
Toward the Application of Argumentation to

Interactive Learning Systems

Elizabeth Sklar1,2 and M. Q. Azhar2

1 Dept of Computer & Information Science, Brooklyn College,
The City University of New York, 2900 Bedford Avenue, Brooklyn NY 11210, USA

2 Dept of Computer Science, The Graduate Center,
The City University of New York, 365 Fifth Avenue, New York NY 10016, USA

sklar@sci.brooklyn.cuny.edu, mqazhar@gmail.com

Abstract. This paper explores the application of argumentation dia-
logues to an Interactive Learning System (ILS). The goal of an ILS is to
provide an adaptive learning experience for a student within a particu-
lar domain, where the system adjusts dynamically as the student makes
mistakes and learns from them. The system needs to be able to repre-
sent beliefs about the student’s knowledge, and to update these beliefs
as the student learns. The system also needs to have models of the do-
main and of an expert’s actions within the domain, in order to compare
and evaluate the student’s actions. Finally, the system needs to provide
appropriate feedback to the student, in such a way as to encourage learn-
ing. The work presented here describes a framework for such a system,
built upon our earlier work on education dialogues.

1 Introduction

We explore the application of argumentation dialogues to an Interactive Learning
System (ILS). The goal of an ILS is to provide an adaptive learning experience
for a student within a particular domain, where the system adjusts dynamically
as the student makes mistakes and learns from them. The system needs to be able
to represent beliefs about the student’s knowledge, and to update these beliefs
as the student learns. The system also needs to have models of the domain and
of an expert’s actions within the domain, in order to compare and evaluate the
student’s actions. Finally, the system needs to provide appropriate feedback to
the student, in such a way as to encourage learning. The work presented here
describes a framework for such a system.

Our model builds on earlier work in which we introduced the notion of an
education dialogue [28]. Proposed for use in an interactive learning environment,
an education dialogue is derived from previous work in the argumentation di-
alogue field [11, 20, 33]. Dialogues for education take place between two agents,
each having specific roles: a Tutor, T , and a Learner, L. We focus on two types
of interactions between these agents: T → L and L → T , where the agent on
the left side of the arrow initiates the dialogue, which is directed to the “target”
agent on the right side of the arrow. Note that here we will not discuss T → T

elizabeth sklar
In Proceedings of the Argumentation in Multiagent Systems (ArgMAS) Workshop at Autonomous Agents and Multiagent Systems (AAMAS), Taipei, Taiwan, May 2011.

elizabeth sklar


elizabeth sklar




or L → L interactions, which, while possible in a general education dialogue, are
not relevant for the specific instance discussed here.

Education dialogues are similar to information seeking dialogues [19, 33], but
there are some key differences. When one agent asks another agent a question in
an information seeking dialogue, the initiating agent does not know the answer
and assumes that the target agent does. If the target agent does indeed know the
answer, then she responds with the answer. However, in an education dialogue,
there are reasons for the initiating agent to ask a question to which she already
knows the answer and reasons for the target agent to not simply supply an
answer she knows. Two such reasons are outlined below.

First, consider an education dialogue where the Tutor is the initiator, repre-
sented as T → L. The Tutor actually does know the answer to the question she is
posing. A good Tutor, pedagogically speaking, will ask a question that builds on
the Learner’s knowledge and coaxes him to learn; the answer will be something
that the Tutor believes the Learner has the ability to find3. The Tutor is also
refining her beliefs about the Learner’s knowledge. Here, the Tutor is seeking
information that is not the direct answer to the question, but rather she is seek-
ing meta-level knowledge about the Learner—to see if the Learner knows the
answer—instead of seeking the direct answer to her question (which, as stated,
she already knows). Note that we make the assumption in the T → L interaction
that the Learner will supply the answer if he knows it. There is a sizable liter-
ature from the educational psychology community on student motivation that
explores reasons why a student might not answer a teacher’s question correctly
even if he knows the answer, but this avenue is outside the scope of the work
discussed in this paper.

