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Abstract. For a number of years we have been working towards the goal of
automatically creating auction mechanisms, using a range of techniques from
evolutionary and multi-agent learning. This paper gives an overview of this work.
The paper presents results from several experiments that we have carried out, and
tries to place these in the context of the overall task that we are engaged in.

1 Introduction

The allocation of resources between a set of agents is a challenging problem, and one
that has been much studied in artificial intelligence. Resource allocation problems are
especially difficult to solve efficiently in an open system if the values that agents place
on resources, or the values of their human principals, are private and unobservable. In
such a situation, the difficulty facing somebody wishing to allocate the resources to
those who value them most highly, is that participating agents cannot necessarily be
relied upon to report those values truthfully — there is nothing to prevent “greedy”
agents from exaggerating their resource requirements.

To overcome this problem, it has been suggested that resource allocation be solved
using market mechanisms [4, 32, 59] in which agents support their value-claims with
hard cash. This has two advantages. First it punishes greedy agents by making them
pay for the resources that they have oversubscribed to. (Alternatively one can think of
this as preventing agents from oversubscribing by forcing them to pay a higher price
than they would otherwise have to pay for the resources they actually need.) Second,
it allocates resources to the agents who pay the most, which should be the agents who
value the resources most highly. Auctions are a subclass of market mechanisms that
have received particular attention. This is due to the fact that, when well designed,
auctions can achieve desired economic outcomes like high allocative efficiency.

Designing mechanisms to achieve specific economic requirements, such high effi-
ciency or maximal social welfare, against self-interested intelligent traders, is no trivial
matter, as can be seen from accounts of the auction design process for the recent ra-
dio spectrum auctions in Europe [25] and the US [11, 30]. The economic theory of
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mechanism design [20] approaches the task of designing efficient resource allocation
mechanisms by studying the formal, analytical properties of alternative mechanisms.
Mechanism design views auctions as form of game, and applies traditional analytic
methods from game theory to some kinds of auctions [28], for example the second-
price sealed-bid auctions or Vickrey auctions [55].

The high complexity of the dynamics of some other auction types, especially double-
sided auctions [14] or DAs, however makes it difficult to go further in this direction [27,
49, 58]. As a result, researchers turned to experimental approaches. Smith pioneered
the experimental approach [51], conducting auctions involving human traders that re-
vealed many of the properties of double auctions. For example, his work showed that in
continuous double auctions or CDAs, even a handful of traders can lead to high overall
efficiency, and transaction prices can quickly converge to the theoretical equilibrium.
More recently has come the suggestion that economists should take an “engineering
approach” [44, 46] to problems in microeconomics in general, building models of auc-
tions, testing them experimentally, and refining them to create robust markets. We see
our work as being part of this engineering approach to market design.

One approach to the computational design of markets is to use techniques from ma-
chine learning to explore the space of possible ways in which agents might act in par-
ticular markets. For example, reinforcement learning has been used to explore bidding
patterns in auctions [34, 44] and establish the ways in which price-setting behavior can
affect consumer markets [54]. Our work is in this line. However, we differ from much
of the existing work on machine learning in computational market design by using ma-
chine learning to design the auction rules themselves, rather than just in the service of
exploring their behavior. We refer to this line of work as automated mechanism design,
and the idea behind this paper is to summarize the work that we have been doing over
the past few years on automated mechanism design. It does not provide any new re-
sults, but instead sketches the relationship between the series of experiments that we
have carried out, describes the results that we have obtained, and tries to explain how
all we have done fits into the overall scope of our work.

We should stress that we are not trying to evolve entire auction mechanisms. The
computational complexity of doing so places this out of our reach at the moment. In-
stead we concentrate on parts of an existing mechanism, the continuous double auction,
and look to automatically tune them for specific situations. Our work is experimental,
and so comes with no formal guarantees. It thus stands in stark contrast to the work of
Conitzer and Sandholm [9, 10], which looks to create entire mechanisms subject to ab-
solute guarantees on their performance. However, our work, like that of Cliff and Byde
[5, 57], addresses much more complex mechanisms, and we ourselves as addressing
the same problem as Conitzer and Sandholm, but from the perspective of Wellman’s
empirical game theory [23, 56].

2 Background

2.1 Auctions, briefly

To frame our work, we borrow from Friedman’s [14] attempt to standardize terminology
in which exchange is the free reallocation of goods and money between a set of traders.
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Fig. 1. Supply and demand curves

A market institution lays down the rules under which this exchange takes place, and
an auction is a specific kind of market institution. A given institution defines what
information traders can exchange, and how the reallocation of goods and money will
occur, a process known as clearing the market. In an auction, the only information that
traders can exchange are offers to buy at a given price, called bids, and offers to sell at
a given price, called asks, and an auction gives priority to higher bids and lower asks.
An auction can allow only buyers or only sellers to make offers, in which case it is one-
sided, or it can allow both, in which case it is two-sided. A double auction is a two-sided
auction, and from here on we will only deal with double auctions. In a double auction,
the aim of the mechanism is to pair buyers and sellers, matching pairs such that the
buyer is prepared to pay a higher price than the seller wants. We are most interested
in two kinds of double auction. The clearing house (CH) auction matches traders by
collecting offers over a period and, at the end of that period, identifying the matching
pairs. The continuous double auction (CDA), in contrast, constantly looks for matches,
identifying one as soon as it has some bid that is greater than some ask. Once matches
have been found, a transaction price is set, somewhere in the interval between bid and
ask.

