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Abstract

Visual Analytics (VA) is an emerging field that provides automated analysis of large and complex data sets via
interactive visualization systems in an effort to facilitate fruitful decision making. VA is a collaborative process
between the human and the machine. In this paper, we present a multi-faceted overview of this human-computer
collaboration. The system facet contains everything about the data, analytical tasks, visualization types and the
relationships between them. The user facet contains the number and properties of the users. The collaboration facet
covers the interactions between the system and the users within the context of VA.

1 Visual Analytics and The Road to Wisdom

One of the overarching goals of science is to understand the world around us. In doing this, we rely on our senses
to provide us with the observations (i.e., “data”) and our brains to make sense of these observations (i.e., “analysis”).
Ackoff [1] provides us with a multi-phase model of this sense making process. According to Ackoff’s model, humans
process data into information in order to answer questions of who, what, where and when. Further processing of
information leads to knowledge that answers how questions, and finally an understanding of why helps us shape the
future. We illustrate this process in Figure 1.

Data =y Information —==p Knowledge =p Wisdom

Figure 1: From Data to Wisdom

In today’s world, we are becoming increasingly swamped with data. Enormous amounts of data are populating
storage devices and waiting to be transformed into some sort of useful information and then knowledge that would
hopefully serve a good purpose. Unfortunately, the technologies to transform data into information and knowledge
lag behind the technologies that collect and store the data. Governments are storing millions of phone calls in order
to catch terrorists plotting an attack, credit card companies are storing purchase and payment histories of millions
of customers in order to be able to make predictions about which customers would be worthy of their credit, online
retail stores are keeping records of purchases so that they can identify other products to offer to the individuals based
on what they previously bought, supermarkets are recording surveillance videos to be used as evidence in case of a
robbery, and so on. Many more examples can be given from our everyday lives or from specialized domains such as
medicine and education.

Collecting data is only the beginning of a long journey to reach wisdom. Wisdom is the ultimate state of having
the understanding of the principles of a system that is being observed. Observing a system (for example, stock
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movements, student performance on assessments, behavior of credit card customers) starts with having the idea of
what the entities and the relationships between these entities are. This is the data design stage and the most popular
method in data design is the Entity-Relationship (E-R) Model proposed by Chen in 1976 [13]. Figure 2 shows an
example entity-relationship model of customers purchasing books from an online book store.
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Figure 2: An example E-R diagram

Representing the data using the E-R model is possible in manufactured domains such as the business applications
mentioned above. In these domains, the entities and relationships can be predefined. On the other hand, in some
domains, it is hard to design a data model beforehand because the analyst does not have full understanding of the
components of the system under observation. In this case, entities and relationships should also be extracted from
pieces of the collected data. This is generally the case in most scientific domains. For instance, in gene expression
analysis, datasets contain thousands of genes and the goal is to discover and explain the various relationships between
these genes [33].

When faced with a problem to solve, it is often helpful to first create an abstraction of the problem. In most cases,
abstractions contain various forms of visualization (e.g., diagrams, maps or graphs) that help us look at a problem
from different angles and devise a solution. Data Visualization has been used and studied extensively even before
computers came into our lives. Maps were the earliest visualization artifacts. The 1800’s are assumed to be the
beginning of modern data graphics. As mathematical and statistical methods evolved, new kinds of visualization
methods emerged. Detailed information on the milestones in data visualization history can be found in [21]. Edward
Tufte presents a wide variety of historical and contemporary visualizations in his well-known books Visual Explana-
tions [51], Envisioning Information [50], The Visual Display of Quantitative Information [49], and Data Analysis for
Politics and Policy [48]. The term Exploratory Data Analysis (EDA) was introduced by Tukey in 1977 [52]. Tukey
suggested the use of statistical graphics as an aid for model design in data analysis. The field of Information Visual-
ization emerged in the late 1980’s and an overwhelming amount of visualization methods have been proposed since
then [12, 59].

On the other side of the data analysis continuum, there have been efforts to employ purely mathematical and
statistical methods with little or no emphasis on visualization of the data. Knowledge Discovery in Databases (KDD)
became popular in the 1990°s and is defined as “the process of identifying valid, novel, potentially useful, and ulti-
mately understandable structure in data” [10]. At the heart of KDD lies a process called Data Mining (DM) which is
defined as “a step in the KDD process concerned with the algorithmic means by which patterns or models (structures)
are enumerated from the data under acceptable computational efficiency limitations™ [10]. Focusing heavily on auto-
matically created mathematical models of data comes with a number of challenges. The most important challenge is
to be able to generate more intuitive and understandable models for users.

The Visual Data Mining (VDM) concept was introduced in the early 2000’s as an interdisciplinary field that aims
to facilitate human perceptual abilities in data analysis [36, 56]. The idea is that humans might catch hidden patterns in
data that might have been missed by the data-mining algorithms, provided that they are given effective interactive tools
to examine the datasets visually. The visualization methods employed in VDM borrow techniques from computer
graphics and design theory, and they are much more complex than classical statistical graphing techniques typically
used in EDA.