Second, consider an education dialogue where the Learner is the initiator,
represented as L → T . The Learner does not know the answer to the question
she is posing (just like in a normal information seeking dialogue). If the Tutor
knows the answer to the question, she may answer the question directly (as
in an information seeking dialogue); or she may not provide the answer to the
Learner, even though she knows it (unlike an information seeking dialogue).
Since the Tutor’s goal is to coax the learner to progress, she may decide to
answer the Learner’s question by providing more information about the answer,
without providing the answer itself—to engage him in a thinking process that
results in him learning.

The remainder of this paper is organized as follows. Section 2 discusses the
specifics of education dialogues, reviewing some key components and introduc-
ing some new locutions. Section 3 briefly reviews the field of interactive learning
systems, and focuses on highlighting components that are relevant to our frame-
work. Section 4 describes our framework. Section 5 closes with a summary and
discussion of future work.

3 Note that for the remainder of this paper, we have arbitrarily chosen to use feminine
pronouns to refer to the Tutor and masculine pronouns to refer to the Learner.



2 Education Dialogue Theory

The components of an education dialogue are as follows [22, 28]:

– Σi represents the knowledge base, or beliefs of each agent i. Thus, the Tutor’s
knowledge base is ΣT and the Learner’s knowledge base is ΣL. The term Σ
loosely refers to all the beliefs of an agent.

– An argument (S, p) is a pair, where p is the conclusion and S is the support
for that conclusion. p is a logical consequence of S, and S is a minimal subset
of Σ from which p can be inferred.

– A(Σ) is the set of all arguments that can be made from Σ.

– S(Σ) is the set of all acceptable arguments in Σ. Arguments that are ac-
ceptable are those that an agent has no reason to doubt: there are either no
arguments that undercut them, or all the arguments that undercut them are
themselves undercut by an acceptable argument.

– An agent’s commitment store, CS ∈ Σ, refers to statements that have been
made in the dialogue and which the agents are prepared to defend. CST

refers to the Tutor’s commitment store (statements the Tutor has made),
and CSL refers to that of the Learner. We can think of Σ as the agent’s
private knowledge base—all of the agent’s beliefs—whereas CS is the agent’s
public knowledge base—all the beliefs that the agent has discussed in public
(i.e., with other agents).

Parsons et al. [22] show how these simple elements can be used to construct
common dialogues, such as information seeking dialogues.

In our earlier work [28], we introduced a new type of knowledge, which we
call meta-knowledge. This is knowledge about the other agent(s) engaged in the
dialogue, as perceived by each agent. We represent this meta-knowledge using
Γ , which is a partition of Σ, in the same way that CS is. (Later, we will see
that it is convenient to maintain these separate partitions of Σ.) We use the
term Γi(j) to refer to the meta-knowledge held by agent i about agent j. So,
ΓT (L) refers to the Tutor’s beliefs about the Learner’s beliefs, i.e., what the
Tutor believes is in the Learner’s knowledge base, ΣL. In addition, we use the +
modifier, as in ΓT (L+), to refer to the Tutor’s beliefs about what the Learner
can acquire. There is a vast literature on modeling the knowledge of learners,
which is formally called student modeling (or user modeling in the more general
sense) [21, 32]. Such models typically are designed for a specific domain, often in
conjunction with the development of a particular tutoring system. Here we are
not concerned with the precise details of individual student models, but rather
use the concept abstractly in order to refer to the Tutor’s meta-knowledge about
the Learner—the Tutor’s beliefs about what the Learner knows.

We can also use ΓL(T ) to refer to the Learner’s beliefs about the Tutor. This
concept is useful, for example, for considering the Learner’s motivation to learn



and his emotional state, both of which are discussed as important aspects for
understanding human learners [16] and have been used in agent-based models
of human behavior [30]. If the Learner does not believe that the Tutor knows
the (correct) answers to questions about the Learner’s domain, then he may
be less motivated to progress when interacting with the Tutor. Take a real-
world example: when students evaluate faculty members at the end of a term,
it is common to ask the students to rate their professor’s knowledge of the
subject (the domain) covered in the course they just completed. Such a question
assumes that the students form an opinion (acquire a model) of their professor’s
knowledge of (beliefs about) the domain. Elaboration on this aspect is beyond
the scope of this paper, so here we will limit our discussion of Γ to refer only to
the Tutor’s beliefs about the Learner, ΓT (L).