In common with most work on double auctions, we only deal with the auction of a
single kind of good, and we assume that every trader has a private value for the good
— the price that the good is really worth to the agent. A rational buyer will not bid
above its private value, and a rational seller will not ask below that value. If we know
the private values of a set of traders, we can construct supply and demand curves for
the market they are involved with, as in Figure 1. Here the heavy line, the supply curve,
indicates that one seller has a private value of 50 — below that value no goods will be
sold, and once the price rises to 50 exactly one good will be sold. The second trader
has a private value of 60 and at a price of 60, exactly two goods will be sold. Similarly,
there is one buyer who is willing to pay 140, and at that price one good will be bought,
but as soon as the price falls to 130, two goods will be bought.

The intersection of the supply and demand curve indicates the point at which supply
and demand are in balance — here any price between 90 and 100 will see exactly five



goods bought and sold. Economic theory predicts that this equilibrium situation is what
will hold if 20 traders with the indicated private values get together to trade. However
the theory offers no clues as to how the traders will figure out which of them should
trade, and at what price, and it is clear that it is not in the traders’ interest to make offers
that are truthful and indicate their private value — a trade which shades their offer,
stating a lower price than their private value if they are a buyer, will make a profit if that
offer is accepted.

If we know the private values of the traders, then, as described above, we can com-
pute the equilibrium. Combining information about the equilibrium with information
about what actually happens in the market, we can compute metrics that summarize the
performance of the market. The actual overall profit, pra, of an auction is the sum of
the actual profits of buyers and sellers:

pra = pra
b + pra

s

and these are computed as:

pra
b =

∑

i

vi − pi

pra
s =

∑

j

pj − vj

where pi is the price of a trade made by buyer i and vi is the private value of buyer i for
all buyers who trade and pj is the price of a trade made by seller j and vj is the private
value of buyer j for all sellers who trade. The theoretical or equilibrium profit, pre, is:

pre = pre
b + pre

s (1)

the sum of the equilibrium profits of buyers and sellers, the profit that they would make
if all trades took place at the equilibrium price p0, the price predicted by theory. These
can be computed as:

pre
b =

∑

i

vi − p0

pre
s =

∑

j

p0 − vj

The allocative efficiency of an auction is then:

ea =
pra

pre
(2)

which is often expressed as a percentage. Of course, this is the same as:

ea =
pra

b + pra
s

pre
b + pre

s

The allocative efficiencymeasures how close the market is to the equilibrium that theory
predicts in terms of profit for traders. All other things being equal, economists prefer



markets with high efficiency since this indicates that the market is transferring goods
to the buyers that value them most from the sellers that value them least. This maxi-
mizes social welfare, making the traders as happy as possible. Allocative efficiency is
maximal if just the traders to the left of the intersection between supply and demand
curves in Figure 1 end up trading. While measuring allocative efficiency is useful, it
says nothing about price. An auction that trades at equilibrium will be efficient, but
high efficiency does not indicate that the market is trading near the equilibrium price
[16]. The convergence coefficient, α, was introduced by Smith [51] to measure how far
an active auction is away from the equilibrium point. It measures the RMS deviation of
transaction prices from the equilibrium price:

α =
100

p0

√√√√ 1

n

n∑

i=1

(pi − p0)2 (3)

These are the measures that we will make most use of in this paper.
Our experimental work follows the usual pattern for work on automated trading

agents. We run each auction for a number of trading days, with each day being broken
up into a series of rounds. A round is an opportunity for agents to make offers, and
we distinguish different days because at the end of a day, agents have their inventories
replenished. As a result, every buyer can buy goods every day, and every seller can
sell every day. Days are not identical because agents are aware of what happened the
previous day. Thus it is possible for traders to learn, over the course of several days,
the optimal way to trade. Following [34], we use a k-double-auction transaction pricing
rule [49], in which the transaction price for each matched bid-ask pair is set according
to the following function:

pt = kpa + (1 − k)pb (4)

where pt is the transaction price, pa is the ask price, pb is the bid price and k is a
parameter that can be adjusted by the auction designer. This is a discriminatory pricing
rule since the price may be different for each transaction. In contrast, a uniform pricing
rule ensures all transactions take place at the same price. In [34] and in much of our
work, k is taken to be 0.5. To run most of the simulations described here we used JASA
[21]4, which supports a wide range of auction types and trading strategies, and which
matches bids and asks using the 4-heap algorithm [60].