The field of Visual Analytics (VA) was initiated by the US Department of Homeland Security after the tragic
events of September 11,2001 [45]. The grand challenges were defined as preventing threats and preparing better for
emergency response by analyzing the huge amounts of data that are being collected from the myriad of electronic
covert means in use today. The National Visualization and Analytics Center (NVAC) published a Research and



Development Agenda [45] to lay the foundations of this new field. They define Visual Analytics as “the science
of analytical reasoning facilitated by interactive visual interfaces”. Keim ef al. give a more elaborate definition
in [35]: “Visual analytics combines automated analysis techniques with interactive visualizations for an effective
understanding, reasoning and decision making on the basis of very large and complex data sets.”

The fundamental effect of this emerging field is that it proposes a human-machine collaboration in making sense
out of data. Manual exploration of large datasets is not possible but a totally automatic analysis of data is not desirable
either, therefore VA promises a hybrid and more useful strategy. Figure 3 places various data analysis disciplines on
a continuum. On the left lie the fields which depend on humans exploring the data via visualizations, and on the
far right are the fields which depend more and more on automated analysis of data via mathematical and statistical
methods and put little or no emphasis on human intervention and visualization. Visual Analytics aims to cover all
aspects of what the previous fields failed to cover; it is meant to be the whole process that provides both means of
visualization and analysis, starting from the data and extending to knowledge.
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Figure 3: The data analysis continuum

Figure 4 shows the relationships between the visualization fields and how they relate to the stages of understanding
on the road map from data to wisdom (figure adapted from [7]). Visual Analytics clearly is a highly interdisciplinary
field, covering a wide range of fields from data management, data mining, perception and cognition, human-computer
interaction and visualization. Even artists are contributing their talents [57]. The goal is to bring humans and comput-
ers together for strong collaboration in order to increase the level of understanding of the phenomena that are under
observation. Interactivity is the central concept in VA and through interactivity humans are allowed to communicate
with the computer to provide feedback. Wijk [55] and Keim [35] ef al. give a conceptual view of VA, which is called
the sense-making loop. Figure 5 illustrates our interpretation of this participatory process. Interactivity is the key
ingredient: humans interact with visualizations which are created automatically from data, providing feedback so
that the system can automatically generate better visualizations. Therefore, VA can be defined as a human-machine
collaboration process in data-backed decision making.
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Figure 4: Visualization fields and stages of understanding (adapted from [7].
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Figure 5: Sense-making loop using visual analytics

2 Aspects of Visual Analytics

A number of researchers have developed taxonomies of visualization methods. Lengler and Eppler present a periodic
table of visualization methods [37]. In their taxonomy, they review about a hundred visualization methods and
classify them based on these five aspects: complexity of the visualization, main application area, level of detail, type
of thinking aid and type of representation. Another multi-faceted overview of visualization techniques is given by
Keim [36]. In this classification, visualization techniques have been examined with respect to three aspects: data
to be visualized (1D, 2D, higher dimensional, text/web, hierarchy or graphs, algorithms or software), visualization
technique (standard 2D/3D display, geometrically transformed display, iconic, dense-pixel and stacked displays) and
interaction techniques (standard, projection, filtering, zoom, distortion, link and brush).

Another way of examining visualization methods is the operator framework given by Chi ef al. [16]. In this
framework, an operator might mean any kind of system-user interaction. A value operator changes the dataset such
as selecting a portion of data. A view operator changes the visualization such as zooming, rotating and scaling. In
this framework, datasets turn into visualizations through a visualization pipeline. The stages in this pipeline are raw
data, analytical abstraction, visualization abstraction and view. Datasets are converted into analytical abstractions via
data transformations, which in turn become visualization abstractions through visualization transformations. Final
visualizations are created using visual mapping transformations. A detailed analysis of 36 visualization methods with
respect to this framework has been given in [15].

As an emerging field, VA has different aspects and needs than just visualizing data. In the next three sections, we
dissect these aspects and develop a multi-dimensional view of VA, based on these aspects. Our overview is strongly
related to the sense-making loop (Figure 5) paradigm of VA. Visual Analytics is a human-machine collaboration in
decision making, therefore it has three main dimensions. The first dimension of VA is the system, namely the comput-
ing environment where the datasets are stored and analytical algorithms are implemented. The second dimension is
the user who needs to make decisions based on data. The third dimension is the human-machine collaboration aspect
which acts as a bridge in between the user and the system (Figure 6). In Section 3, the system aspects are examined.
Section 4 presents the user aspects, and Section 5 gives a discussion on human-machine collaboration aspects.