2.1 Fundamental interactions

Below, we describe the fundamental steps in an interaction taking place be-
tween a Tutor and a Learner. The interaction is illustrated in Figure 1. Five
fundamental steps and seven locutions are depicted. The goal is to arrive at the
knowledge acquisition state in step 4. As noted below, some of the locutions are
taken or derived from earlier work, primarily [1] and [23]. The operational se-
mantics for each locution are detailed below (in boxes), in the order in which the
locutions appear in the dialogue. The exchange is assumed to be a synchronized,
turn-taking interaction that starts with the Tutor.

step 1.

step 2.

step 3.

step 4.

step 5.

T->L:quiz(p)

L->T:respond(p)

T->L:assert(p) T->L:assert(not p)

L->T:acquire(p) L->T:shrug() L->T:challenge(p)

T->L:assert(S)

Fig. 1. Interaction sequence between a Tutor (T) and a Learner (L).



1. First, T poses a question to L about the verity of a proposition, p:

T → L : quiz(p)

T is seeking to determine if the proposition p is in L’s belief set. The Tutor
knows the answer to the question, but does not know whether the Learner
knows the answer. The goal of this dialogue is for the Tutor to determine if
the Learner knows the answer.

quiz
Locution: T → L : quiz(p)

Pre-conditions: 1. p ∈ ΣT

2. (S, p) ∈ S(ΣT )
3. (S, p) ∈ S(ΣT ∪ CSL)
4. p ∈ ΓT (L+)
5. (S, p) ∈ S(ΓT (L+))

Post-conditions: 1. CST,i = CST,i−1 ∪ {p} (update)
2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

Note that this is semantically different from question(p) in an information
seeking dialogue [1] because T already knows the answer to the quiz and
so the purpose of the locution is to determine if L knows the answer. Al-
though the format is similar to question(p), the pre and post conditions
are sufficiently different that we have defined this new locution, quiz(p). A
post-condition adds p to CST , even though p ∈ ΣT , because this provides
an explicit means for the Tutor to keep track of which propositions she has
already discussed with the Learner. For convenient comparison, the opera-
tional semantics for question are listed in the Appendix at the end of this
paper.
Also note the use of ΓT (L+) which represents the Tutor’s belief that the
Learner can find the answer to the question posed. The Tutor does not
know for sure that p ∈ ΓT (L), but this notation permits the locution to be
uttered and a reason for T believing that L can respond correctly.

2. Then, L responds to T ’s question:

L → T : respond(p)

The Learner may or may not know the “right” answer—the correctness will
be determined later in the dialogue by the Tutor. But in order to utter p, the
Learner must possess some knowledge about p, either in its own knowledge
base, ΣL (meaning that the Learner has acquired p at some point), or in
the Tutor’s commitment store, CST (meaning that the Learner has not yet
acquired p in its own knowledge base, ΣL, but has the opportunity to do so,
because it has heard p uttered by T at some earlier point in the dialogue
and thus p ∈ CST ).



respond
Locution: L → T : respond(p)

Pre-conditions: 1. p ∈ (ΣL ∪ CST )
Post-conditions: 1. CST,i = CST,i−1 (no change)

2. CSL,i = CSL,i−1 ∪ {p} (update)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

The respond locution differs from the assert locution, discussed below, be-
cause it puts fewer requirements in the pre-conditions of the uttering agent.
In order to be able to use assert(p), the agent must believe p (p ∈ Σ)
and must be able to support p ((S, p) ∈ Σ); whereas in order to be use
respond(p), the agent must either believe p or have heard the other agent
state p: p ∈ (Σ ∪CS).

3. The locution uttered by the Tutor in the next step depends on the correct-
ness of the response given in the previous step.

(a) If L has responded with the “correct” answer (i.e., T believes p), then T
provides positive feedback, asserting p as described in [1]:

T → L : assert(p)

assert(p)
Locution: T → L : assert(p)

Pre-conditions: 1. p ∈ ΣT

2. (S, p) ∈ S(ΣT ∪ CSL)
Post-conditions: 1. CST,i = CST,i−1 ∪ {p} (update)

2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

(b) If L has responded with the “incorrect” answer, (i.e., T believes ¬p),
then T provides negative feedback by asserting ¬p:

T → L : assert(¬p)

The operational semantics of assert(¬p) are the same as above, by con-
sistently substituting ¬p for p.