2.2 Related work

Much of the computational work on analyzing markets has been concerned with algo-
rithms that can be used to decide what price to trade at. From the economics side, this
work has often been motivated by the lack of an adequate theory of price formation —
a theory that says how individuals decide what offers to make (though as Smith [51]
demonstrated, this doesn’t stop individuals being good at making these decisions) —
4 More accurately, JASA was developed as a result of the need to write software to run the
simulations. The initial version of JASA was designed and written by Steve Phelps, and more
recently has been contributed to by Jinzhong Niu and Kai Cai.



and the desire to understand what makes markets work. From the computer science
side, the motivation has usually been to find algorithms that can trade profitably and
which can achieve high efficiency.

Gode and Sunder [16, 17] were among the first to address this question, claiming
that no intelligence is necessary for the goal of achieving high efficiency — so the
outcome is due to the auction mechanism itself. They introduced two trading strategies:
zero intelligence without constraint (ZI-U) and zero intelligence with constraint (ZI-C),
and showed that ZI-U, the more naı̈ve version, which shouts an offer at a random price
without considering whether it is losing money or not, performs poorly. In contrast,
ZI-C, which lacks the motivation of maximizing profit just like ZI-U but guarantees no
loss, generates high efficiency solutions [16]. These results were however questioned by
Cliff and Bruten [4, 7], who thought Gode and Sunder’s conclusion was not convincing
because the scenarios considered were not as comprehensive as in Smith’s experiments,
and showed that in different scenarios the ZI-C agents performed poorly, especially in
terms of convergence to the theoretical equilibrium.

Cliff and Bruten further [4, 6] designed a simple adaptive trading strategy called
zero intelligence plus or ZIP, and showed ZIP worked better than ZI-C, generating high
efficiency outcomes and converging to the equilibrium price. This led Cliff and Bruten
to suggest that ZIP embodied the minimum intelligence required by traders. Subsequent
work has led to the development of many further trading strategies, the best known of
which include Roth and Erev’s [12, 45] reinforcement learning strategy, which we call
RE, Gjerstad and Dickhaut’s [15] approach, commonly referred to as GD, which uses
the past history of accepted bids and asks to compute the expected value of every offer a
trader might make, and the simplification of ZIP introduced by Preist and van Tol [43].

This work on trading strategies is only one facet of the research on auctions. Gode
and Sunder’s results suggest that auction mechanisms play an important role in deter-
mining the outcome of an auction, and this is further borne out by the work of Tesauro
and Das [53] andWalsh et al. [58]5 For example, if an auction is strategy-proof, the best
strategy for a traders is not to bother to conceal their private values, but to reveal them,
and in such auctions complex trading agents are not required.While typical double auc-
tions are not strategy-proof, McAfee [29] has derived a form of double auction that is
strategy-proof (though this strategy-proofness comes at the cost of lower efficiency).

3 Evolving the whole system

Our initial approach to automated mechanism design was to use techniques from evolu-
tionary computing. Inspired by the biological metaphor of evolution, genetic algorithms
(GAs) [19] code aspects of a solution to a problem in an artificial “chromosome” (typi-
cally a binary string) and then breed a population of chromosomes using techniques like
crossover (combining bits of the strings from different individuals) and mutation (flip-
ping individual bits). Genetic programming (GP) [26] extends this approach by evolv-
ing not a bit-string-encoded solution to a problem, but an actual program to solve the
problem itself. Programs are encoded as s-expressions and modeled as trees (nodes are
5 This work also points out that results hinge on both auction design and the mix of trading
strategies used, a point we will return to later.
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Fig. 2. Evolving traders: efficiency by generation

function names and branches arguments of those functions); and these trees are sub-
ject to crossover (swapping subtrees from different programs) and mutation (replacing
subtrees with random subtrees). Whichever approach is used, the best individuals, eval-
uated using a fitness function, are kept and “bred”; and bad individuals are rejected.
However, deciding which individuals are the best is a hard problem.

Both genetic algorithms and genetic programming perform a search through the
space of possible solutions with the theoretical advantage that random jumps around
the search space — created by crossover and mutation — can prevent the system from
getting stuck in local optima, unlike other machine learning techniques. Unfortunately,
in practice this is not always the case, at least partly because what constitutes the best
fitness measure can change over time. To overcome this problem, some researchers have
turned to co-evolution, for example [1, 18, 33].