Human-Machine
Collaboration
Aspects

Single/Multi
User

Figure 6: Aspects of VA
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3 System Aspects

We categorize non-human components of the VA process as data, analytical tasks and visualizations. In this section,
we will review the research aspects that are related to these components. Since these aspects relate to the compu-
tational environment, they are called the system aspects. As can be seen on the lefthand side of Figure 6, we have
identified six main system aspects: properties of datasets, nature of analytical tasks, visualization types, and the
relationships between each pair.

3.1 Properties of Datasets

Not all data are created equal. They come from different domains in different forms but most analytical techniques
are based on representations of data as a set of multidimensional vectors. Therefore, depending on the domain, the
original dataset may need to be transformed into multidimensional vector form. Here, before discussing the properties
of datasets, we will give a brief overview of various domains from which datasets may come and ways of transforming
data into the standard vector form.

Multimedia Domain. Humans invented different media for expressing themselves or communicating. Printed
media (pictures and text) arrived first, then came multimedia where sound (speech and music) and moving pictures
(video and animation) invaded our lives. Due to the advent of computer-aided design (CAD), computer games and
medical imaging, virtual 3D models became another form of medium. Data in these domains are generally kept in
separate files that have specific formats based on their types (such as “mp3” for audio, “mpg” for video).

Information Technology. Computer and network technologies helped merchants and governments move book-
keeping and logging operations into the digital world. As a result, databases of overwhelming amounts of data have
become commonplace. Due to the design of database systems (for example, relational database systems), the data
items are kept in tables which can be seen as spreadsheets consisting of rows and columns. Each row represents one
individual entity (i.e., an employee, a customer, a car and so on) and each column represents an aspect that is related to
the individual (such as age, gender, purchase amount, milage and so on). Generally each row (individual) is designated
by a unique identifier and each column is given a specific name to specify the aspect it is describing. Sometimes, we
might need to associate two individual entities—for example to answer such questions as ‘who purchased what item?’,
‘who has called whom on the phone‘, ‘who has whom on her social network?’. In this case, another table (a relation)
is created with the unique identifiers of the individuals. When defining tables, the data designers have to assign certain
data types for each column (text field, number field, date field), thus each individual row becomes just a vector of text,
number and date fields. In today’s commercial world, data analysis is done on terabytes of this kind of data structure
and the specific discipline that is concerned with the visualization data is called information visualization.

Scientific Domain. Different scientific disciplines have different methods for conducting research. Most of them
utilize sensors to capture data (for example; measuring temperature, pressure, mass, brain signals, heart rhythm, blood
sugar level, recording sound, image and video). If data items are of multimedia type (sound, text, image, video, 3D
model) they are stored as separate files whereas other sensor data such as temperature, pressure, mass, brain signals
can be kept in database tables because they can be stored as text, numeric or date fields. Visualization of scientific data
has another aspect which generally does not occur in other domains; in scientific domains, scientists frequently use
animated visualizations to simulate phenomena evolving, based on time-series observations (i.e., weather forecasting,
medical surgery simulations). Scientific visualization covers the methods used in such domains.

Transforming Data for Analysis. Standard data analysis tools are based on the vector model (i.e., a row of
a database table) where each vector designates a data item (individual, observation) and contains different aspects
(features, variables) about that item. Input data items that come from complex domains (input space), such as mul-
timedia domains, and are transformed into a form (feature space) that can be used by the analysis tools. The aim
here is to create a vector based representation for the data at hand. This process is known as feature generation, and
it is desirable that the resulting feature vectors fairly represent the respective data items. For the most part, feature
generation methods are domain specific, ad hoc and subjective. For text data, the main features are words and/or
phrases. These features can tell a lot about the theme of a piece of text. The most basic feature extraction technique
on text data is to compute the frequencies of individual words and/or phrases in the text. Especially after the world
wide web became the largest uncharted textual territory, the problem of text data mining became a very popular topic
and extensive literature exists on this problem. Also, various web-based search engines for geometric 3D models
have been developed. A survey on feature generation methods from 3D geometric (CAD) models is given in [27],
among others. There is also extensive literature on data transformation methods on image, sound and video domains.
An example feature generation technique using mathematical morphology on range images is given in [28].



3.1.1 Variable Types

As mentioned before, due to the design of data storage mechanisms (relational databases), the data items (observa-
tions) are kept as rows (vectors) of data fields (variables). Therefore, the data types are primarily text or numeric. As
far as the semantics are concerned, variables can be classified as [23]:

e Categorical (Binary, Nominal, Ordinal)
e Numerical (Interval-scaled, Ratio-scaled)

A dataset might contain data items consisting of different types of variables posing challenges in analysis.

