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Outline

Thesis Accomplishments:

1 New Techniques

2 Succinct 2D Dictionary Matching with No Slowdown

3 Dynamic Succinct 2D Dictionary Matching

4 Software for Succinct 1D Dictionary Matching
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Problem Definition

2D Dictionary Matching

Input:

Dictionary D = {P1,P2, . . . ,Pd} of pattern matrices

Text matrix T

Output:

(h, i , j) such that pattern Ph occurs at location (i , j) in T
T [i + k , j + l ] = Ph[k + 1, l + 1]
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Small-Space

Challenge:

Limited storage capacity in devices.

Massive Proliferation of Data

Goal: efficient algorithms with respect to both time and space .
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Small-Space

Challenge:

Limited storage capacity in devices.

Massive Proliferation of Data

Goal: efficient algorithms with respect to both time and space .

Hon et al. (2011): Time-space optimal 1D dictionary matching.

This work: first to focus on 2D dictionary matching in small space.
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Small-Space 2D

2D linear-time single pattern matching
Crochemore et al. (1995):

Preprocessing: linear time within log space.

Text Scanning: linear time, O(1) extra space.

Use small-space 2D single pattern matching for set of patterns

* requires several scans of text.

Overview 5/66



Overview
Thesis Contributions

Conclusion

2D Dictionary Matching

Existing 2D dictionary matching algorithms:

Bird (1977) / Baker (1978)

Amir, Farach (1992)

Giancarlo (1993)

Idury, Schaffer (1993)

Require working space proportional to dictionary size.
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Succinct 2D Algorithms
Software

2D Dictionary Matching

Bird / Baker

Convert 2D data to 1D representation.

Name patterns rows.

Name text positions.

Use 1D dictionary matching to find pattern occurrences.
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Succinct 2D Algorithms
Software

2D Dictionary Matching

Bird / Baker

Convert 2D data to 1D representation.

Name patterns rows.

Name text positions.

Use 1D dictionary matching to find pattern occurrences.

Text is processed once!

Our work: succinct version of Bird/Baker algorithm.
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Succinct 2D Algorithms
Software

Bird /Baker Algorithm
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Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Pattern Preprocessing
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Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Text Scanning
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Bird /Baker Algorithm

Text Scanning
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Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Text Scanning
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Succinct 2D Algorithms
Software

Problem Definition

2D Dictionary Matching

Input:

Dictionary of d patterns, each is m ×m in size.

Text T of size n × n.

Output:

All positions in text at which a dictionary pattern occurs.
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Software

Preprocessing Space

Bird and Baker:

Aho-Corasick automaton of pattern rows.

O(dm2 log dm2) extra bits of preprocessing space.

New technique:

Groups pattern rows into equivalence classes.

O(dm log dm) extra bits of preprocessing space.
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Succinct 2D Algorithms
Software

Text Scanning Space

Bird and Baker:

Process entire text at once.

O(n2 log dm) bits of space to label text.

New technique:

Small overlapping text blocks of size 3m/2× 3m/2.

O(m2 log dm) bits of space to label text.

Working space is independent of text size.
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Succinct 2D Algorithms
Software

Our Method

Overview of Algorithm:

Name pattern rows to form 1D dictionary.

Name each text block row.

1D dictionary matching to locate candidates .

Verify candidates to find pattern occurrences .

Repeat for each overlapping text block of size 3m/2× 3m/2.
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Succinct 2D Algorithms
Software

1D Periodicity

Definition

A string p is periodic in u if p = uku′ where u′ is a proper prefix of
u, u is primitive, and k ≥ 2.

aabcaabcaabcaa
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Software

1D Periodicity

Definition

A string p is periodic in u if p = uku′ where u′ is a proper prefix of
u, u is primitive, and k ≥ 2.

aabcaabcaabcaa
aabcaabcaabcaa
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Succinct 2D Algorithms
Software

1D Periodicity

Definition

A string p is periodic in u if p = uku′ where u′ is a proper prefix of
u, u is primitive, and k ≥ 2.