4. The next step depends on the Tutor’s response in the previous step, described
above.

(a) If L receives feedback from T that L understands, then L acknowledges
that feedback and adds p (in the case of positive feedback) or ¬p (in the



case of negative feedback) to its knowledge base4:

L → T : acquire(p)

We leave discussion of how exactly the model of the Learner’s knowledge
base is updated to future work, and refer to [23] for the basis of that dis-
cussion.

acquire
Locution: L → T : acquire(p)

Pre-conditions: 1. p ∈ (ΣL ∪ CST )†

2. (S, p) ∈ S(ΣL ∪CST )
Post-conditions: 1. CST,i = CST,i−1 (no change)

2. CSL,i = CSL,i−1 ∪ {p} (update)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 ∪ {p} (update)
5. ΓT (L)i = ΓT (L)i−1 ∪ {p} (update)

†We note that it is not standard to allow an agent to utter p when p is
not in its knowledge base (Σ), but this is not exactly the case here. In
this case, the implementation of the locution includes processing steps in
which the uttering agent (L) first adds p to ΣL and then confirms that
acquisition by uttering (essentially, reiterating) p.

(b) If L receives feedback from T that he does not understand, then L can
pose a follow-up request for clarification. The appropriate locution is
challenge(p), as outlined in [1], because the goal of L is to make T
subsequently state her arguments in support of p:

L → T : challenge(p)

challenge
Locution: L → T : challenge(p)

Pre-conditions: 1. p ∈ CST

Post-conditions: 1. CST,i = CST,i−1 (no change)
2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

(c) If L receives feedback from T that he does not understand and L is so
confused that he does not know what to say next, then he can shrug:

L → T : shrug()

shrug
Locution: L → T : shrug()

Pre-conditions: none
Post-conditions: none

4 For simplicity, we use p in the operational semantics description, but ¬p could also
be substituted, as long as the substitution was consistent.



This locution simply serves as a “no-op” (null operation) in order to be
consistent with the turn-taking synchronized interaction in the imple-
mentation of our interactive learning framework (discussed in Section 4).

5. A final, optional, step occurs if the Learner does not understand the Tutor’s
feedback and has replied with a shrug or challenge locution in the previous
step. In both cases, the Tutor responds by providing an explanation for p,
using the assert(S) locution described in [1]:

T → L : assert(S)

assert(S)
Locution: T → L : assert(S)

Pre-conditions: 1. p ∈ ΣT

2. (S, p) ∈ S(ΣT )
Post-conditions: 1. CST,i = CST,i−1 ∪ (S, p) (update)

2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

3 Interactive Learning Systems

Intelligent Tutoring Systems (ITS) are a type of Interactive Learning System
that provide users with opportunities to learn by interacting with a computer
[26]. Unlike traditional computer-aided instruction, ITSs are not static, pre-
programmed systems; rather, they adapt to students’ responses. ITSs interject
methodologies from artificial intelligence (AI) to manage that adaptivity, dy-
namically orchestrating users’ learning experiences. An ITS uses a range of AI
techniques to make decisions about which problem or information to present to
a learner, and when and how to intervene if the learner makes mistakes.

Beck et al. [5] identify five major components in an ITS:

– The domain model contains the essential knowledge representation of the
instructional domain. Both the pedagogical module and the student model
(below) use the domain knowledge module to interpret a student’s solution
and track her skills.

– The student model records information about a student’s performance with
or misconception of the materials being taught. The idea is to build up a
representation of a student’s knowledge and skill set, updating this repre-
sentation over time, as the student interacts with the system.

– The pedagogical module, or tutor, is the instructional, or teaching, component
[27] which contains a set of rules about how to control and influence the
student’s learning process. The tutoring system uses this module to guide
the student through the knowledge domain [29].



– The expert model contains knowledge about the cognitive structures and
solution strategies underlying expertise in that particular domain. By using
this model, the tutor can compare the student’s solution with the expert’s
solution in order to figure out where learners have difficulties.

– The communication module provides the interface between the user and the
tutor.

Classic ITS systems include the LISP Tutor [3, 8] for teaching the LISP program-
ming language, and the Andes tutor [31] for teaching physics. Each is described
briefly below.