3.1.2 Dimensionality

Dimensionality of data poses problems for visualization and for analysis. Human perception and computer screens
are limited to 3 spatial dimensions therefore it would be challenging to visualize higher dimensional datasets. For
analysis, high dimensionality poses theoretical and practical problems. Theoretically, the higher the dimensions get,
the more data items one needs in order to perform meaningful analysis. Practically, more dimensions mean more
processing time. The remedy most researchers perform is to reduce the number of dimensions. Figure 7 gives the
flow of conversions starting from the input space to the data space to be used in further analysis.

put [ > Featwe [ >  Data
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Figure 7: Input space to data space conversion

Dimensionality reduction has been treated as a preprocessing step before analyzing the data and a large number
of algorithms have been proposed. Detailed review of these algorithms can be found in [20], [26] and [54]. The
most commonly used method in dimensionality reduction is the Principle Components Analysis (PCA) [34] technique
(Figure 8).
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Figure 8: Principal components analysis (PCA) of 2D data

In PCA, a number of orthogonal vectors (principle components) that capture the most variations in the data are
computed and the data points are projected on those vectors. The first principle component captures the most variance,
and the second principle component that is orthogonal to the first captures the second most variance and so on. By
projecting the original high-dimensional dataset onto a small number of top principle components, we get a lower
dimensional model of the dataset (Figure 9).
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Figure 9: UCI Iris dataset [53] (four dimensional) projected onto its first two principal components (PC)

3.1.3 Time and Space Relations

Time and space have special meanings for humans and various analytical tasks aim to understand phenomena with
respect to time, space or both.

o Temporal (ordered, sequential). Temporality can be absolute or relative. In the case of financial time series,
each observation (e.g., stock price) corresponds to a specific point in time. If the exact time is not important
but the order of the observations is, then the dataset is called sequential. The sequences of web pages visited
by users are common sequential datasets used in web data mining.

e Spatial. If observations correspond to some underlying spatial component, this mapping can aid in data vi-
sualization. The relatively new field of Geographical Information Systems (GIS) focuses on analyzing and
visualizing data that corresponds to geographic locations (such as a group of countries and the population of
each). In the GIS case, the spatial component is a physical location, whereas in other domains, abstract spatial
components can be introduced in order to facilitate visualization. For example, web-based data can be visual-
ized by creating a network that represents a map of a web site. Another example is the use of topological maps
in the field of Mobile Robotics. Topological maps are built by recognizing features that are “next to” each other.
Because the robot encounters them one after the other, the map is not necessarily geographically accurate in
terms of the physical distance between things. The information on the map is more useful because features that
are important to the robot are emphasized.

e Spatio-Temporal. In this case, the observations are tied to a temporal and a spatial component. For example,
Electroencephalography (EEG) provides spatio-temporal data by recording the electrical activities of various
locations of the brain over a period of time.

3.14 Relationships

Often times the goal of data analysis is to uncover certain relationships in the data. There are two kinds of relationships
one can investigate.

o Between observations. Observations can be displayed as a graph, where each observation is a vertex and edges
that connect the vertices indicate relationships between observations. A single observation incorporates the
values of one or more variables. For example, in the case of social networking, the existence of an edge between
two people indicates that they are friends. Other kinds of semantic relationships can also be represented in this
scheme (such as co-authorship of scientific publications). Edges can also have values, or weights, associated
with them. For example, a common numeric value for an edge is to represent the distance between the two
vertices, or observations. Observations with small distances between them are considered similar, whereas
large distances indicate higher dissimilarity.

e Between variables. The study of relationships between variables is an important topic in statistics and other
analytical fields. Two main types of relationships in statistics are correlational relationships and causal relation-
ships. Two variables are correlated if they behave the same way. For example, height and weight are correlated.



Tall people tend to weigh more. But a correlational relationship does not necessarily mean a causal relation-
ship: being tall is not necessarily the cause of weighing more. Variables that have no relationship are called
independent.

3.1.5 Source and Quality

The following issues pose challenges in dealing with data:

o Multiple Data Sources. Datasets could be gathered at different sites, in different modalities (image, sound).
Data fusion is an active research field dealing with the issue of handling multiple data sources.

e Uncertainty. In some domains, observations come from physical measurements. Most of the time, measure-
ments might contain errors (noise) due to experiment conditions. In general, error is modeled as an additive
Gaussian noise.

e Missing Values. Some datasets might have missing values for some variables of an observation. The easiest
way to deal with this issue is to discard such observations. In other schemes, the missing values are estimated
using various statistical techniques [2].

3.1.6 Number of Observations

There are two distinct problems as far as the number of data items (observations, individuals) are concerned:

e Not Enough. If the dimensionality of the data is high and the number of data items is not large, we face the
issue known as the “curse of dimensionality”. This is a theoretical problem and it basically means that in order
to be able to analyze a dataset meaningfully, more samples (observations) are needed as the data dimensionality
(number of variables) increases [18].

e Too Much. This is a practical issue rather than a theoretical one. In general, the more data the better for analysis
purposes but more data requires more processing time and in some cases, data analysis is a time critical task.