In co-evolution, simultaneously evolving populations of agents interact, providing
each other with a fitness measure that changes as the agents evolve. In successful appli-
cations, an “arms race” spiral developswhere each population spurs the other to advance
and the result is continuous learning for all populations. However, this has been notori-
ously difficult to achieve. Often populations settle into a mediocre stable state, reaching
a local optimum and being unable to move beyond it. Consequently, there is a grow-
ing body of work examining the dynamics of co-evolutionary learning environments
in an attempt to identify phenomena that contribute to success [2, 8, 13]. In the context
of auction design, it is possible to look at a number of different forms of co-evolution.
First, different traders co-evolve against one another, with different offer-making strate-
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Fig. 3. Evolving traders and auctioneer: efficiency by generation

gies being the co-evolving populations, each attempting to gain an advantage over the
others. Since all traders are looking to maximize their profits, they are to some extent
in competition, although it is possible for a number of successful traders to coexist.
Second, traders co-evolve against the auction mechanism itself — the auctioneer if you
will — as the co-evolving populations. The traders’ aim is to achieve high profits while
the auction(eer)’s aim is to provide an efficient market. While these aims need not be
mutually exclusive, they may also be in conflict.

In [38], we explored a simple approach to co-evolving mechanisms, attempting to
evolve the rules by which traders decided how to make offers, and the rules by which
the auctioneer decides to set trade prices based upon those offers. When evolving rules
for the traders alone, setting prices using a standard rule, we obtained the results in
Figure 2. When we simultaneously evolved rules for traders and rules for the auction-
eer, we obtained the results in Figure 3. While the efficiency of the whole system is
not particularly high when we only evolve traders6, when we evolve both traders and
auctioneer, we obtain quite respectable efficiencies of around 95%.

There is a problem with these results, however. The problem is that it appears that
the systems that we managed to evolve were systems that had fallen into the trap of a
mediocre stable state. If we look at the kinds of rule that the traders were learning to
use in these experiments, they are of the form:

6 An average efficiency of around 75% compares poorly with the results reported in the literature
for automated trading strategies, and with our own work [3].



if(not(QuoteBidPrice < (PrivateValue * 0.081675285))
{

PrivateValue
}

else
{

PrivateValue * 0.081675285
}

where QuoteBidPrice is the highest unmatched bid (this is a rule for a buyer). In
other words, the traders were learning to make a constant markup, but nothing more
sophisticated than that. While such a strategy can be quite successful when competing
against traders doing the same — as discussed by [61] — we know that it does not
compete well with more sophisticated strategies [3, 47]7. Even more worrying, the auc-
tioneer was clearly not learning meaningful strategies — a typical evolved pricing rule
was:

BidPrice - constant

which, once again, is not a terribly sophisticated strategy, and one that it is possible to
imagine traders, more sophisticated than the ones we were able to co-evolve, learning
to exploit.

4 Evolving traders

One of the problemswe identified with our attempt to evolve both traders and auctioneer
from scratch was that this approach makes it too hard to learn sophisticated strategies
for making offers. Starting, as is standard in genetic programming, from random strate-
gies8 means that the traders have to make huge strides to reach even the same level of
sophistication as, for example, ZIP. Since traders can achieve reasonable levels of profit
with the fixed margin rules we were discovering, there is little evolutionary pressure for
them to continue to evolve, and lots of competitive strategies to drown out any muta-
tions that aren’t immediately successful. These observations led us to try to learn new
trading strategies by starting from existing strategies.

As described in [37], we adopted the heuristic strategy analysis of Walsh et al.
[58]. In its original form, the aim of this approach was to be able to compute plausible
equilibria of the double auction. While performing a game theoretic analysis of the
auction is infeasible (as discussed above) because of the number of players and the
large number of possible actions at each of the many stages, it is possible to analyze
double auctions at higher level of abstraction. The idea is to reduce the game to that
of picking the best trading strategy from the literature. Thus, if you are interested in
auctions with 10 participants, you pick a range of strategies for those participants, run
7 The fixed margin strategy “Gamer” was not competitive in the Santa Fe tournament [47], and
the fixed-markup strategy PS is one of the weakest strategies of those analyzed in [3].

8 That is strategies composed of randomly selected functions, not strategies that bid at random
— the latter perform surprisingly well [16].
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Fig. 4. The replicator dynamics direction field for a 12-agent clearing-house with trading strate-
gies RE, TT and GD, (a) with the payoffs obtained in experiments and (b) with +5% payoffs to
RE.

a number of iterations of the auction, and that allows you to establish certain properties
of the auction.

Now, it is clear that such a static analysis will not tell us much about the auction.
Why should the participants in the auction pick the strategies that you choose, partic-
ularly if those strategies aren’t very successful? To deal with this problem, Walsh et
al. used evolutionary game theory [52] to compute Nash equilibrium. The idea can be
glossed as follows — rather than always selecting one strategy, traders are more likely
to gradually adjust their strategy over time in response to to repeated observations of
their own and others’ payoffs. The adjustment can be modeled using the following repli-
cator dynamics equation to specify the frequencywith which different trading strategies
should be used depending on our opponent’s strategy:

ṁj = [u(ej , m) − u(m, m)] mj (5)

wherem is a mixed-strategy vector, u(m, m) is the mean payoff when all players play
m, and u(ej , m) is the average payoff to pure strategy j when all players play m,
and ṁj is the first derivative of mj with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this equation models a simple
co-evolutionary process of mimicry learning, in which agents switch to strategies that
appear to be more successful.