The LISP Tutor [3, 8] incorporates ACT*, a psychological theory of skill
acquisition [2] and uses production rules and model tracing to model the tu-
tor. Model tracing models errors that students make at each step on the basis
of known misconceptions. By comparing the students’ responses to the set of
possible legal actions and the set of known wrong actions, the tutor is able to
recognize whether the student is on a correct solution path, or appears be suf-
fering from known misconceptions, or something unrecognizable. The student
model in the LISP Tutor is partly descriptive and partly prescriptive. It is based
on the authors’ observations of students learning LISP and from the analysis
of the required knowledge for LISP programming, as well as good programming
styles. Procedural knowledge of how to write LISP code is modeled by a set of
production rules.

Andes uses Bayesian networks for its student modeling component [7, 10,
18]. Every time the student selects a new problem, a Bayesian network is au-
tomatically generated. The structure of the the network is taken directly from
a solution graph embedded in the system. The network contains five kinds of
nodes:

– Context-Rule nodes model the ability to apply a rule in a specific problem-
solving context in which it may be used. Each Context-Rule corresponds to
a rule in Andes’ ruled-based problem solver.

– Fact nodes represent the probability that the student knows a fact that is
part of the problem solution.

– Goal nodes represents the probability that the student has been pursuing a
goal that is part of the problem solution.

– Strategy nodes correspond to points where the student can choose among
alternative plans to solve a problem.

– Rule-Application nodes represent the probability that the student has ap-
plied a piece of physics knowledge represented by a context-rule to derive a
new fact or goal.

The Bayesian networks in Andes encode two kinds of knowledge: domain-general
knowledge, which holds information about general concepts and procedures that
define proficiency in Newtonian physics, and task-specific knowledge, which holds
information related to student performance on a specific problem or example.
Andes constitutes a probabilistic student model that provides long-term knowl-
edge assessment, plan recognition, and prediction of students’ actions during
problem solving.



Over the last three decades, an extensive number of ITSs have been built
using a range of techniques. Bayesian networks have been employed in multi-
ple systems [6, 13]. Many have branched out to incorporate other techniques,
such as object-oriented architectures (e.g., [34]). Various methodologies have
been explored for emulating human best teaching practices, such as coached
program planning [15], which helps students decompose problems. Some sys-
tems use natural language dialogues for interacting with students (e.g., [14]).
An increasing number of systems take advantage of agent-based and multi-agent
architectures [25]. Some incorporate intelligent interface components such as ped-
agogical agents [12]. However, to the best of our knowledge, no ITS system uses
an argumentation-based framework or the education dialogues we have described
above.

4 The ArgILS Framework

In this paper, we are concerned with the student model (the Learner), and
the Tutor. Section 2 explained how to represent the Learner’s knowledge (ΣL),
the expert’s knowledge (ΣT )5, and the Tutor’s knowledge about the Learner
(ΓT (L)); and provided an interaction structure for using that knowledge. This
section introduces our ArgILS framework, which we have designed as a means
for applying argumentation-based education dialogue theory to an interactive
learning system. We describe our framework and ground it with an example.

The interaction sequence illustrated in Figure 1 and detailed in Section 2.1
outlines the fundamental series of steps in a theoretical education dialogue. This
sequence is reasonable for interacting about declarative (factual) knowledge,
where p can represent a fact and step 1 can be the Tutor asking the Learner
if p is true. But the theory needs to be expanded in order to handle procedural
knowledge. We need to provide a mechanism to communicate procedural infor-
mation that cannot be expressed simply as a single proposition p. For example,
the Tutor may ask the Learner how to execute a particular task, to which the
Learner should be able to respond by uttering a series of propositions that all
belong to a sequential procedure.

We represent a procedural sequence, −→p as:

−→p = {p0, p1, p2, . . . , pn−1}

Such a procedural sequence can be integrated into the interaction steps shown
in Figure 1 in multiple ways. The first step, in which the Tutor puts forth a
question to the Learner, remains essentially unchanged, with the substitution of
−→p for p:

L → T : quiz(−→p )

The second step, in which the Learner responds, however, will necessarily change.

