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Abstract

This paper describes our efforts in creating SimEd, a
simulation of the education system. The longterm aim of this
work is to be able to model the types of interactions and in-
terplays that occur between students, teachers and admin-
istrators, resulting in a toolkit and a methodology that will
allow policy makers on various levels to experiment with
their decisions, examining effects over time and across lev-
els. Here, we outline our reasoning for selecting the multi
agent system paradigm and the particular techniques cho-
sen. We present details of two components within the SimEd
toolkit and show results of experimental simulations exe-
cuted with each. In constructing these tools, we have be-
gun to identify special attributes of the education environ-
ment that set it aside from more typical agent-based appli-
cation areas, such as e-commerce. We highlight these as-
pects and discuss current and future work extending agent
techniques to accommodate these types of environments.

1. Introduction

We are constructing a simulation of the education sys-
tem which we call SimEd. Our longterm aim is to model the
types of interactions and interplays that occur between stu-
dents, teachers and administrators, in order to allow policy
makers on various levels to experiment with their decisions,
examining effects, over time and across levels. We have
built an agent-based, 3-tiered electronic institution consist-
ing of classrooms, schoolhouses® and school districts?. At
each level, agents interact directly with each other; and their
actions affect agents at the same level, and at the same time
indirectly affect agents at all levels.

1 We use the term “schoolhouse” to refer to one school.

2 We use the term “school district” to refer to multiple schools that fall
under the same administrative and funding umbrella. In the US, school
district definitions vary from state to state. A single school district typ-
ically refers to all the schools in a single city or county.
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We have taken a multi agent-based approach because the
environment we are modeling is complex and dynamic, con-
sisting of independent, self-interested entities that conform
to certain roles within an organized hierarchy, but decen-
tralized when it comes to individual behaviors. This work
is different from work in the area of pedagogical agents
[23, 26, 18] and work on intelligent tutoring systems (ITS)
[11, 7, 12, 19, 27, 31, 20] because we are not construct-
ing agents that will interact directly with humans and act
as tutors. SimEd will not model specific interactions in spe-
cific domains but rather more generalized types of interac-
tions that occur. Yet, our model is informed by this work,
because our goal is to replicate the behavior of human teach-
ers and learners; and the previous work done to understand
human learners in order to create tutoring agents to inter-
act with them is a valuable resource here. Our work is also
different from typical multi agent simulation work, which
most frequently has been used to simulate e-commerce sys-
tems (such as auctions [13]) or robot systems (such as robot
soccer [22] and rescue robots [21]). Again, our model is in-
formed by this work, because our goal is to create a realis-
tic simulation system; and previous work done to develop
simulations of dynamic environments with many heteroge-
neous interacting agents provides a valuable resource.

Our eventual goal is the implementation of a complete
simulation toolkit that will enable educators and researchers
to pose “what-if” questions about policy decisions so that
they might be able to predict the effect of their decisions on
students and teachers, as well as on the education system as
awhole. By far, the most common way we measure whether
the education system is succeeding, i.e., whether our chil-
dren are learning, is by examining test scores. But do these
values truly reflect learning? Or are we merely measuring
how good our children are at taking tests?

If we step back and examine the education system, it
is clear that the system can be viewed as a dynamic envi-
ronment influenced by many factors [17]. We believe that
factors other than test scores can be measured to evaluate
the education system. The advantage of using a multi agent



simulation to investigate this notion is the inherent ability
of such a system to model multiple, interleaving factors
that are not typically (or easily) compared (or measured),
such as the attitudes of learners, the classroom dynamics of
various combinations of abilities, personalities and student-
teacher ratios, and the interplay between teachers and ad-
ministrators. From a theoretical standpoint, educational re-
searchers will be able to use SimEd to test and modify their
theories, running experiments over and over again while
changing a variety of assumptions and conditions — with-
out having to use real schools as laboratories.