3.2 Nature of Analytics

Decision making, sense making or analytical reasoning based on observed data are very general concepts. One can
not give a cookbook of recipes for these processes. But, it is possible to talk about a number of principle analytical
tasks every data-backed reasoning process might contain. Figure 10 shows the most common analytical tasks that
users aim to perform in order to learn from data.
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Figure 10: Analytical Tasks

In an exploratory data analysis setting, users perform these analytical tasks by inspecting and interacting with vi-
sualizations of the data. The ultimate goal is to analyze today’s large and high dimensional datasets as automatically
as possible, since it is not practical for humans to visually inspect such complex datasets. For each of these analytical
tasks, there exists a huge collection of computational techniques from machine learning, data mining, pattern recog-
nition and statistical learning theory. Overviews of various analytical tasks and related algorithms can be found in
[3], [18] and [9].



3.3 Visualization Types

This section covers only the most common classes of data visualization techniques that are used for the purpose of
exploring the original dataset. The images in this section were generated using Matlab [40], R [42] and other custom
software on several publicly available data sets. The references to the individual datasets are given in the text.

3.3.1 Describing Data

Given a set of data, the first step an analyst would take is to see what story the dataset tells. This could be done by
computing standard statistics on the data (i.e., mean, median) or tests to see if data follows any known distributions
(for example, test for normality). Following the Exploratory Data Analysis (EDA) tradition, it is also a common place
practise to utilize visualizations. In this section, we will briefly cover some of these methods.

Distributions. Bar charts, pie charts and histograms are the predominant visualizations for displaying the distri-
bution of the values for a single variable. Examples are shown in Figure 11.
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Figure 11: Bar chart and pie chart of distribution of majors

Descriptive Statistics. Instead of displaying the values of the variables, it is also possible to display various
statistics of a dataset in visual form. A boxplot (figure 12) is an example of this kind of visualization.
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Figure 12: Boxplot visualization of UCI Car dataset [53]

On a boxplot, a five number summary (the smallest observation, lower quartile (Q1), median (Q2), upper quartile
(Q3), and largest observation) of a dataset is displayed. It is also possible to view descriptive statistics for multiple
datasets (populations) on the same boxplot as a means for comparisons.



3.3.2 Viewing Relationships

Between Observations. If the observations (data items) and relationships have been explicitly designed during the
data modeling phase, visualization of relationships between the entities can provide a valuable tool for seeing the “big
picture”. A network diagram, such as the one shown in Figure 13, is an example of this kind of visualization.
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Figure 13: Social networking example

Between Variables. If data has multiple dimensions, it is more desirable to visualize them together so that any
relationships between the variables would be revealed upon visual inspection. Scatterplots are used for this purpose.
Since the cartesian coordinate system (orthogonal axes) is used in visualization, it is possible to display only two or
three variables on a single scatterplot. For this reason, multiple scatterplots are used in order to display all of the
variables (see Figure 14).
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Figure 14: Scatterplots of UCI Iris dataset [53]

Inselberg designed a new technique known as parallel coordinates in order to overcome this limitation. An
example is shown in Figure 15. In this technique, coordinate axes are drawn in parallel instead of orthogonally [32,
31]. The ordering of the dimensions might affect the usefulness of the visualization. Ankerst ef al. [5] propose a
technique that clusters the data dimensions based on their similarities to enhance visualizations.
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Figure 15: Parallel Coordinates visualization of UCI Iris dataset [53]

Graphical models are graphs on which each node represents a variable and (undirected) edges represent condi-
tional independence relationships between them, directed graphical models can also indicate ‘causality’ relationships
between the variables. Figure 16 shows a graphical model for the joint probability expression:

p(x1)p(x2) p(x3) p(xalx1,%2,%3) p(x5|x2,x3) p(x6 |x4) p (27 |X4, X5).

Figure 16: Graphical model visualization of a distribution

3.3.3 Picturing Data: Icons, Glyphs and Color Coding

Humans have great preattentive processing skills [47] for pattern recognition that have been emphasized in data
visualization literature over and over again. A large number of visualization methods have been introduced aiming to
utilize these skills to help make sense out of data. In these methods, the data items are mapped into easily recognizable
shapes and sometimes with textures and/or colors to enhance the perceptual utility of the visualization. Mapping the
most important data features onto the most salient shape features is the crucial aspect here and it is a challenging
design issue. Placement of these pictoral visualizations on the screen is also an important factor on the effectiveness
of the methods. Ward gives a detailed overview of placement techniques in [58]. In this section, we briefly cover
various methods of picturing data.

