
Overview
Thesis Contributions

Conclusion

2D Dictionary Matching in Small Space

Shoshana Neuburger

Graduate Center of CUNY

2/29/2012

Dissertation Defense

1/66



Overview
Thesis Contributions

Conclusion

Outline

Thesis Accomplishments:

1 New Techniques

2 Succinct 2D Dictionary Matching with No Slowdown

3 Dynamic Succinct 2D Dictionary Matching

4 Software for Succinct 1D Dictionary Matching

Overview 2/66



Overview
Thesis Contributions

Conclusion

Problem Definition

2D Dictionary Matching

Input:

Dictionary D = {P1,P2, . . . ,Pd} of pattern matrices

Text matrix T

Output:

(h, i , j) such that pattern Ph occurs at location (i , j) in T
T [i + k , j + l ] = Ph[k + 1, l + 1]

Overview 3/66



Overview
Thesis Contributions

Conclusion

Small-Space

Challenge:

Limited storage capacity in devices.

Massive Proliferation of Data

Goal: efficient algorithms with respect to both time and space .

Overview 4/66



Overview
Thesis Contributions

Conclusion

Small-Space

Challenge:

Limited storage capacity in devices.

Massive Proliferation of Data

Goal: efficient algorithms with respect to both time and space .

Hon et al. (2011): Time-space optimal 1D dictionary matching.

This work: first to focus on 2D dictionary matching in small space.

Overview 4/66



Overview
Thesis Contributions

Conclusion

Small-Space 2D

2D linear-time single pattern matching
Crochemore et al. (1995):

Preprocessing: linear time within log space.

Text Scanning: linear time, O(1) extra space.

Use small-space 2D single pattern matching for set of patterns

* requires several scans of text.

Overview 5/66



Overview
Thesis Contributions

Conclusion

2D Dictionary Matching

Existing 2D dictionary matching algorithms:

Bird (1977) / Baker (1978)

Amir, Farach (1992)

Giancarlo (1993)

Idury, Schaffer (1993)

Require working space proportional to dictionary size.

Overview 6/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Dictionary Matching

Bird / Baker

Convert 2D data to 1D representation.

Name patterns rows.

Name text positions.

Use 1D dictionary matching to find pattern occurrences.

Thesis Contributions 7/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Dictionary Matching

Bird / Baker

Convert 2D data to 1D representation.

Name patterns rows.

Name text positions.

Use 1D dictionary matching to find pattern occurrences.

Text is processed once!

Our work: succinct version of Bird/Baker algorithm.

Thesis Contributions 7/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Bird /Baker Algorithm

� � �

� � �

� � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

������� ����

� � � � � � �

� � � � � � �

Thesis Contributions 8/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Pattern Preprocessing

� � �

� � �

� � �

�

�

�

Thesis Contributions 9/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Text Scanning

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �� � � � � � � � � � � � � �

Thesis Contributions 10/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Text Scanning

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �� � � � � � � � � � � � � �

Thesis Contributions 10/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Bird /Baker Algorithm

Text Scanning

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �� � � � � � � � � � � � � �

Thesis Contributions 10/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Problem Definition

2D Dictionary Matching

Input:

Dictionary of d patterns, each is m ×m in size.

Text T of size n × n.

Output:

All positions in text at which a dictionary pattern occurs.

Thesis Contributions 11/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Preprocessing Space

Bird and Baker:

Aho-Corasick automaton of pattern rows.

O(dm2 log dm2) extra bits of preprocessing space.

New technique:

Groups pattern rows into equivalence classes.

O(dm log dm) extra bits of preprocessing space.

Thesis Contributions 12/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Text Scanning Space

Bird and Baker:

Process entire text at once.

O(n2 log dm) bits of space to label text.

New technique:

Small overlapping text blocks of size 3m/2× 3m/2.

O(m2 log dm) bits of space to label text.

Working space is independent of text size.

Thesis Contributions 13/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Our Method

Overview of Algorithm:

Name pattern rows to form 1D dictionary.

Name each text block row.

1D dictionary matching to locate candidates .

Verify candidates to find pattern occurrences .

Repeat for each overlapping text block of size 3m/2× 3m/2.