One example of a situation which SimEd would be able
to address occurred in California in 1996. Earlier (1985-
1989), the Student-Teacher Achievement Ratio (STAR) ex-
periment, conducted in real schools in Tennessee, showed
that student achievement increased as student-teacher ra-
tio fell [5, 24]. Policy makers in California were anxious
to replicate these results, and so they applied the same con-
ditions in California schools; however the results were poor
[28, 4]. Decreasing student-teacher ratios led to increased
hiring of teachers, which led to severe financial stress within
the system as well as a shortage of qualified teachers in Cal-
ifornia. The overall conditions of the education system in
each state were significantly different so that what worked
well in Tennessee failed in California. This is exactly the
type of situation that can be modeled in SimEd.

We build on the suggestions of Abernathy and Mackie
that multi agent simulations can be used to explore policy
models and expose factors and assumptions that were not
originally considered [6]. Like Abernathy and Mackie, we
do not think that multi agent systems should replace stan-
dard and accepted empirical methods in educational pol-
icy. Rather, we share Robert Axelrod’s view of using multi
agent systems [9]: SimEd offers a “Third Way” of perform-
ing educational policy research. Since agents in multi agent
systems are capable of obtaining information, maintaining
state, interacting and reacting accordingly, we believe that
SimEd will provide insights into factors that cannot be ex-
plained or that have been overlooked by widely accepted
formal methods in educational research. Such insight could
then guide researchers in future educational policy studies.

This paper begins by describing the overall SimEd
framework. Then we present two components (tools),
along with results of simulation experiments conducted us-
ing these tools. We have started to identify attributes of
the education environment that set it aside from typi-
cal agent-based simulation areas, such as financial markets
and robotics. We highlght these aspects and discuss cur-
rent and future work extending multi agent techniques to
support more general multi-disciplinary applications.

2. Framework

SimEd is a toolkit, internally structured as an electronic
institution [16, 15], which provides a method of organizing
(or creating institutional structure around) a group of agents
in a multi agent system. Following [15], we use the terms
dialogic framework to refer to the types of locutions each
agent can utter, scene to refer to a series of locutions be-
tween two (or more) agents (i.e., a formal dialogue game),
performative structure to refer to a group of scenes (and the
rules governing how scenes progress and who can partici-
pate in them) and norm to refer to the “commitments, obli-
gations and rights of participating agents” [15]. In the work
described here, we focus on scenes and norms and use a
highly abstracted model to cover the dialogic framework.

The SimEd electronic institution is populated by a set
of agents, each of which takes on one of four roles: stu-
dent (S), teacher (T'), principal (P) or superintendent (D).
In this schema, an agent can only take on one of these roles;
i.e., these roles are mutually exclusive.

2.1. Norms
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Figure 1. SimEd sub-institutions.

Although each type of agent could, in general, interact
with all other types, the most common sets of interactions
(and the corresponding norms circumscribing those interac-
tions) are specified hierarchically:

1. A classroom ) consists of one teacher 7' and a set of
students {So..S,—1} (figure 1a).



2. A schoolhouse A consists of a set of classrooms
{Q0..92._1} headed by one principal P (figure 1b).

3. A school district ® consists of a set of school houses
{Ao..A;_1} and one superintendent D (figure 1c).

We refer to classrooms (£2), schoolhouses (A) and school
districts (©) as sub-institutions, and express the hierarchi-
cal relationship between them as: ® = A = €. Each of
these entities could be specified as independent electronic
institutions; however, the behavior of individual agents can
have affects on, and be affected by, not only other agents
in the sub-institution in which they are defined, but also
agents in other sub-institutions. Thus there exists intercon-
nectivity between these sub-institutions which governs the
relationships among agents across sub-institutions, both di-
rectly and indirectly.

2.2. Dialogic framework

The dialogic framework is based upon a very simple yet
rich model of agent interaction derived from the classic Iter-
ated Prisonner’s Dilemma (IPD) [8, 10]. Developed in pre-
vious work by Sklar and collaborators [25, 29], the Meta-
Game of Learning (MGL) is essentially a restatement of
the IPD within the context of education and is used to de-
scribe a student-teacher relationship and, broadly speaking,
the types of interactions that can take place between these
two types of agents. In the MGL, one agent, the Teacher,
provides either easy or hard questions to another agent,
the Student; and the student responds with either right or
wrong answers (see figure 2). The goal is student learning,
which theoretically only occurs when the teacher asks hard
questions and the student provides the right answers, i.e.,
when both agents Cooperate.