Chernoff Faces. Introduced by Herman Chernoff in 1973, Chernoff faces [14] is by far the most famous data
picturing method. It is possible to project (map) up to 18 data features onto various face features (such as size
and curvature of the face, position of mouth, eyes, nose, size of features). Faces are special visual items because
humans are naturally wired to recognize the faces, but the underlying mechanisms are still not well understood.
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Therefore, it remains a challenge to assign the data features onto the appropriate face features in order to maximize
the effectiveness of this visualization method.
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Figure 17: Chernoff Faces visualization of UCI Iris dataset [53]

Mathematical Shapes. Andrew’s Plots method [4] projects each data item X = (x1,x2,...,xy) from vector space
into trigonometric function space. The variables (x;) of each observation become the coefficients of the following
Fourier series:

X1 . .

t) =——= +xpsin(t) +x3c0s(t) + x45in(2t)+
f()ﬁz()a()ax()
xscos(2t) + xgsin(3t) +x7c0s(3t) + ...

where —m <t < 7. As it can be seen from the equation, the ordering of the variables affect the shape of the curve.
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Figure 18: Andrew’s plot visualization of UCI Iris dataset [53]
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Another similar technique is called star glyphs which project variables onto polar coordinates in 2D and spherical
coordinates in 3D. Figure 19 shows a few of the data items from the UCI Car dataset [53] visualized as star glyphs in
2D. This type of visualization can help humans easily recognize models that have similar sets of features.
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toyota corolla ford pinte volvo 245 plymouth valare premier

Figure 19: Star glyphs visualization of UCI Car dataset [53]

More advanced mathematical shapes have also been proposed. The parametric shape glyphs method (see Fig-
ure 20) projects variables onto the parameter space of superquadrics resulting in various 3D shapes [43].
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Figure 20: Superquadric shapes by varying two variables (g1, ;)
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Daisy Maps. Icke and Sklar present a glyph based multivariate data visualization method named daisy maps to be
used in visualizing categorical data [30]. Figure 21 shows a daisy map of color-coded scores (red:1, orange:2, blue:3,
green:4, gray:no score) for one student from an educational test. Each petal of the daisy represents the score for one

test topic.
Fall Winter Spring
li r li rc li rc
me \ m me m me m
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Figure 21: Example student test scores visualized as daisy maps

Heat Maps. A heat map is a 2D visualization of a dataset where each variable is a color coded glyph. Figure 22
shows an example gene expression dataset [38]. Each gene is represented as a color coded rectangle. Heat maps give
an overall picture of the dataset where similar items can easily be pointed out.
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Figure 22: Gene expression dataset heat map visualization

Tag Clouds. Tag clouds are used to display the distribution of words and phrases in a given text. The icons are the
graphical renderings of the words themselves and the font size of each word or phrase is proportional to the number
of occurrences in the text. This visualization gives a quick summary of the topic of a given text by looking at the most
common words in it. Figure 23 shows a tag cloud visualization! of the Universal Declaration of Human Rights [41].

!Generated on http://www.wordle.net

14



protection I

: ‘ ALS]aw
: Everyone

Figure 23: Universal Declaration of Human Rights as a tag cloud

3.3.4 Temporal Visualization

Visualization of temporal data poses a special problem. All variables are dependent on time and users want to visualize
how each variable changes over time in order to detect patterns or anomalies in the data. Line graphs are the standard
visualizations that picture the changes of one or more variables over time. 3D versions of line graphs have also been
proposed [46].

Glyph representation is also used to visualize the values of the variables at one time point. Then, changes in data
over time can be visualized by viewing the sequence of glyphs (animation) or by stacking the line graphs (3D time
wheel) or glyphs (e.g., 3D Kiviat tube) and forming a 3D visualization of the whole dataset [46]. Figure 24 shows
a multivariate (five dimensional: opening, closing, highest, lowest prices and volume per day) stock dataset [44]
visualized as a series of line graphs and a snapshot of the animated star glyph.

Open Stock Name: IBM Date: 06/06/2007
Open High
10550 e 10551 Date
Low Close Volume

10233 Date 10241 Cate 307742 Date

Figure 24: Line graph and animation views of multivariate stock data



3.3.5 Spatial Visualization

Spatial datasets come from various domains that relate data to a certain landscape. Use of a map (layout of the
landscape) is the most natural way to visualize this kind of data.

Natural Layout: Geo-Spatial Map. In some domains the landscape corresponds to a physical locale. For
example, Geographical Information Systems (GIS) focuses on analyzing and visualizing data that corresponds to
geographic locations (such as a group of countries and the population of each). Figure 25 shows various properties of
a geographical area on a map [39].
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Figure 25: Geo-spatial visualization (Delaware land cover map), from [39]

Abstract Layout: Artificial Landscape Map. Some data analysis problems can be better studied by introducing
an artificial problem landscape. An example is the use of ropological maps in the field of Mobile Robotics. Topo-
logical maps are built by recognizing features that are “next to” each other, because the robot encounters them one
after the other; the map is not necessarily geographically accurate in terms of the physical distance between things,
but the information on the map is more useful because features that are important to the robot are emphasized. Also,
web-based data can be visualized by creating a network that represents a map of a web site. Figure 26 shows the
behavior of humans within an adaptive online environment [29]. The full network (a) shows the landscape, all the
possible connections from one page to another in the online environment, whereas (b) illustrates the actual path taken
by one human.