Thesis Contributions 14/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

1D Periodicity

Definition

A string p is periodic in u if p = uku′ where u′ is a proper prefix of
u, u is primitive, and k ≥ 2.

aabcaabcaabcaa

Thesis Contributions 15/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

1D Periodicity

Definition

A string p is periodic in u if p = uku′ where u′ is a proper prefix of
u, u is primitive, and k ≥ 2.

aabcaabcaabcaa
aabcaabcaabcaa

Thesis Contributions 15/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

1D Periodicity

Definition

A string p is periodic in u if p = uku′ where u′ is a proper prefix of
u, u is primitive, and k ≥ 2.

We divide patterns into 2 groups based on 1D periodicity.

In each case, different difficulties to overcome.

Thesis Contributions 15/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Types of Patterns

Case I:

Patterns with ALL rows periodic, period ≤ m/4.
Problem: can have more candidates than the space we allow.

Case II:

Patterns contain aperiodic row or row with period > m/4 .
Problem: several patterns can overlap in both directions.

Thesis Contributions 16/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Types of Patterns

Case I:

Patterns with ALL rows periodic, period ≤ m/4.
Problem: can have more candidates than the space we allow.

New techniques:

* Lyndon word naming

* Witness tree

* 2D Lyndon words

Thesis Contributions 16/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Lyndon Words

Definition

Two words x , y are conjugate if x = uv , y = vu for some u, v .

Definition

A Lyndon word is a primitive string which is lexicographically
smaller than any of its conjugates.

Canonization computes the least conjugate of a word.

Thesis Contributions 17/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Naming

New technique for naming rows:

same name if periods are conjugate

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

�

Thesis Contributions 18/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Naming

New technique for naming rows:

same name if periods are conjugate

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

��

Thesis Contributions 18/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Naming

New technique for naming rows:

same name if periods are conjugate

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

��

Thesis Contributions 18/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Naming

New technique for naming rows:

same name if periods are conjugate

How is this done in linear time, yet small space? witness tree

Witness tree stores a distinction between two names.

To name a new row, it is compared to only one other row.

Thesis Contributions 19/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

Witness tree for Lyndon words of length 4:

���� �����	
���� ��	��
���	

� � ����

� � ����

� � ���

� � ��

� � ����

�

��

�

� � �

�

�

� � ����

� � ����

� � ����

�

��

�
�
� �

�
�
�

� �

�
�
� �

�
�

Thesis Contributions 20/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:

���� �����	
���� ��	��
���	

� � ����

� � ����

� � ���

� � ��

� � ����

�

��

�

� � �

�

�

� � ����

� � ����

� � ����

�
�
� �

�
�
�

� ����

Thesis Contributions 21/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:

���� �����	
���� ��	��
���	

� � ����

� � ����

� � ���

� � ��

� � ����

�

��

�

� � �

�

�

� � ����

� � ����

� � ����

�
�
� �

�
�
�

� ����

Thesis Contributions 21/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:

���� �����	
���� ��	��
���	

� � �
� �
�

� � �
� �
�

� � �
�
�

� � �
�

� � �
� �
�

�

��

�

� � �

�

�

� � �
� �
�

� � �
� � �

� � �
�
�
�

�
�
� �

�
�
�

� ����

Thesis Contributions 21/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:

���� �����	
���� ��	��
���	

� � �
� �
�

� � �
� �
�

� � �
�
�

� � �
�

� � �
� �
�

�

��

�

� � �

�

�

� � �
� �
�

� � �
� � �

� � �
�
� �

�
�
� �

�
�
�

� ����

Thesis Contributions 21/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:

���� �����	
���� ��	��
���	

� � �
� �
�

� � �
� �
�

� � �
�
�

� � �
�

� � �
� �
�

�

��

�

� � �

�

�

� � �
� �
�

� � �
� � �

� � �
�
�
�

�
�
� �

�
�
�

� ��

Thesis Contributions 21/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Witness Tree

To give acbc name 7 and append to witness tree:

���� �����	
���� ��	��
���	

� � ����

� � ����

� � ���

� � ��

� � ����

�

��

�

� � �

�

�

� � ����

� � ����

� � ����

�

��

�
�
� �

�
�
�

� �

�
�
� �

�
�

Thesis Contributions 21/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Preprocess 1D Patterns

1 Linearize 2D patterns in dictionary.

2 Construct AC automaton of 1D patterns.

3 Compute LCM table of each 1D pattern.

4 Compute 2D Lyndon word of each 1D pattern.

Thesis Contributions 22/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Preprocess 1D Patterns

1 Linearize 2D patterns in dictionary.

2 Construct AC automaton of 1D patterns.

3 Compute LCM table of each 1D pattern.

4 Compute 2D Lyndon word of each 1D pattern.

Thesis Contributions 22/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

LCM

Why store the Least Common Multiple (LCM) of 1D patterns?