5 We make the assumption that the Tutor is the “expert”.



Because the procedural knowledge is broken down into a number of pieces,
there is a choice about redefining step 2 to:

L → T : respond(−→p ) (1)

where −→p represents all steps in the procedural sequence, or

L → T : respond({pi, pi+1, . . . , pj−1, pj}) (2)

where {pi, pi+1, . . . , pj−1, pj} represents some number of steps in the sequence,
or

L → T : respond(pi) (3)

where pi represents one step in the procedural sequence.
One of the architecture decisions that arises in building an interactive learn-

ing system concerns feedback : when should the tutoring system provide help to
the Learner? Equations 1 and 2 represent delayed feedback, where the Learner
completes all or part of the task before receiving any feedback from the Tutor.
Equation 3 represents immediate feedback, where the Learner completes only one
step in the task before receiving feedback from the Tutor.

step 1.

step 2.

step 3.
initial

feedback

step 4.

step 5.
follow-up
feedback

T->L:quiz(p)

L->T:respond({p_i,p_i+1,...,p_j-1,p_j})

T->L:assert(p_k) T->L:assert(not p_k)

L->T:acquire(p_k) L->T:shrug() L->T:challenge(p_k)

T->L:assert(S_k)

Fig. 2. Interaction sequence for delayed feedback.

Figure 2 illustrates an interaction sequence with delayed feedback. The first
step is the same as in Figure 1, with the Tutor asking about the entire proce-
dural sequence. The difference from Figure 1 lies in the second step, which is
highlighted by the dashed line that leads from the first to the second step. In



the second step, the Learner responds with some number of propositions in the
procedural sequence, as in equation 2. This can also correspond to equation 1,
if i = 0 and j = n− 1 (i.e., equation 1 is just a specialized case of equation 2).
The third step is the initial feedback step, where the Tutor comments on one of
the propositions posited by the Learner, where i ≤ k ≤ j. The fourth, follow-up
step and the fifth, follow-up feedback step proceed the same as in Figure 1, in
response to the proposition pk chosen by the Tutor in step 3. Note that the Tutor
must decide which pk to provide feedback for. Indeed, it is possible for the Tutor
to comment on multiple pk’s; though for simplicity here, we only consider situ-
ations where the Tutor comments on one pk at a time, and leave simultaneous
commenting on multiple pk’s to future work.

Figure 3 illustrates an interaction sequence with immediate feedback. The
picture is almost identical to that of Figure 1, with the difference being that the
Tutor starts with quiz(p), asking about the entire procedural sequence, and the
Learner answers with a single step in the procedure: respond(pi). The dashed
line from the first step to the second step highlights this difference.

step 1.

step 2.

step 3.
initial

feedback

step 4.

step 5.
follow-up
feedback

T->L:quiz(p)

L->T:respond(p_i)

T->L:assert(p_i) T->L:assert(not p_i)

L->T:acquire(p_i) L->T:shrug() L->T:challenge(p_i)

T->L:assert(S_i)

Fig. 3. Interaction sequence for immediate feedback.

Figures 2 and 3 illustrate the interactions over some portion of the procedural
sequence. Unless the Learner provides the entire −→p and delayed feedback is em-
ployed and the Learner’s response is entirely correct, some amount of iteration
must occur before the Learner has received feedback on the entire procedural
sequence. Figure 4 illustrates abstractly the differences in iteration patterns be-



tween delayed feedback and immediate feedback. With immediate feedack, every
time the Learner makes an utterance, the Tutor replies immediately. With de-
layed feedback, the Tutor waits for the Learner to make several utterances, and
then replies. The timing of the reply on the part of the Tutor in a delayed feed-
back system is another open area of research, and is something we will examine
in future work. The important observation to make here is that we can model
these differences in our ArgILS framework.

T0 L0 T1 L3L1 L2 etc.

(a) delayed feedback

T0 L0 T1 L1 T2 L2 etc.

