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Abstract

A vast amount of the work developed for learning the
roles of agents in a multi agent team has focused on the in-
dividual. Each agent learns within a selfish reward system.
In this paper, we introduce “adaptable auctions”, a coop-
erative, co-evolutionary mechanism in which agents learn
using a team-based reward system with the goal of obtain-
ing the best team for achieving a task in an environment
that requires coordination to succeed. The agents use a sim-
ple auction mechanism to negotiate their roles dynamically.
Each agent bids individually according to their perceptions.
The system then chooses the best combination of bids for the
team; the chosen bids may not be optimal for each individ-
ual, but the system learns to bid as a team and develops
the best team-based strategy. Our test-bed is based on the
RoboCup Four-Legged Soccer League, and we develop our
learning algorithm in a simple, simulated version of this en-
vironment.

Keywords: Multi Agent Systems, Auctions, Multia-
gent Learning, Genetic Algorithms, Co-evolution.

1. Introduction

Socially speaking, humans tend to work better in col-
laborating groups rather than alone. Adding regulation and
communication rules for coordination will improve the out-
put of the group [2]. The same is true for team-based multi
agent systems.

Multi agent systems (MAS) has been applied to the field
of robotics with increasing frequency over the last 10 years
[3]. Soccer robotic teams [4] are a good training ground
for a multi agent system: a set of agents, possibly heteroge-
neous by playing different positions, collaborate in a team
and at the same time compete against an opposing team.
A very important issue in a heterogeneous multi agent sys-
tem is the distribution of roles within the group. It is hence

necessary to define a mechanism for changing roles within
this dynamic environment. Many RoboCup teams use hand-
coded solutions to this problem. Here we explore the use of
an automated auction mechanism in which the bidding strat-
egy is learned by the players using a co-evolutionary algo-
rithm.

Many other authors have studied automatic bidding
strategies for agent-based systems applied to other ar-
eas, for example fishmarket auctions [9] and trading agent
competitions (TAC) [10] with adaptable single-agent auc-
tions or competitive negotiation scenarios by [11]. We be-
lieve that the first proven application of auctions in a physi-
cal multi robot system was developed by [5].

The field of Multiagent Learning is described in [12] and
in [13] as a fusion between Multiagent Systems and Ma-
chine Learning (ML). Applying ML techniques to MAS al-
lows us to build evolving agents: agents that learn from and
adapt to their experience and their interactions with their en-
vironment. Learning techniques have usually been applied
to one agent at a time[1], even if it is part of a multi agent
system. Some research into learning as a team within an
MAS has been done by [15] and [14].

The work developed by [15] is one of the early attempts
at demonstrating the utility of self-organization in an agent
system driven to achieve a common objective. Our environ-
ment and approach center around a multi agent approach
where agents are inherently selfish, but must learn to act as
contributing members of a team.

[14] applies reinforcement learning techniques to a multi
agent box pushing system. In this case, the agents have to
work as a team to move a box. Our approach is different
in the sense that we use auctions for the role distribution
and genetic algorithms for learning to allow adaptation over
time in the highly dynamic soccer domain.

We define adaptable auctions in a multi agent environ-
ment as auctions where agents’ bidding strategies are not
fixed but improve over time in order to enhance agents’ per-
formance at a certain task. The improvement is achieved



through the use of a genetic algorithm (GA), tuned using a
co-evolutionary learning process. We demonstrate the use
of adaptable auctions in a simulated robot soccer environ-
ment. The auctions represent the bids made by the agents
in order to take on a specific role at a given time during the
game play. The system learns to choose the best allocation
of roles using the GA.

Our approach is novel in combining both adaptable auc-
tions with a real-time, dynamic multi agent environment as
well as our focus on team-based learning where the fitness
function is based on the performance of the team rather than
the performance of the individual.

The paper is organized as follows. In section 2, we de-
scribe SimRob, our simulation environment for bidding and
playing out soccer games. Section 3 describes the genetic
algorithm that we have used and its paradigm. Section 4 de-
scribes some early experimental results, and section 5 con-
tains the discussion of the set-up and future work.