Text can have more pattern occurrences than space we allow.

However, they occur at regular intervals.

Summarized by occurrence’s left and right endpoints + LCM
of pattern.

Thesis Contributions 23/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Pattern Preprocessing

Summary of pattern preprocessing:

1 For each pattern row,
1 compute period and canonize
2 name row
3 store period size, name, first Lyndon word occurrence (LYpos).

2 Construct AC automaton of 1D patterns.

3 Compute LCM table for each 1D pattern.

4 For multiple patterns of same 1D name, build offset tree.

Time: O(dm2)
Extra Space: O(dm log dm) bits

Thesis Contributions 24/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Text Scanning

Text scanning stage:

1 Name rows of text block.

2 Identify candidates.

3 Verify candidates.

Thesis Contributions 25/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Naming Text

Lemma

At most one maximal periodic substring of length ≥ m with

period ≤ m/4 can occur in a text block row of size 3m/2.

Process each text block row:

Name text block rows same way as pattern rows.

Find maximal periodic substring around midpoint.

Each text block row receives only one name.

Thesis Contributions 26/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Text Scanning

Text scanning stage:
1 For each text block row,

1 compute period and canonize
2 name row
3 store period size, name, first Lyndon word occurrence (LYpos).

2 Identify candidates: 1D dictionary matching.

3 Verify candidates.

Thesis Contributions 27/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Verification

���������

� � � � � � � �

� � � � � � � �

�

�� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

� � � � � � � �

� � � � � � � �

�

�

���������

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

Same 1D name but different 2D patterns!

Thesis Contributions 28/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

h-periodicity

Definition

A 2D m ×m pattern is h-periodic, or horizontally periodic, if two
copies of the pattern can be aligned in the top row so that there is
no mismatch in the region of overlap and the number of
overlapping columns is ≥ m/2.

Thesis Contributions 29/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

h-periodicity

Definition

A 2D m ×m pattern is h-periodic, or horizontally periodic, if two
copies of the pattern can be aligned in the top row so that there is
no mismatch in the region of overlap and the number of
overlapping columns is ≥ m/2.

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �� � � � � � � � �

Thesis Contributions 29/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

h-periodicity

aabcaabcaabcaa
aabcaabcaabcaa

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �
� � � � � � � � �

� � � �

Thesis Contributions 29/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

h-periodicity

Definition

A 2D m ×m pattern is h-periodic, or horizontally periodic, if two
copies of the pattern can be aligned in the top row so that there is
no mismatch in the region of overlap and the number of
overlapping columns is ≥ m/2.

Definition

The h-period of an h-periodic pattern is the minimum column
number at which the pattern can be aligned over itself.

Thesis Contributions 29/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Verification

Horizontally Consistent Patterns

Same 1D representation

and

Can occur at overlapping positions on text block row

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� �

� �

� �

� �

� �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� �

� �

� �

� �

Thesis Contributions 30/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Verification

Horizontally Consistent Patterns

Same 1D representation

and

Can occur at overlapping positions on text block row

Lemma

Two h-periodic patterns with the same 1D representation are

horizontally consistent iff the LYpos of all their rows are shifted by

C mod period size of the row, where C is an integer.

Thesis Contributions 30/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Horizontal Consistency

Lemma

Two h-periodic patterns with the same 1D representation are

horizontally consistent iff the LYpos of all their rows are shifted by

C mod period size of the row, where C is an integer.

� � � �

� � � �

� � � �

� � �

� �

� � � �

� � � �

� � � �

� � � �

� � �

� �

� � � �� � � �

� � � �

� �

� � � �

� � � �

� �

C = 2

Thesis Contributions 31/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Verification

Single pass verification:

Group horizontally consistent patterns together.

Compute 2D Lyndon word and classify patterns.

Store 2D Lyndon words in offset tree .

Compute 2D Lyndon word of text and traverse tree.

Thesis Contributions 32/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Horizontal 2D Conjugacy

Definition

P1 and P2, are horizontal 2D conjugate if P1 = UV , P2 = VU for
some horizontal prefix U and horizontal suffix V of P1.