We divide patterns into 2 groups based on 1D periodicity.

In each case, different difficulties to overcome.
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Succinct 2D Algorithms
Software

Types of Patterns

Case I:

Patterns with ALL rows periodic, period ≤ m/4.
Problem: can have more candidates than the space we allow.

Case II:

Patterns contain aperiodic row or row with period > m/4 .
Problem: several patterns can overlap in both directions.
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Succinct 2D Algorithms
Software

Types of Patterns

Case I:

Patterns with ALL rows periodic, period ≤ m/4.
Problem: can have more candidates than the space we allow.

New techniques:

* Lyndon word naming

* Witness tree

* 2D Lyndon words
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Succinct 2D Algorithms
Software

Lyndon Words

Definition

Two words x , y are conjugate if x = uv , y = vu for some u, v .

Definition

A Lyndon word is a primitive string which is lexicographically
smaller than any of its conjugates.

Canonization computes the least conjugate of a word.
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Succinct 2D Algorithms
Software

Naming

New technique for naming rows:

same name if periods are conjugate
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Naming

New technique for naming rows:

same name if periods are conjugate
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Succinct 2D Algorithms
Software

Naming

New technique for naming rows:

same name if periods are conjugate

How is this done in linear time, yet small space? witness tree

Witness tree stores a distinction between two names.

To name a new row, it is compared to only one other row.
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Succinct 2D Algorithms
Software

Witness Tree

Witness tree for Lyndon words of length 4:
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Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:
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Witness Tree
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Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:
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Witness Tree
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Witness Tree
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Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:
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Succinct 2D Algorithms
Software

Preprocess 1D Patterns

1 Linearize 2D patterns in dictionary.

2 Construct AC automaton of 1D patterns.

3 Compute LCM table of each 1D pattern.

4 Compute 2D Lyndon word of each 1D pattern.
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Software

Preprocess 1D Patterns

1 Linearize 2D patterns in dictionary.

2 Construct AC automaton of 1D patterns.

3 Compute LCM table of each 1D pattern.

4 Compute 2D Lyndon word of each 1D pattern.
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Succinct 2D Algorithms
Software

LCM

Why store the Least Common Multiple (LCM) of 1D patterns?

Text can have more pattern occurrences than space we allow.

However, they occur at regular intervals.

Summarized by occurrence’s left and right endpoints + LCM
of pattern.
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Succinct 2D Algorithms
Software

Pattern Preprocessing

Summary of pattern preprocessing:

1 For each pattern row,
1 compute period and canonize
2 name row
3 store period size, name, first Lyndon word occurrence (LYpos).

2 Construct AC automaton of 1D patterns.

3 Compute LCM table for each 1D pattern.

4 For multiple patterns of same 1D name, build offset tree.

Time: O(dm2)
Extra Space: O(dm log dm) bits
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Succinct 2D Algorithms
Software

Text Scanning

Text scanning stage:

1 Name rows of text block.

2 Identify candidates.

3 Verify candidates.
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Succinct 2D Algorithms
Software

Naming Text

Lemma

At most one maximal periodic substring of length ≥ m with

period ≤ m/4 can occur in a text block row of size 3m/2.

Process each text block row:

Name text block rows same way as pattern rows.

Find maximal periodic substring around midpoint.

Each text block row receives only one name.
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Succinct 2D Algorithms
Software

Text Scanning

Text scanning stage:
1 For each text block row,

1 compute period and canonize
2 name row
3 store period size, name, first Lyndon word occurrence (LYpos).

2 Identify candidates: 1D dictionary matching.

3 Verify candidates.

Thesis Contributions 27/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Verification
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Same 1D name but different 2D patterns!
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Succinct 2D Algorithms
Software

h-periodicity

Definition

A 2D m ×m pattern is h-periodic, or horizontally periodic, if two
copies of the pattern can be aligned in the top row so that there is
no mismatch in the region of overlap and the number of
overlapping columns is ≥ m/2.
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h-periodicity

aabcaabcaabcaa
aabcaabcaabcaa
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Succinct 2D Algorithms
Software

h-periodicity

Definition

A 2D m ×m pattern is h-periodic, or horizontally periodic, if two
copies of the pattern can be aligned in the top row so that there is
no mismatch in the region of overlap and the number of
overlapping columns is ≥ m/2.