Now, for any initial mixed-strategy we can find the eventual outcome of this co-
evolutionary process by solving ṁj = 0 for all j. This tells us the points at which the
mixed strategy no longer changes — the stationary points of the replicator dynamics
— and allows us to discover the final mixed-strategy that corresponds to the mixed
strategy we started with. Repeating this for a range of initial mixed strategies allows us
to discover all the stationary points that might develop. This model has the attractive
properties that:
1. all Nash equilibria of the game are stationary points under the replicator dynamics;
and



2. all focal points of the replicator dynamics are Nash equilibria of the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in the stationary points of the direc-
tion field of the dynamics specified by equation 5, and the replicator dynamics allows
us to identify the Nash equilibria. Although not all stationary points are Nash equi-
libria, by overlaying a dynamic model of learning on the equilibria we can see which
solutions are more likely to be discovered by boundedly-rational agents. Those Nash
equilibria that are stationary points at which a larger range of initial states will end up,
are equilibria that are more likely to be reached (assuming an initial distribution that is
uniform).

Figure 4 (a) gives the direction field for a 12-agent clearing-house with traders al-
lowed to pick between the RE, TT and GD strategies. This is a standard 2-simplex where
the coordinates of any point represent a mixture of trading strategies. Each vertex de-
notes a situation in which all traders use a single trading strategy. Any point on an edge
of the simplex denotes a situation in which all traders use one of the two strategies de-
noted by the vertices joined by the side. Thus every point on the bottom of the simplex
in Figure 4 (a) denotes a mixture of strategies such that some traders use TT and some
use GD.

We can see that in Figure 4 (a) GD is a best-response to itself, and hence is a pure-
strategy equilibrium. We also see it has a very large basin of attraction — for any
randomly-sampled initial configuration of the population, most of the flows end up in
the bottom-right-hand-corner. Additionally, there is a second mixed-strategy equilibria
at the coordinates (0.88, 0.12, 0) in the field, corresponding to an 88% mix of TT and
a 12% mix of RE, however the attractor for this equilibrium is much smaller than the
pure-strategy GD equilibrium; only 6% of random starts terminate here as against 94%
for pure GD. Hence, according to this analysis, we would expect most of the population
of traders to adopt the GD strategy.

From the point of view of evolving new trading strategies, the interesting thing
is that GD is not as dominant as it might appear from Figure 4 (a). If we perform a
sensitivity analysis to assess the robustness of GD’s performance, by removing 2.5% of
its payoffs and assigning them to RE, along with 2.5% of the payoffs from TT, then we
get the direction field in Figure 4 (b). This second direction field gives us a qualitatively
different set of equilibria — the RE strategy becomes a best-response to itself with a
large basin of attraction (61%) — and allows us to conclude that a slightly improved
version of RE can compete well against GD.

To test this conclusion, as described in [37], we used a genetic algorithm to search
for such an improved version of RE, searching through parameter settings for a combi-
nation of four strategies — the original version of RE, a variation on RE introduced in
[34], stateless Q-learning, and a strategy that randomly selects offers — evaluating the
evolved strategies by the size of the basin of attraction they attain under the replicator
dynamics. The GA converged on a version of stateless Q-learning, and Figure 5 shows
how this optimized strategy OS performs against TT, GD, and the original version of RE.
Our conclusion is that it is possible to evolve trading strategies to compete with the best
hand-coded strategies provided that one has the hand-coded strategies to evolve against.
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5 Evolving mechanisms

One lesson to draw from Sections 3 and 4 is that one can evolve better traders if that
evolution takes place in a more structured way. Rather than evolving the OS strategy
from scratch, we structured it as a search through the parameters of a set of existing
trading strategies, and rather than evolving the auction pricing rule at the same time,
we fixed the pricing rule to one that is commonly adopted. This section describes two
experiments that we carried out to explore if it possible to do the reverse — evolve
aspects of the auction mechanism given traders using a known trading strategy.

5.1 Evolving a pricing rule

The first experiment that we carried out in evolving parts of an auction mechanism
separately from the traders is described in detail in [39], and considered the evolution
of the rule for setting trade prices given the prices bid by buyers pb and asked by sellers
ps. This work used a continuous double auction with 30 buyers and 30 sellers, all of
them using the RE strategy to pick offers. To evaluate the rules we evolved, we used the
measure F :

F =
ea

2
+

m̂pb + m̂ps

4
(6)

where ea is as defined in (2), andmpb andmps measure the market power of the buyers
and sellers respectively, that is the extent to which the profits made by those groups
differ from what they would be at theoretical equilibrium:

mpb =
prb − pre

b

pre
b

mps =
prs − pre

s

pre
s
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Fig. 6. The results of evolving a pricing rule, (a) the rule itself, (b) the difference between the rule
and the k = 0.5 rule.

and m̂pb and m̂ps are normalized versions of these measures:

m̂pb =
1

1 + mpb

m̂ps =
1

1 + mps

We used genetic programming to evolve the rules. The functions that could be used in
the genetic program consisted of the terminals ASKPRICE and BIDPRICE, rep-
resenting pa and pb respectively, together with the standard set of arithmetic functions
{+,−,×,÷}, and a function representing a random constant in the range [0, 1]. Thus
all we assumed about the pricing function is that it was an arithmetic function of the bid
and ask prices.