If the h-periods of two patterns are horizontal 2D conjugate,
then the 2D patterns are horizontally consistent.

Thesis Contributions 33/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Lyndon word

Each conjugate of an h-period has a distinct LYpos sequence.

Definition

The 2D Lyndon word of a matrix is the LYpos array that is the
smallest over all the horizontal 2D conjugates of the matrix, for
the numerical ordering.

Thesis Contributions 34/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Lyndon word

Pattern 2

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	




�

	

�




	

�� � � � � � � � �

Thesis Contributions 35/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Lyndon word

Horizontal 2D conjugate

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	




�

	

�




	

	� � � � � � � � 	

C = 1

Thesis Contributions 35/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

2D Lyndon word

2D Lyndon Word

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	




�

	







	

	� � � � � � � � 	

C = 2

Thesis Contributions 35/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Computing 2D Lyndon word

Each conjugate of an h-period has a distinct LYpos sequence.

How many horizontal 2D conjugates does a pattern have? LCM !

Compute 2D LYndon word for h-period of m ×m matrix in
O(m) time and
O(m logm) bits of extra space.

Thesis Contributions 36/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Verification

���������

� � � � � � � �

� � � � � � � �

�

�� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

� � � � � � � �

� � � � � � � �

�

�

���������

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

Not horizontally consistent.

Thesis Contributions 37/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Offset Tree

Pattern1 and Pattern2:

same 1D name

h-periods not horizontal 2D conjugate

�����������

�

�

��

��

�

�

�

�

�

�
�

��

��

��

��

��

�

�

�

�

�

�

�
�

����	
�������	
���

���� �����	


����

������

�����

������

���	��
���	

������


�����

������


���	�� ���	

� � � � � �

� � � � � �

� � � � � �

� � � � � �� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Thesis Contributions 38/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Text Scanning

Text scanning stage:
1 For each text block row,

1 compute period and canonize
2 name row
3 store period size, name, first Lyndon word occurrence (LYpos).

2 Identify candidates: 1D dictionary matching.

3 Verify candidates on each text row: offset tree.

Time: O(n2)
Extra Space: O(m log dm) bits

Thesis Contributions 39/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Summary of Case I

Algorithm for patterns with highly periodic rows:

Name pattern rows to form 1D dictionary.

Name each text block row.

Use 1D dictionary matching to find candidates .

Verify candidates to find pattern occurrences .

Repeat for each overlapping text block of size 3m/2× 3m/2.

Thesis Contributions 40/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Types of Patterns

Case II:

Patterns contain aperiodic row or row with period > m/4 .
Problem: several patterns can overlap in both directions.

New techniques:

* Dynamic dueling

* Witness tree

Thesis Contributions 41/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Types of Patterns

Case II:

Patterns contain aperiodic row or row with period > m/4 .
Problem: several patterns can overlap in both directions.

Many 1D names can overlap in a text block row.

Identification of candidates is simpler.

Identify candidates with aperiodic row of each pattern.

Difficulty: single pass verification.

Thesis Contributions 41/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Pattern Preprocessing

Pattern Preprocessing:

1 Construct (compressed) AC automaton of first aperiodic row
of each pattern.
Store row number of each row within pattern.

2 Form a compressed AC automaton of the pattern rows.

3 Name pattern rows.
Index 1D patterns of names in suffix tree.

4 Construct witness tree of pattern rows.
Preprocess for LCA.

Time: O(dm2)
Extra Space: O(dm log m) bits

Thesis Contributions 42/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.

Thesis Contributions 43/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 1: Identify candidates

1D dictionary matching of a non-periodic row of each pattern.

O(dm) candidates in a text block.

Possibly several candidates at a single text position.

Thesis Contributions 44/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.

Thesis Contributions 45/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column
Two candidates are consistent if all positions of overlap match.

Vertically consistent candidates:

- In the same column.

- Suffix/prefix match in 1D representations.

Overlapping segments of consistent candidates can be verified
simultaneously ⇒ single pass verification.

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column
How to eliminate inconsistent candidates? duels .

Dueling for 2D single pattern matching [Amir et al. (1994)]

* Store witness for all conflicting overlaps.

* No witness ⇒ consistent candidates.

* Duel: compare text location to witness, kill 1+ candidates.

Dictionary matching: candidates for different patterns.
Too many witnesses to store? Dynamic dueling generates.