Definition

The h-period of an h-periodic pattern is the minimum column
number at which the pattern can be aligned over itself.
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Succinct 2D Algorithms
Software

Verification

Horizontally Consistent Patterns

Same 1D representation

and

Can occur at overlapping positions on text block row
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Succinct 2D Algorithms
Software

Verification

Horizontally Consistent Patterns

Same 1D representation

and

Can occur at overlapping positions on text block row

Lemma

Two h-periodic patterns with the same 1D representation are

horizontally consistent iff the LYpos of all their rows are shifted by

C mod period size of the row, where C is an integer.
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Succinct 2D Algorithms
Software

Horizontal Consistency

Lemma

Two h-periodic patterns with the same 1D representation are

horizontally consistent iff the LYpos of all their rows are shifted by

C mod period size of the row, where C is an integer.
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C = 2
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Succinct 2D Algorithms
Software

Verification

Single pass verification:

Group horizontally consistent patterns together.

Compute 2D Lyndon word and classify patterns.

Store 2D Lyndon words in offset tree .

Compute 2D Lyndon word of text and traverse tree.
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Succinct 2D Algorithms
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Horizontal 2D Conjugacy

Definition

P1 and P2, are horizontal 2D conjugate if P1 = UV , P2 = VU for
some horizontal prefix U and horizontal suffix V of P1.

If the h-periods of two patterns are horizontal 2D conjugate,
then the 2D patterns are horizontally consistent.
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Succinct 2D Algorithms
Software

2D Lyndon word

Each conjugate of an h-period has a distinct LYpos sequence.

Definition

The 2D Lyndon word of a matrix is the LYpos array that is the
smallest over all the horizontal 2D conjugates of the matrix, for
the numerical ordering.
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2D Lyndon word

Pattern 2
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2D Lyndon word

Horizontal 2D conjugate

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	




�

	

�




	

	� � � � � � � � 	

C = 1

Thesis Contributions 35/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Lyndon word

2D Lyndon Word

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	




�

	







	

	� � � � � � � � 	

C = 2

Thesis Contributions 35/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Computing 2D Lyndon word

Each conjugate of an h-period has a distinct LYpos sequence.

How many horizontal 2D conjugates does a pattern have? LCM !

Compute 2D LYndon word for h-period of m ×m matrix in
O(m) time and
O(m logm) bits of extra space.
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Verification
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Offset Tree

Pattern1 and Pattern2:

same 1D name

h-periods not horizontal 2D conjugate
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Text Scanning

Text scanning stage:
1 For each text block row,

1 compute period and canonize
2 name row
3 store period size, name, first Lyndon word occurrence (LYpos).

2 Identify candidates: 1D dictionary matching.

3 Verify candidates on each text row: offset tree.

Time: O(n2)
Extra Space: O(m log dm) bits
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Summary of Case I

Algorithm for patterns with highly periodic rows:

Name pattern rows to form 1D dictionary.

Name each text block row.

Use 1D dictionary matching to find candidates .

Verify candidates to find pattern occurrences .

Repeat for each overlapping text block of size 3m/2× 3m/2.
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Types of Patterns

Case II:

Patterns contain aperiodic row or row with period > m/4 .
Problem: several patterns can overlap in both directions.

New techniques:

* Dynamic dueling

* Witness tree

Thesis Contributions 41/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Types of Patterns

Case II:

Patterns contain aperiodic row or row with period > m/4 .
Problem: several patterns can overlap in both directions.

Many 1D names can overlap in a text block row.

Identification of candidates is simpler.

Identify candidates with aperiodic row of each pattern.

Difficulty: single pass verification.
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Pattern Preprocessing

Pattern Preprocessing:

1 Construct (compressed) AC automaton of first aperiodic row
of each pattern.
Store row number of each row within pattern.