2. SimRob: our soccer simulation environ-
ment

Our overall direction with this work is the develop-
ment of methodologies for organization and coordination
of agents in team-based heterogenous multi agent sys-
tems operating in dynamic, real-time environments. Cur-
rently, we are working with the Sony AIBO robots and
the RoboCup Four-Legged Soccer League. We have devel-
oped a high-level abstract simulation of the coordination
scheme within our AIBO team in order to rapidly pro-
totype different strategies and interaction mechanisms.
The experiments described here have all been run us-
ing this simulator, which we call SimRob [8]. The choice
to use a simulator instead of real robots for this phase of
the work is due to the fact that we are working with ge-
netic algorithms, which typically take many hours to con-
verge on optimal values. The role that SimRob plays
in our methodology is that of a rapid prototyping envi-
ronment where we can iterate back and forth between
development of possible schema in simulation and evalua-
tion of the schema on the physical robots.

The skeleton of our simulator is divided into compo-
nents, as illustrated in figure 1. We describe three of the
components here and detail the learning component in the
next section (3):

� Agent strategy.
This component consists of the development of a bid-
ding strategy for each agent which will operate based
on calculations of a set of perception parameters for
each agent in the field. By perception parameters, we
mean values calculated from the sensory data of the
robot that indicate the current state of the soccer field.
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Figure 1. SimRob high-level architecture.

The agent must construct a bidding strategy such that
at any point in the game, based on the current values of
its perception parameters, it will use that strategy to bid
for a certain role to play at that moment. Here is where
the GA is applied so as to learn the optimal role to as-
sociate to each set of perceptions. The bid is not spec-
ified by the programmer, but automatically learned by
the genetic algorithm.

� Auction strategy.
This component consists of the development of an auc-
tion clearing strategy for a simulated “auctioneer”. The
auctioneer takes each agent’s bid for certain roles to
play in the game, coordinates those bids and returns
roles to each agent. In the agent parameter component,
the agent bids depending on its perceptions on the cur-
rent state of the field (opponent seen, where is the ball,
is the goal too far away?, etc.). The auctioneer clearing
is fixed manually, but we plan to implement this strat-
egy also using GAs as a future work. This auction rep-
resents the application of our multiagent learning ap-
proach.

� Game model.
This component represents the game play itself. Once
the roles have been distributed among the players of
each team, the game is simulated. The simulator con-
fronts two equal teams. In order to obtain real results,
one team plays against itself.

3. Cooperative co-evolutionary learning

The agents on the team learn their bidding strategies over
time by playing many games and evaluating the results of
the games in relation to the bidding strategies used. We use
the term cooperation because the agents share information
(i.e., sensory data) amongst team members. The term co-
evolution refers to evolving individuals for different roles
where the fitness of an individual (or a team) is based on
that individual’s (or team’s) performance compared to that
of another individual (or team) operating in the same envi-
ronment.

In our case, we are using team-based co-evolution, thus
we consider the performance in the environment to mean



the result of one team playing a (short) series of soccer
games against another team.

3.1. Bidding strategy framework

Each agent constructs its bidding strategy according to
the following framework. We have defined three different
roles that agents can bid for: primary attacker (PA), deffen-
sive supporter (DS) and offensive supporter (OS). Note that
the role of goalie is always fixed to one particular agent.

The agents construct a bidding strategy according to their
perceptions of the state of the soccer field. For initial experi-
mentation purposes, we greatly simplify the perception state
to the values: (1) can I see the ball? (2) minimum distance
to the ball, and (3) minimum distance to the goal. These rel-
ative perceptions are represented by a 3-digit percept code,
containing one bit per perception, which is set to 0 or 1 de-
pending on the presence of the perception in the field. Table
1 illustrates the eight possible relative perceptions and cor-
responding percept code.

ball closest closest percept
seen? to ball? to goal? code

no no no 000
no no yes 001
no yes no 010
no yes yes 011
yes no no 100
yes no yes 101
yes yes no 110
yes yes yes 111

Table 1. Percept code definitions.

For each of the �� � � possible sets of perceptions, the
agent’s bidding strategy defines a bid where a bid consists
of a preference order of the three roles described above for
each possible percept code value. Given three roles, six or-
derings are possible. Table 2 contains the possible prefer-
ence orders and the corresponding bid code.