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

Duels from top to bottom of rows.

Consistency is transitive.

Duel between vertically inconsistent candidates.

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���
�

������������

�	�
�
	���

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���
�����������

�	�
�
	���

If last candidate wins duel

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

�����������

�	�
�
	���
�����������

�	�
�
	���

If new candidate wins duel

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

How to duel between candidates?

��

��

�

�

�

�

�

�

�

�

�� ��

�

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

How to duel between candidates?

1 Use 1D representation, named pattern rows.
Compute LCP of suffixes to find a row-witness .

2 Generate witness between row names.
LCA query in witness tree.

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 2: Eliminate inconsistent candidates in each column

How to generate witness between row names?

�

�

�

�

�

��

�
��

���������	��

�

�
���

�
�

�
�
�

���� ����	


� ����

 ����

� ����

� ����

Thesis Contributions 46/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.

Thesis Contributions 47/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Step 3: Verify pattern occurrences.

Limited to vertically consistent candidates.

Single scan of text block.

Process one row at a time.

Mark text positions that expect pattern row.

Verify with compressed AC automaton of pattern rows.

Thesis Contributions 48/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Searching Text

Text Scanning:

1 Identify candidates.

2 Eliminate inconsistent candidates.

3 Verify pattern occurrences.

Time: O(n2)
Extra Space: O(dm log dm) bits

Thesis Contributions 49/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Summary of Case II

Algorithm for patterns with aperiodic row:

Self-index of dictionary in entropy-compressed space.

Name pattern rows to form 1D dictionary.

Use 1D dictionary matching to find candidates .

Eliminate inconsistent candidates.

Scan text once to find pattern occurrences .

Repeat for each overlapping text block of size 3m/2× 3m/2.

Thesis Contributions 50/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Compressed Matching

Patterns and text are all in compressed form.

Definition

An algorithm is strongly inplace if the extra space it uses is
proportional to the optimal compression of the data.

Key property of LZ78:
can sequentially decompress using constant space in time linear in
the uncompressed string.

Thesis Contributions 51/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Compressed Matching

Definition

An algorithm is strongly inplace if the extra space it uses is
proportional to the optimal compression of the data.

Amir, Landau, Sokol (2003): strongly-inplace single pattern
matching in 2D LZ78-compressed data.

Consider row-by-row linearization of 2D data.

Text scanning time is linear in size of uncompressed data.

Cannot access complete dictionary when processing text.

Thesis Contributions 51/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Compressed Matching

Definition

An algorithm is strongly inplace if the extra space it uses is
proportional to the optimal compression of the data.

Our algorithm for patterns with highly periodic rows is
linear time and strongly inplace .

Amir, Landau, Sokol (2003): O(m3) preprocessing time.

Our techniques improve their algorithm to linear O(m2).

Thesis Contributions 51/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Outline

Thesis Accomplishments:

1 New Techniques

2 Succinct 2D Dictionary Matching with No Slowdown

3 Dynamic Succinct 2D Dictionary Matching

4 Software for Succinct 1D Dictionary Matching

Thesis Contributions 52/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Dynamic Dictionary

Sahinalp and Vishkin (1996):
Dynamic 1D dictionary matching

Linear time and space

Not automaton based

Naming technique

Can replace AC in Bird / Baker ⇒ linear time and space
dynamic 2D dictionary matching.

Thesis Contributions 53/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Dynamic Dictionary

Our Contribution:
Succinct dynamic 2D dictionary matching.

Adapts to changes in dictionary

* Efficiently insert pattern.
* Efficiently delete pattern.
* Without reprocessing entire dictionary.

Modification of our techniques for static dictionary.

Dynamic succinct version of Bird/Baker algorithm.

Uses dynamic data structures:

dynamic compressed suffix tree
Sahinalp and Vishkin’s dynamic 1D dictionary matching

Thesis Contributions 54/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Outline

Thesis Accomplishments:

1 New Techniques

2 Succinct 2D Dictionary Matching with No Slowdown

3 Dynamic Succinct 2D Dictionary Matching

4 Software for Succinct 1D Dictionary Matching

Thesis Contributions 55/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Small-Space 1D

1D dictionary matching in small space :

Space (bits) Search Time Reference
O(ℓ log ℓ) O(n + occ) Aho-Corasick (1975)

O(ℓ) O((n + occ) log2 ℓ) Chan et al. (2007)

ℓHk(D) + o(ℓ log σ) + O(d log ℓ) O(n(logǫ l + log d) + occ) Hon et al. (2008)

ℓ(H0 + O(1)) + O(d log(ℓ/d)) O(n + occ) Belazzougui (2010)

ℓHk(D) + O(ℓ) O(n + occ) Hon et al. (2010)

d is the number of patterns in D.
ℓ is the total size of the dictionary.