2 Form a compressed AC automaton of the pattern rows.

3 Name pattern rows.
Index 1D patterns of names in suffix tree.

4 Construct witness tree of pattern rows.
Preprocess for LCA.

Time: O(dm2)
Extra Space: O(dm log m) bits
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Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.
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Searching Text

Step 1: Identify candidates

1D dictionary matching of a non-periodic row of each pattern.

O(dm) candidates in a text block.

Possibly several candidates at a single text position.
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Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
Two candidates are consistent if all positions of overlap match.

Vertically consistent candidates:

- In the same column.

- Suffix/prefix match in 1D representations.

Overlapping segments of consistent candidates can be verified
simultaneously ⇒ single pass verification.
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
How to eliminate inconsistent candidates? duels .

Dueling for 2D single pattern matching [Amir et al. (1994)]

* Store witness for all conflicting overlaps.

* No witness ⇒ consistent candidates.

* Duel: compare text location to witness, kill 1+ candidates.

Dictionary matching: candidates for different patterns.
Too many witnesses to store? Dynamic dueling generates.
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Searching Text

Step 2: Eliminate inconsistent candidates in each column

Duels from top to bottom of rows.

Consistency is transitive.

Duel between vertically inconsistent candidates.
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
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Searching Text

Step 2: Eliminate inconsistent candidates in each column
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Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���
�����������

�	�
�
	���

If new candidate wins duel

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

How to duel between candidates?
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Searching Text

Step 2: Eliminate inconsistent candidates in each column

How to duel between candidates?

1 Use 1D representation, named pattern rows.
Compute LCP of suffixes to find a row-witness .

2 Generate witness between row names.
LCA query in witness tree.
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Searching Text

Step 2: Eliminate inconsistent candidates in each column

How to generate witness between row names?
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Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.
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Searching Text

Step 3: Verify pattern occurrences.

Limited to vertically consistent candidates.

Single scan of text block.

Process one row at a time.

Mark text positions that expect pattern row.

Verify with compressed AC automaton of pattern rows.
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Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.

Time: O(n2)
Extra Space: O(dm log dm) bits
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Summary of Case II

Algorithm for patterns with aperiodic row:

Self-index of dictionary in entropy-compressed space.

Name pattern rows to form 1D dictionary.

Use 1D dictionary matching to find candidates .

Eliminate inconsistent candidates.

Scan text once to find pattern occurrences .

Repeat for each overlapping text block of size 3m/2× 3m/2.
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Compressed Matching

Patterns and text are all in compressed form.

Definition

An algorithm is strongly inplace if the extra space it uses is
proportional to the optimal compression of the data.

Key property of LZ78:
can sequentially decompress using constant space in time linear in
the uncompressed string.
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Compressed Matching

Definition

An algorithm is strongly inplace if the extra space it uses is
proportional to the optimal compression of the data.

Amir, Landau, Sokol (2003): strongly-inplace single pattern
matching in 2D LZ78-compressed data.

Consider row-by-row linearization of 2D data.

Text scanning time is linear in size of uncompressed data.

Cannot access complete dictionary when processing text.
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Compressed Matching

Definition

An algorithm is strongly inplace if the extra space it uses is
proportional to the optimal compression of the data.

Our algorithm for patterns with highly periodic rows is
linear time and strongly inplace .

Amir, Landau, Sokol (2003): O(m3) preprocessing time.

Our techniques improve their algorithm to linear O(m2).
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Outline

Thesis Accomplishments:

1 New Techniques

2 Succinct 2D Dictionary Matching with No Slowdown

3 Dynamic Succinct 2D Dictionary Matching

4 Software for Succinct 1D Dictionary Matching
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Dynamic Dictionary

Sahinalp and Vishkin (1996):
Dynamic 1D dictionary matching

Linear time and space

Not automaton based

Naming technique

Can replace AC in Bird / Baker ⇒ linear time and space
dynamic 2D dictionary matching.
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Dynamic Dictionary

Our Contribution:
Succinct dynamic 2D dictionary matching.