Thus a single bid can be represented by 8 values, where
each value is between 0 and 5. In our genetic algorithm (de-
scribed below), this translates into a 24-bit binary string,
grouped into 8 3-bit values, where each 3-bit value is be-
tween 000 (0) and 101 (5).

For each of the ���� 8 possible sets of perceptions ��,
� �� � � �, the agent can bid for a certain role (PA, OS
or DS). Our SimRob environment, allows the agent to do
a weighted bid of three different roles. This means that the
agent can bid for more than one role defining a bid-list that
contains the prefered roles in decreasing order of prefer-
ence. With this setup, the search space of all possible bid

role ordering bid code
PA-OS-DS 0 (000)
PA-DS-OS 1 (001)
OS-PA-DS 2 (010)
OS-DS-PA 3 (011)
DS-PA-OS 4 (100)
DS-OS-PA 5 (101)

Table 2. Bid code definitions.

strategies for one agent (for the 8 perceptions and the 6 dif-
ferent role bids) is1:

� ���� �� � �� � ��� � ���, possible bids (1)

These calculations are for only one agent. Each team is
composed of three agents (plus a goalie). This means that
each of the possible bids that an agent can make are going
to be combined with two others to make a team bid. In these
terms, we have more than a million possibilities to be com-
bined by a team of three:

� ����� � ���� �� � ����, possible bid teams (2)

Given this combinatorial explosion within the bidding space
even within our highly simplified experimental framework,
it is clear case where an evolutionary learning algorithm can
be used to identify strong bidding strategies.

3.2. Genetic Algorithm Paradigm

Our genetic algorithm, “GenRob”, plays a series of
matches between two teams in the SimRob simula-
tor. Each team consists of three players and a goalie, and
our focus is to build the best team, that is, the one that ei-
ther scores the most, or at least, puts the ball nearest to the
opponent’s goal within the time limit of the game. The fit-
ness of the players is measured in terms of optimal play of
the team as a whole (of which the agent is part of), and not
in terms of an optimal individual player.

The genetic algorithm begins by randomly initializing
bidding strategies for a population of � players. At each
generation, we randomly select six players (3 players per
team) from this population. Then the two teams play a series
of games against each other, called a “round”. Each round
consists of 	 games; each generation consists of 
 rounds.

For the experiments described below, we used 	 �
	 games per round. The games are played for a limited
amount of simulated time, and after each game, the fitness

1 where � ���� �� � �� is the formula for computing the number of
variations with reputation of selecting an ordered set of � elements
from a set of possible � elements



of the three agents belonging to the winning team is in-
creased. The best team is chosen after each round. A team is
considered better than another one when their fitness mea-
sure is better. In our case, the fitness is measured per game,
and then summed up for each round. After ’r’ rounds, a new
generation is obtained with GenRob, our soccer genetic al-
gorithm.

If we have an initial population of ’players’ players, and
we run GenRob, we have to choose 6 agents(3 per team)
from the total population. Once we have chosen one team,
the other will be chosen among half of the initial set.This
means that we have:

�����������������
������, possibilities (3)

If we let this selection to be completely random, we may
be testing the same team several times, or the same players.
We propose the use of table 3 with all the posible combina-
tions of teams (according to value in formula 3). Every time
we select two teams, we will read this selection from the ta-
ble instead of chosing the players randomly. This definitely
speeds the convergence of GenRob.

g1 ABC DEF
g2 ABD CEF
g3 ABE DCF
g4 ABF DEC
g5 ADC BEF
g6 AEC DBF
g7 AFC DEC
g8 DBC AEF
g9 EBC DAF
g10 FBC DEA

Table 3. Games List: all possible teams and
their opponents for a 6-player population.

4. Results

We have designed a population of 6 randomly generated
agents. We use the combination of teams explained in 3.

This means that we will have �������� � ��� ���� � ��
different team configurations possible (see table 3). In or-
der to analyze all 10 possible configurations, we perform a
complete search, playing a round with each of the 10 pos-
sible team combinations. Hence, each generation will have
��
����� � 	���	���. At the end of each round, we in-
crement the fitness of each player from the winning team,
i.e., the team that has won more than 	�� games.