(a)

Figure 26: (a) test map, (b) an example performance path, from [29].

(b)
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3.3.6 Spatio-Temporal Visualization

Spatio-temporal datasets contain both spatial and temporal aspects. The biomedical data analysis field provides an
interesting example. Figure 27 shows the positions of the electrodes that are placed on human scalp in order to record
EEG signals from the brain. Each electrode is marked with a specific name.
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Figure 27: EEG electrode locations on human scalp

Figure 28 shows the signals recorded by each electrode for a period of time [17]. In a typical experiment, the
human subject is asked to perform a simple task while the EEG readings are recorded and later analyzed in order to
figure out which parts of the brain show specific activities while performing the task.
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Figure 28: EEG signals

3.4 Relationship Between Data and Analytical Tasks

The relationship between the data and the analyical task is double-sided. The first side of this relationship is the
choice of an appropriate algorithm for the dataset at hand. The analytical tasks outlined in section 3.2 are the high-
level definitions of basic analytical paradigms. As the decision-maker, the user chooses an analytical task to perform
on a given dataset. For each task, a large number of algorithms have been explored by the statistics, data mining,
machine learning and related communities. The outcome of a certain analytical task on the same dataset might differ
from algorithm to algorithm. Therefore, selecting the most suitable algorithm for the dataset and the analytical task
at hand is an important issue. The second side of the relationship is the choice of proper data for a selected algorithm.
Not everything in the dataset might be useful for the algorithm to utilize and the algorithm has to be intelligent about
what bits and pieces in the dataset would increase the success of the outcome of the analysis.

3.4.1 Algorithm Selection for Dataset

Some classification (supervised learning) algorithms have been reported to perform better on some datasets but not
on some other datasets. A number of researchers presented various approaches to characterize the datasets to see
how they relate to the classification accuracy. Three methods of defining the complexity of a classification problem
are proposed in [25]. These complexity measures include measures of overlap of values for each feature, measures
of class separability and measures of geometric, topological or density characteristics of the dataset. Combining
classifiers and various hybrid techniques have also been widely proposed in order to address the data-dependent
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classifier selection problem. The field of meta-learning deals with the problem of finding the most suitable algorithm
for a given dataset and an analytical task by matching meta-features of datasets to algorithms and picking the best
algorithm that is known to have the best performance on datasets with similar meta-features [11].

A similar problem arises for the clustering (unsupervised learning) task as well. The goal of clustering is to
find groups of similar items in the dataset so that the items in each group would be more similar to each other than
any other item that is in a different group. The term similarity is a vague concept and choice of different similarity
measures might affect the outcome of the clustering process. A number of algorithms have been proposed to learn
a similarity (distance) metric from the given dataset in order to increase the accuracy of analytical tasks. A detailed
overview of these algorithms are given in [60].

34.2 Data Selection for Algorithm

This is an important issue especially for high-dimensional and large datasets. An algorithm that selects the minimal
number of samples (observations) from a large dataset in order to build a Support Vector Machine (SVM) Classifier
is given in [22]. On the other hand, some classification algorithms such as Decision Trees perform dimensionality
reduction by selecting the set of features that increases the classifier accuracy.

3.4.3 Summary

It is obvious that there is an organic relationship between the data and algorithms to analyze data because each
algorithm is biased towards some characteristic of data. If the algorithm and the dataset has a good match with
respect to this bias, then the performance of the algorithm will be better on that dataset.

3.5 Relationship Between Data and Visual Representations

Each visualization type has been designed to emphasize a certain aspect about a dataset. For example, line graphs aim
to present a picture of changes over time, maps show the physical or abstract layout on which the problem is defined.
A tag cloud is a specific visualization method for textual datasets. If the dataset does not exhibit those properties that
a visualization method aims to picturise, then it would not be appropriate or meaningful to visualize the data using
that specific method.

There is also another aspect of the data and visualization method relationship. Some visualization methods assign
the variables of the dataset to certain visual components. Different assignments give different visualizations. For
example, in parallel coordinates (Figure 15) different permutations of variable assignments to the parallel coordinates
change the visualization. A number of methods have been proposed to find assignments so that the amount of clutter
on the visualization is minimized. Chernoff faces (Figure 17) and Andrew’s plots (Figure 18) methods have a similar
issue with the assignment of the variables to the components of the visualizations. An adaptive method would assign
the variables onto the visual components so that some criteria would be optimized whereas a static method assigns
the variables in the order that they occur in the dataset.