These theoretical contributions have not been implemented.

Thesis Contributions 56/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

1D Dictionary Matching

For 1D data,
Time-Space efficient dictionary matching has been achieved.

* Only in the theoretical realm.

* Rely on complex data structures
that have not been implemented.

Our Contribution:
Efficient software for succinct dictionary matching
that relies on popular succinct data structures.

Thesis Contributions 57/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Software Development

Creation of our succinct 1D dictionary matching program:

1 Coded Ukkonen’s suffix tree construction algorithm.

2 Modified suffix tree to form generalized suffix tree.

3 Wrote program to perform dictionary matching over
generalized suffix tree.

4 Ported dictionary matching code to use compressed suffix tree.

Thesis Contributions 58/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Compressed Suffix Tree

Compressed suffix tree (CST)

Compressed self-index.

Replaces input data and answers queries.

No more space than underlying data.

Minor slowdown in compressed suffix array as well.

Thesis Contributions 59/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Compressed Suffix Tree

Uncompressed Suffix Tree: O(n log n) bits of space.

Compressed Suffix Tree:

1 Sadakane (2007):
O(n log σ) bits, O(polylog(n)) slowdown.

2 Russo et al. (2008):
kth order empirical entropy, O(log n) slowdown.

3 Fischer et al. (2009):
kth order empirical entropy, sub-logarithmic slowdown.

4 Ohlebusch, Fischer, Gog (2011):
some queries in O(1) time.

Have all been implemented.

Thesis Contributions 60/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Suffix Links

Definition

A suffix link is a pointer from an internal node labeled xS to
another internal node labeled S , where x is an arbitrary character
and S is a possibly empty substring.

Suffix links facilitate traversal of suffix tree during and after

construction.

Thesis Contributions 61/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Suffix Links

M i s s i s s i p p i $

� � � � � � � � 	 �
 �� ��

����

�����
�	�	

����

������

����

����

�����

�	���

������
����

�����

�����
�	�	

������

��
���

����

�	���

�����

�	���

�����

�	���
s6

s11

s8

s5 s2 s1
s10

s9
s7

s4

s3

s12

Thesis Contributions 62/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Software

Algorithm for 1D dictionary matching on suffix tree:

Generalized suffix tree: index of several strings.

Ukkonen can insert one string at a time.

Our algorithm: modeled after Ukkonen’s suffix tree
construction algorithm.

Online processing of text.
Linear time: as if inserting new pattern.
Skip-count trick uses suffix links.

Thesis Contributions 63/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Software

Algorithm for 1D dictionary matching on suffix tree:

Generalized suffix tree: index of several strings.

Ukkonen can insert one string at a time.

Our algorithm: modeled after Ukkonen’s suffix tree
construction algorithm.

Online processing of text.
Linear time: as if inserting new pattern.
Skip-count trick uses suffix links.

Small-Space: compressed suffix tree.

Thesis Contributions 63/66



Overview
Thesis Contributions

Conclusion

Succinct 2D Algorithms
Software

Software

Software for succinct 1D dictionary matching

Uses SDSL compressed suffix tree

Space meets entropy-compressed bounds

Linear time, with slowdown to query compressed self-index

Thesis Contributions 64/66



Overview
Thesis Contributions

Conclusion

Future Work

Small space 2D dictionary matching variations:

Square patterns of different sizes

Rectangular patterns of different sizes

Approximate matching

- mismatches
- insertions
- deletions
- swap

Software for dynamic succinct dictionary matching

Software for succinct 2D dictionary matching

Conclusion 65/66



Overview
Thesis Contributions

Conclusion

Thank you to the examining committee!

* Prof. Dina Sokol

* Prof. Amihood Amir

* Prof. Amotz Bar-Noy

* Prof. Stathis Zachos

Conclusion 66/66


	Overview
	Thesis Contributions
	Succinct 2D Algorithms
	Software

	Conclusion