(b) immediate feedback

Fig. 4. Iterative sequences

Finally, we introduce one more locution, for use in iterative situations, as
above, where the system is using immediate feedback—requiring that the Tutor
respond immediately to every action on the part of the Learner. However, once
the Learner acquires a proposition in the procedural sequence, he continues by
positing the next step, without the Tutor reiterating the initial question. For
just this case, in order to maintain the synchronized turn-taking in the iterative
process, we introduce a “no-op” for the Tutor, which we call nod:

T → L : nod()

nod
Locution: T → L : nod()

Pre-conditions: none
Post-conditions: none

4.1 An example interaction

Below we enumerate an example using our Human-Robot Tutoring System
(HRTS) in which a Learner is trying to acquire knowledge about how to program
a robot. Our HRTS is called RoboLite [4], and is based on the popular RoboLab
[9, 24] programming interface originally designed for LEGO Mindstorms RCX
robots [17].

In the first step, the Tutor utters:

T → L : quiz(−→p ) (step 1.)



where p = “How do you program a robot to go forward for 2 seconds and then
stop?” Our system uses a graphical interface, where each command given to
control the robot is represented as a building block icon. The expert’s solution
to the question is shown below:

→ → → →
p0 p1 p2 p3 p4

In the second step, the Learner posits an icon. Let’s say that the Learner starts
with the correct icon, represented here by proposition p0, so the Learner utters:

L → T : respond(p0) (step 2.)

In an immediate feedback system, the Tutor would immediately reply with pos-
itive feedback:

T → L : assert(p0) (step 3a.)

Since this is correct and the Learner’s belief is confirmed, the Learner updates
his knowledge base: ΣL = ΣL ∪ p0, and reiterates with:

L → T : acquire(p0) (step 4a.)

This is where the null operation is needed for the Tutor, to maintain the turn-
taking pattern, but without reiterating any propositions unnecessarily or intro-
ducing anything new. Thus, the Tutor indicates that the Learner should proceed
by uttering:

T → L : nod()

Now the Learner adds another icon. Let’s say he makes a mistake and enters p4:

L → T : respond(p4) (step 2.)

so his partial solution would look like this:

→
p0 p4

Again, in an immediate feedback system, the Tutor would reply immediately.
The Tutor compares the Learner’s sequence, {p0, p4}, with the expert sequence,
{p0, p1, . . .}, and detects an anomaly with the second proposition in the sequence.
So this time, the Tutor comments with negative feedback:

T → L : assert(¬p4) (step 3b.)

The Learner does not understand why his sequence is incorrect, so he requests
clarification by uttering:

L → T : challenge(¬p4) (step 4b.)



whereby the Tutor responds by providing the reasons why p4 is the incorrect
proposition in the sequence:

T → L : assert((S,¬p4)) (step 5.)

An alternative to the Tutor providing a negative assertion (as in step 3b,
above) is for the Tutor to provide the Learner with the right answer by uttering:

T → L : assert(p1) (step 3a.)

If the Learner does not understand, then he would again ask for clarification:

L → T : challenge(p1) (step 4b.)

and the Tutor would supply the reasons why p1 is the correct proposition in the
sequence:

T → L : assert((S, p1)) (step 5.)

In a delayed feedback system, the Tutor would wait until the Learner had
entered several icons before commenting. The questions of when to respond and
how to respond are areas of future research to be addressed in the development
of our implemented system. The ArgILS provides a solid framework in which to
model the possibilities.

5 Summary

We have described an extended education dialogue system, expanding on our
earlier work and that of others in the argumentation dialogue community. We
have introduced ArgILS, our general framework for an interactive learning sys-
tem in which interactions between a Tutor and a Learner can be modeled. An
example was provided, demonstrating the use of ArgILS in the development of
our work-in-progress Human-Robot Tutoring System. Multiple avenues of fu-
ture work have been identified, such as the Tutor’s choice of which proposition
to comment on in a delayed feedback system for procedural knowledge and when
to provide comments in a delayed feedback system.

Appendix

Below are the operational semantics of the question locution, adapted from [1].
A question is posed when the initiating agent, T in the description below, asks a
question of another agent, L in the description below. In the case of a question, it
is assumed that the asking agent does not know the answer to the question, p in
the description below. In addition, the asking agent does not know whether the
target agent knows the answer or not. (This is revealed in the choice of response
locution subsequently executed by the target agent.)



question
Locution: T → L : question(p)

Pre-conditions: 1. (S, p) &∈ S(ΣT )
2. (S,¬p) &∈ S(ΣT )

Post-conditions: 1. CST,i = CST,i−1 (no change)
2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
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