3.6 Relationship Between Analytical Tasks and Visual Representations

The choice of visual representations also relates to the analytical task. For example, representing data items as glyphs
emphasizes the similarity/dissimilarity and grouping of the items. A tag cloud is a quick way to visually summarize
a textual document. Heat maps could be appropriate views of data since they might highlight abnormal patterns and
outliers in the dataset. The choice of visualization methods in order to perform a certain analytical task is generally
the duty of the user. Chart Tamer [19] is an attempt to provide users with tools to help them make educated choices.

3.7 Summary of System Aspects

Data is the central component of the visual analytics process. Visualization is the way data explains itself to the user.
As we mentioned above, the choice of visualization method depends on the characteristics of the dataset and also the
analytical task the user wants to perform (Figure 29). Table 1 summarizes the system aspects of VA.
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Figure 29: Relationship between visualization type, data and analytical task
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Properties of Datasets Analytical Visual Representation Relationship between || Relationship between | Relationship between
Tasks Types Data and Data and Analytical Tasks and
Analytical Visual Visual
Tasks Representations Representations
Variable types Summarizing Descriptive Algorithm < Data
Numerical Values Simplifying Distributions Static User selected
Categorical Values Statistics (mean,variance,...) Data < Algorithm Adaptive Automatic

Mixed Detecting patterns
Dimensionality Relationships
High Detecting anomalies between observations
Very High between variables

Time/Space relations

Grouping (clustering)

Temporal & sequential Picturing
Spatial Icons and Glyphs
Spatio-Temporal Searching & Retrieval Color coding

Mathematical Shapes

Relationships
Between Observations Discovering Temporal visualization
Similarity relationships Static timeline
Semantic relationships Animated timeline
Between Variables Classification
Independence Prediction Spatial visualization
Correlation Natural layout (map)
Causality Artificial layout (map)

Source and Quality
Multiple sources
Uncertainty
Missing values

Amount of observations
Too much
Not Enough

Spatio-Temporal
visualization
Static map
Animated map

Table 1: System aspects of Visual Analytics

4 User Aspects

The user is the reason why Visual Analytics systems exist in the first place. The user has the final say on the decision
to be made based on the data. In current visual analytics realm, there are two aspects of users: the analytical skill
level and number of users and collaboration between these users.

4.1 SKkill Level

Users of visual analytics systems might be coming from different disciplines with different backgrounds. Some users
might be domain experts while others are newcomers to the field in which the datasets come from. Moreover, some
users might possess the mathematical and statistical knowledge to be able to understand the assumptions of certain
data analysis algorithms and tell if the result makes sense or not while others tend to accept whatever result comes
out of the black box.

4.2 Number of Users

Due to the developments in the computer networks, it has been possible for multiple users to interact and work on the
same analytical task. Collaborative decision making has been an important research field in information management
and visual analytics promises to be a research area that would provide useful tools for multi-user (collaborative)
decision making as well [24, 8].

S Human-Machine Collaboration Aspects

There are two major aspects of the human-machine collaboration in visual analytics. First one is interactivity which
dictates how the collaboration takes place. The second aspect is the benefit or usefulness of the system to the user.

19



5.1 Interactivity

In simple data visualization systems, the burden of making sense of data is on the user. The system would provide
certain kinds of visualizations and it is up to the user to select a proper way to visualize the data and then analyze.
These systems are highly interactive in the sense that humans have full control. Interaction techniques help users
dynamically change the visualizations by specifying certain objectives and they may also provide a number of com-
bined/linked views to enhance the effectiveness of the exploration. A detailed overview of interaction techniques
(such as filtering, projecting, zooming, distortion, linking and brushing) is given in [36].

The opposite of user-driven strategy is the automated data analysis strategy which provides visualizations of the
analysis results (such as clustering results, rules generated based on the data). These systems have minimum or
very little interactivity. Visual analytics systems fall into somewhere in between these two extremes. Too much
interactivity puts the burden on the user and too little interactivity leaves no space for the user to control the analytical
process.

52 Utility

The concept of utility refers to the usefulness of the visual analytics system to the user. Recently a great deal of
emphasis has been put on the evaluation [55, 6] of the visualization methods from a cognitive point of view. More
and more recent research on the visual analytics field contain user studies in order to prove the usefulness of their
proposed visualization techniques.

6 Conclusion

In this paper we presented a multi-faceted overview of Visual Analytics (VA). Our overview is based on the sense-
making loop paradigm which was given in the VA literature [55, 35]. We discussed the three main aspects of the
VA process, namely the system (machine), user(s) and the machine-user interactions. We emphasize that the ultimate
goal of VA is not a fully automatic analysis of data by the system but to provide the most effective medium possible
for human-machine collaboration in order to help people make sense out of today’s large and complex datasets. In
this collaboration, both sides offer what they do best. Humans contribute their superior perceptual skills for detecting
patterns in data and machines provide the computational power for number crunching.
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