is easily constructed from the word-based suffix and LCP arrays so the algorithm of [26] is an

alternative to [44].

As far as pattern matching queries are concerned, it is easy to adapt to word-based suffix arrays

the classical pattern searches over full-text suffix arrays. Since a suffix array is lexicographically

sorted, searching takes O(n log k) time using binary search. Like the original suffix array of [57],

longest common prefixes can be precomputed so that searching the word-based suffix array takes

O(n+ log k) time. The extra space needed is O(k).

8 Research Directions

This survey presents some of the recent advances in pattern matching algorithms. There are still

a large number of open problems that have practical applications. Our research has taken the

direction of developing a small space dictionary matching algorithm. We have also been seeking a

time-space optimal solution to 2D compressed dictionary matching.
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A variety of fast dictionary matching algorithms for one and two dimensional data exist.

Nonetheless, we have not found a deterministic method that works in linear time and small space.

For single pattern matching there are variations of KMP that can work in constant space. We

believe that recent results in compressed self-indexing will facilitate the development of a solution

to the small space dictionary matching problem.

The compressed matching problem is that of identifying occurrences of a compressed pattern in

a compressed text. The nature of most compression algorithms requires matching to be performed

on uncompressed data. A factor that often motivates data compression is the lack of space to store

the data in its original form. Thus, there is the interest in strongly inplace compressed pattern

matching. An algorithm is called strongly inplace if the extra space it uses is proportional to the

optimal compression of all patterns of such size. We are currently working on a strongly inplace

algorithm for 2D dictionary matching in a Lempel-Ziv compressed text.

28



References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search.

Commun. ACM, 18(6):333–340, 1975.

[2] A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching: Algorithms,

applications, and a lower bound. In ICALP: Annual International Colloquium on Automata,

Languages and Programming, 2003.

[3] A. Amir and G. Benson. Two-dimensional periodicity and its applications. In SODA ’92:

Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms, pages 440–

452, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

[4] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two-dimensional

pattern matching. SICOMP: SIAM Journal on Computing, 23, 1994.

[5] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching.

IPL: Information Processing Letters, 49, 1994.

[6] A. Amir and I. Nor. Real-time indexing over fixed finite alphabets. In SODA ’08: Proceedings

of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1086–1095,

Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[7] A. Andersson, N. J. Larsson, and K. Swanson. Suffix trees on words. ALGRTHMICA: Algo-

rithmica, 23, 1999.

[8] A. Apostolico and R. Giancarlo. Periodicity and repetitions in parameterized strings. Discrete

Appl. Math., 156(9):1389–1398, 2008.

[9] B. S. Baker. A theory of parameterized pattern matching: algorithms and applications. In

STOC, pages 71–80, 1993.

[10] ”‘B. S. Baker”. ”parameterized diff”. In ”SODA ’99: Proceedings of the tenth annual ACM-

SIAM symposium on Discrete algorithms”, pages 854–855, Philadelphia, PA, USA, ”1999”.

Society for Industrial and Applied Mathematics.

29



[11] T. J. Baker. A technique for extending rapid exact-match string matching to arrays of more

than one dimension. SIAM J. Comp, 3(7):533–541, 1978.

[12] R. S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168–170,

1977.

[13] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM, 20(10):762–

772, 1977.

[14] D. Breslauer. Dictionary-matching on unbounded alphabets: Uniform length dictionaries.

Combinatorial Pattern Matching, 184, 1995.

[15] H. L. Chan, W. K. Hon, T. W. Lam, and K. Sadakane. Compressed indexes for dynamic text

collections. ACM Transactions on Algorithms, 3(2), 2007.

[16] Y. Choi and T. W. Lam. Dynamic suffix tree and two-dimensional texts management. IPL:

Information Processing Letters, 61, 1997.

[17] R. Cole, Z. Galil, R. Hariharan, S. Muthukrishnan, and K. Park. Parallel two dimensional

witness computation. INFCTRL: Information and Computation (formerly Information and

Control), 188, 2004.

[18] B. Commentz-Walter. A string matching algorithm fast on the average. In ICALP, pages

118–132, 1979.

[19] M. Crochemore, L. Gasieniec, R. Hariharan, S. Muthukrishnan, and W. Rytter. A constant

time optimal parallel algorithm for two-dimensional pattern matching. SIAM J. Comput.,

27(3):668–681, 1998.

[20] M. Crochemore, L. Gasieniec, W. Plandowski, and W. Rytter. Two-dimensional pattern

matching in linear time and small space. In STACS: Annual Symposium on Theoretical Aspects

of Computer Science, 1995.

[21] M. Crochemore, L. Gasieniec, and W. Rytter. Two-dimensional pattern matching by sampling.

IPL: Information Processing Letters, 46, 1993.

30



[22] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University

Press, 2007.

[23] M. Crochemore and D. Perrin. Two-way string-matching. J. ACM, 38(3):650–674, 1991.

[24] S. Deguchi, F. Higashijima, H. Bannai, S. Inenaga, and M. Takeda. Parameterized suffix arrays
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