As mentioned above, pricing rules were evaluated using the measure F from (6) —
we used each rule to run a series of auctions, and used the value that F reported for the
auctions as the fitness of the rule. The following:

((0.6250385(0.93977016(ASKPRICE+0.76238054)))
+ (((((-0.19079465)/(ASKPRICE-(((BIDPRICE +BIDPRICE)/
(((((ASKPRICE-1)+1.6088724)/(((1-ASKPRICE) -(ASKPRICE/
ASKPRICE))+(2.5486426+(BIDPRICE + 0.000012302072))))
+((BIDPRICE/ASKPRICE)+((BIDPRICE+BIDPRICE)+(1.430315)/
(BIDPRICE . ASKPRICE)))))ASKPRICE)) ...

are the first few terms of a pricing rule that was evolved after 90 generations. It has been
algebraically simplified, but as can be seen it is still far from straightforward, something
that is not surprising given the way that standard genetic programming approaches han-
dle the evolution of a program. Plotting the surface of the transaction price as a function
of pb and pa, given in Figure 6 (a), and comparing it with the surface for:

0.5pa + 0.5pb



shows — the difference between the two rules is given in Figure 6 (b) — that these two
functions are approximately equal apart from a slight variation when the ask price is
very small or when the ask price is equal to the bid price. Thus the experiment effec-
tively evolved a pricing rule for a discriminatory-price k double auction with k = 0.5
from the space of all arithmetic functions of ask and bid price. Our main conclusion
from this is that our approach is able to evolve an eminently sensible rule, since the
rule it came up with is virtually indistinguishable from one that has been widely used
in practice9.

5.2 Minimizing price fluctuation

The work described in the previous section looked at optimizing one very specific part
of the continuous double auction, the rule for setting trade prices, with respect to one
specific measure, that in (6). We can apply the same kind of optimization to different
aspects of the auction mechanism, and with different measures in mind. [35] describes
some experiments with some alternatives.

In particular, [35] is concerned with minimizing Smith’s measure α (3), and thus
fluctuations in the transaction price of the auction. The choice to minimize α was partly
in order to see if it was possible to minimize this metric while keeping the efficiency
of the auction high — testing the extent to which performance of the auction could be
optimized — but one can imagine that this is also an attractive feature of an auction.
If the auction has a low α, then transactions are, by definition, close to the theoretical
equilibrium point. If this can be achieved for a range of trading strategies, then there is
some guarantee that, no matter how a trader bids, the price that trader pays will be in
some sense fair, saving the trader the burden of needing to bid cleverly.

To minimize α, we looked at learning a new pricing rule, a rule between that often
used in a continuous double auction — where the price is the average of the bid and the
ask — and the usual rule for a clearing house auction—where the price is the price that
clears the market10. In essence, this new rule looks at the nmost recent matching bid/ask
pairs, and averages over them to obtain the transaction price. Figure 7 (a) compares the
value of α for a continuous double auction with 10 buyers and 10 sellers all of which
trade using the ZI-C strategy and the k = 0.5 pricing rule with that of the value of α for
the same auction that sets prices using the average of the last 4 matched sets of bid and
ask11. We only considered auctions involving ZI-C traders in order to make the problem
of minimizing price fluctuation as hard as possible — ZI-C, making offers randomly,
typically gives high values of α compared with other trading strategies.

Clearly the moving average rule is effective in reducing α, but the value it attains is
still high compared with the levels attained using different trading strategies. Auctions
9 It is also possible to argue in the other direction — that since we came up with the k = 0.5

rule, the rule makes sense for scenarios like the one that we were investigating.
10 The price that would be the theoretical equilibrium if the bids and asks were truthful.
11 Note that the rule uses at most four sets of matched bids and asks. Since the auction is continu-
ous, the price of the trade between the first matched pair of offers is exactly that of the k = 0.5

rule since there is only one matched bid and ask pair to use, the price of the second trade is the
average of the first two matched bids and the first two matched asks and the price of the third
trade is the average of the first three matched sets.