Adapts to changes in dictionary

* Efficiently insert pattern.
* Efficiently delete pattern.
* Without reprocessing entire dictionary.

Modification of our techniques for static dictionary.

Dynamic succinct version of Bird/Baker algorithm.

Uses dynamic data structures:

dynamic compressed suffix tree
Sahinalp and Vishkin’s dynamic 1D dictionary matching
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Outline

Thesis Accomplishments:

1 New Techniques

2 Succinct 2D Dictionary Matching with No Slowdown

3 Dynamic Succinct 2D Dictionary Matching

4 Software for Succinct 1D Dictionary Matching
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Small-Space 1D

1D dictionary matching in small space :

Space (bits) Search Time Reference
O(ℓ log ℓ) O(n + occ) Aho-Corasick (1975)

O(ℓ) O((n + occ) log2 ℓ) Chan et al. (2007)

ℓHk(D) + o(ℓ log σ) + O(d log ℓ) O(n(logǫ l + log d) + occ) Hon et al. (2008)

ℓ(H0 + O(1)) + O(d log(ℓ/d)) O(n + occ) Belazzougui (2010)

ℓHk(D) + O(ℓ) O(n + occ) Hon et al. (2010)

d is the number of patterns in D.
ℓ is the total size of the dictionary.

These theoretical contributions have not been implemented.

Thesis Contributions 56/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

1D Dictionary Matching

For 1D data,
Time-Space efficient dictionary matching has been achieved.

* Only in the theoretical realm.

* Rely on complex data structures
that have not been implemented.

Our Contribution:
Efficient software for succinct dictionary matching
that relies on popular succinct data structures.
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Software Development

Creation of our succinct 1D dictionary matching program:

1 Coded Ukkonen’s suffix tree construction algorithm.

2 Modified suffix tree to form generalized suffix tree.

3 Wrote program to perform dictionary matching over
generalized suffix tree.

4 Ported dictionary matching code to use compressed suffix tree.
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Compressed Suffix Tree

Compressed suffix tree (CST)

Compressed self-index.

Replaces input data and answers queries.

No more space than underlying data.

Minor slowdown in compressed suffix array as well.

Thesis Contributions 59/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Compressed Suffix Tree

Uncompressed Suffix Tree: O(n log n) bits of space.

Compressed Suffix Tree:

1 Sadakane (2007):
O(n log σ) bits, O(polylog(n)) slowdown.

2 Russo et al. (2008):
kth order empirical entropy, O(log n) slowdown.

3 Fischer et al. (2009):
kth order empirical entropy, sub-logarithmic slowdown.

4 Ohlebusch, Fischer, Gog (2011):
some queries in O(1) time.

Have all been implemented.
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Suffix Links

Definition

A suffix link is a pointer from an internal node labeled xS to
another internal node labeled S , where x is an arbitrary character
and S is a possibly empty substring.

Suffix links facilitate traversal of suffix tree during and after

construction.
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Suffix Links
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Software

Algorithm for 1D dictionary matching on suffix tree:

Generalized suffix tree: index of several strings.

Ukkonen can insert one string at a time.

Our algorithm: modeled after Ukkonen’s suffix tree
construction algorithm.

Online processing of text.
Linear time: as if inserting new pattern.
Skip-count trick uses suffix links.
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Software

Algorithm for 1D dictionary matching on suffix tree:

Generalized suffix tree: index of several strings.

Ukkonen can insert one string at a time.

Our algorithm: modeled after Ukkonen’s suffix tree
construction algorithm.

Online processing of text.
Linear time: as if inserting new pattern.
Skip-count trick uses suffix links.

Small-Space: compressed suffix tree.
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Software

Software for succinct 1D dictionary matching

Uses SDSL compressed suffix tree

Space meets entropy-compressed bounds

Linear time, with slowdown to query compressed self-index
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Future Work

Small space 2D dictionary matching variations:

Square patterns of different sizes

Rectangular patterns of different sizes

Approximate matching

- mismatches
- insertions
- deletions
- swap

Software for dynamic succinct dictionary matching

Software for succinct 2D dictionary matching
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