After the rounds for each generation are complete, we
enter the selection phase of the genetic algorithm. We se-
lect to use a 	� 
 	� exploitation:exploration strategy, keep-
ing the 3 best players and reproducing 3 new players using
the first three as parents, employing mutation and crossover
as operators. Each of the new players come from one of the
best players and a 1 point mutation to avoid big jumps in
the new population generated.

We conducted experiments with these parameters for
several different lengths of game time. In the graphical dis-
play, we can see how the teams evolve so that the distances
of the ball to the opponent’s goal decrease over time to-
wards zero. Depending on the length of the game, we can
see that for longer games, the progression towards zero dis-
tance to the goal is smoother.

Figures 2, 3 and 4 show the distance of the ball to the
opponent’s goal (for the better team). The x-axis contains
the generations of the simulation(measured in time ticks of
the simulator), the length of the generation depends on the
length of the game. Each length is specified under its graph.
The y-axis is the distance between the ball and the oppo-
nent’s goal at the end of the game, measured in “cells”. To
aid our localization algorithm (not discussed here), we have
divided the soccer field into 	�� �� square cells.

Figure 2 shows the learning of the team for games of
length 70 ticks. The coevolutionary learning is shown for
three different random seeds. We have also added a polyno-
mial curve fitting function for each of the representations in
order to see clearly the convergent learning. As we can see,
the team learns to take the ball to approximately one cell (or
less) away from the goal.
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Figure 2. Co-evolution over 37 generations
for games of length = 70 ticks.



Figure 3 shows the learning for shorter games, of length
15 ticks, and its corresponding polynomial curve fitting. In
this case, the distance of the ball to the goal is bigger (a me-
dian of 7 cells), and the learning is more unstable than for
longer games. Still, we can see that for the same number of
generations, we obtain distances no bigger than 10 cells to
the goal, which means that at least the best team we are ob-
taining is keeping the ball in the opponents’ half of the field.
Thus, we have obtained an “attacking team”.

0 0.5 1 1.5 2 2.5 3

x 10
4

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

Figure 3. Co-evolution over 37 generations
for games of length = 15 ticks.

From the results obtained, we can say that it makes sense
that for shorter lengths the learning is more difficult, since
there is not enough time for the team to apply its game strat-
egy. Hence, in order to obtain significative team-learning re-
sults, we recommend running games of length 70 ticks (and
longer) with our current game strategy.

In order to demonstrate the usefulness of the learning al-
gorithms, we have also played games without learning (that
is, agents bidding a fixed and not learned value). With these
“control” runs, we have obtained distances of the ball to the
goal much higher than any of the learning experiments de-
veloped.

Figure 4 shows the distance of the ball to the goal for
both a coevolutionary learning team and a random team.
We define random team as one in which the agents bids
are made randomly without any learning strategy. As we
can see, random games do worse that learning games in the
sense that they do not take the ball as close to the goal
as learning teams do. Figure 4 also contains the polyno-
mial curve fitting that shows the convergent behavior of the
learning team versus the non convergence of the random
team.
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Figure 4. Co-evolutioned vs Random Genera-
tions for games of length = 45 ticks.

The important result is that we have obtained convergent
behavior (convergence speed depending on the length of the
game). This means that our team is learning to bid so as to
make their team strategy be the winner, that is, scoring or at
least taking the ball as close to the goal as possible.

5. Discussion and Future Work

In this paper we have designed a learning algorithm for
a multiagent system to maximize its performance as a team.
In our case, we have used as testbed a simulated RoboCup
Four-Legged Soccer League environment with a team of
four agents playing soccer against another team of 4, with
the objective of scoring the maximum number of goals
within a fixed time period. We have demonstrated that ge-
netic algorithms help us to learn how to negotiate role dis-
tribution in order to obtain the best team results.

We plan to use our best co-evolved teams on real AIBO
robots for playing games in upcoming RoboCup tourna-
ments. Here we will see the output and the improvement of
our game by opposing it to another random generated team.

We also plan to develop a GA for the goalies, that is, the
agents responsible for the distribution of the roles once the
bids are done. The policies to be learned to assign roles, are
also a problem solvable by means of GAs.
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