1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

18

20

22

24

Days

Al
ph

a

kCDA
nCDA

1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

Days

Al
ph

a

CDAEEd5
CDAEEd10
CDAEEd15
CDAEEd20

(a) (b)

Fig. 7. The value of α for a double auctions with ZI-C traders (a) comparing the standard con-
tinuous double auction price rule with the sliding-window pricing rule, and (b) comparing α for
different versions of the shout improvement rule. The gray lines denote one standard deviation
above and below the average value over 400 iterations.

with traders that only use GD attain α values of around 4. To try to reduce fluctuation
even more, we examined another aspect of the auction, the rule the auctioneer uses
for accepting shouts as being valid. The idea is to generalize the “New York Stock
Exchange (NYSE) rule”, the rule used in that market, among others, which insists that
successive bids and asks for the same good improve on each other. In other words,
successive bids must increase, and successive asks must decrease. The generalization
we adopted makes a running estimate of the equilibrium price for the market, and the
shout acceptance rule (which we call the “shout improvement” rule) requires that bids
are above this estimate and asks are below it. Note that our rule, unlike the NYSE rule,
continues to apply after an individual good has been traded — indeed, as Figure 7 (b)
shows, the effect of the rule on α improves over time.

In fact, it turns out that there is one last tweak to the shout improvement rule that
it behooves us to add. If the rule is applied strictly as described, the estimate of the
equilibrium price can get badly thrown off by errant offers at the start of the auction (and
errant offers are common with ZI-C traders). To ameliorate this situation, we introduce
a parameter δ, an increment that is applied to the estimated equilibrium price to relax
the improvement rule — bids above the estimate minus δ and asks below the estimate
plus δ are considered valid. Figure 7 (b) shows the effect of different values of δ.

Overall, the combination of these measures can reduce α for all-ZI-C markets to
a value around 6 with little or no loss of efficiency. Indeed, for some values of δ, the
efficiency of the all ZI-C market is greater than that of an all ZI-C market under the
usual CDA mechanism. In addition, it seems that these new market rules do not hurt the
performance of markets consisting of more sophisticated traders. We tested the same
market rules when the traders all used GD, and found that, if anything, the new rules
reduced α and increased efficiency.



6 Evaluating mechanisms

The work on mechanisms that we have described so far has looked to optimize one
specific aspect of an auction, and has shown that this is achievable. However, the kind
of evaluation of auctions that we have used in this work, focusing on a single measure
when agents are all of the same type — in the sense of which bidding strategy they
used — seems a bit narrow, and so we have experimented with alternative forms of
evaluating of mechanisms.

6.1 Comparing markets

In [40] we experimented with using heuristic strategy analysis to compute metrics for
different types of auction. The motivation for doing this is as follows. Most of the prop-
erties that we might use to rate auctions, whether efficiency, Smith’s α, or metrics like
price dispersion [16], differ for the same auction as the traders use different trading
strategies. They are not properties of the traders, since the same traders generate differ-
ent efficiencies, αs and price dispersions in different auctions, but they are not entirely
properties of the auctions either. Thus it is difficult to say with authority that a given
auction has a given property. What we can do, however, is to use a heuristic strategy
analysis to establish what mixtures of trading strategies will hold at equilibrium, and
use this to compute an estimate of the properties that we are interested in.

Figure 8 shows the results of a heuristic strategy analysis for the continuous double
auction and the clearing house auction with different numbers of traders. For all of these
analyses we used three trading strategies, truth telling TT, the Roth-Erev strategy RE that
we used in the first pricing rule experiment, and the modification of ZIP proposed by
Preist and van Tol (PVT) [43]. Our choice of strategies was intended to examine the
relative performance of the human-like RE strategy12 and the simple “program trader”
provided by PVT, with the performance of TT measuring how far the markets are from
being strategy-proof (in a strategy-proof market there is no advantage to not telling the
truth about one’s valuation for a good).

There are a number of conclusions that one can draw from the plots in Figure 813.
First, there is a significant difference between the direction fields of the continuous
double auction and the clearing house auction for any number of traders. While each
strategy is a pure strategy equilibrium, the basins of attraction are rather different as
are the locations, along the edges and in the middle of the direction field, of the mixed
equilibria. Second, the difference becomesmoremarked the larger the number of agents
— the basin of attraction of TT shrinks as the CDA includes more traders, and grows as
the CH includes more traders. The latter is in accordance with theoretical results [48]
which predict that the disadvantages of truth-telling decline as the number of traders
grows. Third, truth telling is not dominant in any of the markets, so none of them are
strategy proof.
12 Roth and Erev originally introduced their approach as a way of replicating human behavior in
games [45].

13 Note that we have not indicated the direction of the field on the plots in the interests of read-
ability — the direction of flow is from the middle of the simplex towards the edges.
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Equilibrium CH probability payoff CDA probability payoff
TT 0.38 1.00 0.05 0.86
RE 0.11 0.99 0.70 0.97
PvT 0.51 0.99 0.25 0.94

Table 1. Probabilities of equilibria for 10 agent markets

It is also possible to draw more quantitative conclusions. Taking 1000 random start-
ing points within the direction fields for each of the 10 agent clearing house and contin-
uous double auctions, we established which of the pure strategy equilibria these start-
ing points led to. Assuming that the starting points, each of which represents a mix of
trading strategies, are equally likely, we could then compute the relative frequency of
occurrence of the pure strategies — these are given in Table 1. Now, since we can eas-
ily establish whatever metrics we want for the equilibrium points (again these are given
in Table 1), we can use the probabilities of reaching these equilibria to determine the
expected value of the metrics. For example for the 10 trader CDA we can compute the
expected efficiency as:

0.05 × 0.86 + 0.70 × 0.97 + 0.25 × 0.94 = 0.96

compared with

0.38 × 1.00 + 0.11 × 0.99 + 0.51 × 0.99 = 0.99

for the 10 trader CH.
Note that the assumption of equally likely start points is not the only assumption

involved in this computation. Since the probability of arriving at a particular equilib-
rium is a function of the replicator dynamics, we are also assuming that the replicator
dynamics is an accurate description of trader behavior. One can argue this either way
— the only guarantee that the replicator dynamics give is that the stationary points in
the field are Nash equilibria.

6.2 Direct competition between markets

The comparison between markets described above is useful, but indirect. It compares
markets while still thinking of the markets as operating in isolation— it tells us nothing
about how the markets would fare if they were in running in parallel, as markets often
do in the real world14. In [36], we looked at the relative performance of markets when
they are in competition with one another for traders.

To this end, we ran a series of experiments15 where traders were offered a choice of
markets at the start of every trading day, making this choice using simple reinforcement
14 For example, Shah and Thomas [50] describe the competition between India’s National Stock
Exchange and the established Bombay Stock Exchange for trade in the stock of Indian com-
panies when the National Stock Exchange opened.

15 These experiments were run using JCAT [22], an extension of JASA [21] that allows multiple
markets and provides both a mechanism for markets to charge traders, and for traders to decide
which market provides them with the best profit.
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Fig. 9. Four markets that compete for traders.

learning based on the profit that they made in the markets (learning which markets were
profitable over time). The profit that a given trader makes in a market is the profit from
trade — the difference between the trade price and the private value of the trader —
minus any charges imposed by the markets. We allowed markets to charge because this
is a feature of real markets, and because the profit made by markets is a natural basis of
comparison.

Figure 9 shows some typical results from [36]. Figure 9 (a), which gives the num-
ber of traders in each market at the start of every trading day, shows how, as the agents
learn, the markets stratify by charges. As one might expect, the lowest charging mar-
ket attracts the largest number of traders and the highest charging market attracts the
smallest number of traders. Note that even the highest charging market continues to at-
tract some traders — those that make a good profit even with the charges. Figure 9 (b),
which gives the cumulative profit of each market on each day, shows how the lowest
charging market catches the higher charging markets over time. These results are for
markets with a simple, fixed, policy for charging. [36] also considers adaptive charging
policies — one that undercuts all other markets, one that cuts prices until it has a large
market share and then increases prices, and one that works like ZIP — showing that
the relationship between such policies has some of the complexity of the relationship
between trading strategies.

7 Conclusion

Auctions are a powerful mechanism for resource allocation in multi-agent systems and
elsewhere, and there are many situations in which one might make use of them. How-
ever, it is not advisable to employ auctions “off-the-peg”— as some expensive failures
have demonstrated [31]— instead, it is necessary to carefully tailor auctionmechanisms
for the particular niche that they are required to fill. Our work is intended to automate
this tailoring process. Using a combination of evolutionary computation, reinforcement
learning, and evolutionary game theory, we have successfully tailored variants of the



double auction for different purposes, and traders to operate in these auctions, and our
future work aims to extend the scope of this automated generation. In particular, we
can easily imagine combining the techniques we have described here into a high-level
process for co-evolving markets and traders. For a fixed mechanism we could evolve
traders, as in Section 4, and then fix the equilibrium set of traders and evolve parts of
the mechanism as in Section 5, evaluating evolved mechanisms just as we did in Sec-
tion 6.1. Repeating this process will then allow us to create traders that can operate
in the new mechanism. Demonstrating this co-evolutionary spiral is the focus of our
current work.

We should note that while this high-level co-evolution is the long term goal of our
work on applyingmachine learning to mechanism design, there are plenty of other areas
in which we can profitably use machine learning in the design of auction mechanisms.
Two areas, in particular, intrigue us greatly. One is the idea, introduced by Posada [41,
42], that it is possible for traders to employ a “meta-strategy” in which their task is to
learn which of the standard trading strategies is best adopted, and to do this learning
during the course of an auction. While this approach is similar to the evolutionary game
theoretic analysis we discussed in Section 4, it differs in that traders switch strategies
during the course of an auction rather than between auctions. We are interested to exam-
ine the equilibria that emerge from this kind of behavior. Another interesting idea, also
related to the analysis in Section 4, is that of [24], in which heuristic search is employed
to find equilibrium points. Adopting such an approach should significantly reduce the
computation required to find equilibria when compared with out current, exhaustive,
search.
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