Student: RIGHT WRONG
Cooperate | Defect
Teacher:
HARD learning | frustration
Cooperate

EASY || verification | boredom

Defect

Figure 2. The Meta-Game of Learning (MGL).

It may seem unwarranted to call such an interaction
scheme a “dialogic framework” as it is implemented at
present, since individual (and sets of) locutions are ab-
stracted away, leaving only their semantic results repre-
sented as Cooperation or De fection. However, this ab-
straction is quite purposeful, allowing us to take advantage

of a large body of results based on the IPD paradigm. At the
same time, we are carrying out related work exploring for-
mal dialogues for education [30]. Nonetheless, even con-
sidering the future implementation of a full dialogue sys-
tem in the traditional sense, the end result of any dialogue
game here would still, in the final analysis, be represented
abstractly as either cooperation or defection.

2.3. Application

In this paper, we present the application of the SimEd
toolkit to two current issues in education and demon-
strate how agent-based simulation allows exploration
of approaches to each issue from a policy perspective.
These issues correspond to two simple interaction mod-
els, each based on a sub-institution of SimEd: (1) a
classroom 2 with a set of students {.Sp, .., S, 1 } and a sin-
gle teacher T'; and (2) a school district 8 with a set
of school houses {Ag,..,A;—1}, an implicit princi-
pal P for each A, and a set of students that move between
school houses.

The first issue is absenteeism; this is a critical problem,
particularly in urban schools, and refers generally to the cir-
cumstance of students who are absent so frequently that
they fail to matriculate and end up repeating grades multi-
ple times. In section 3, we describe how our classroom tool,
by extending the MGL, can be used to evaluate various ap-
proaches to the problem of absenteeism.

The second issue is the “No Child Left Behind” Act
[1], a national policy in the U.S. that, in essence, allows
parents with children enrolled in public schools to transfer
their children to another school if their default (typically,
the closest proximity) school “needs improvement” accord-
ing to some standard metric. In section 4, we describe how
our school district tool, by utilizing another variation of the
MGL, can demonstrate various affects of No Child Left Be-
hind as students move between school houses.

3. Absenteeism and the Classroom Tool

The classroom tool centers around the classroom sub-
institution Q. All activity in Q is structured in terms of
scenes, each of which may be thought of as correspond-
ing to a single instruction period. Each scene is composed
of a set of interactions among the agents in the classroom:

QO=TU {So..Szfl}

The classroom tool facilitates development of a generic
model of classroom learning that can simulate the impact
of various factors and can be used to help determine best re-
sponses by teachers and/or administrators.

For each student S, we include both external (social)
factors and internal (cognitive) factors, which jointly affect



perception and learning. These cognitive factors partly com-
prise the student’s internal state, which is represented by
four abstract values®:

o ability (4) — indicates the relative ease with which the
student can learn a new concept, specifically the max-
imum the student can learn in an optimal interaction;

e motivation (M) — reflects the likelihood of coopera-
tion (in general, if motivation is high, then the student
will make an effort to learn; if motivation is low, then
the student will not make an effort);

e emotion (E) — represents the student’s emotional or
affective state as a valence (sign) and activation level
(intensity), corresponding to some general indicator of
mood (e.g., happy);

e belief set (X) — represents the student’s knowledge
base or set of beliefs about the world which includes
the particular knowledge domain being learned.

External influences on the student arise from the dynam-
ics of multi agent interaction. These dynamics are partly
governed by the implementation of the dialogic system
in terms of the MGL. The student’s interpretation of the
teacher’s action in a scene (did the teacher cooperate or de-
fect?) depends on not only on the difficulty, or hardness
(H), of the question the teacher selected, but also on the
student’s own ability A: as currently implemented, the stu-
dent’s perception of each question as easy or hard depends
on the ratio of the student’s ability A to the difficulty H.
Learning takes place when the student cooperates, or tries to
answer correctly; how much is learned depends on both the
student’s motivation and emotion. Presentation of the par-
ticular cognitive model of learning used is beyond the scope
of this paper, but specifying how cognitive factors and ex-
ternal factors relate to learning is an important prerequisite
whose best expression must be determined experimentally,
in the context of the simulation.

The classroom tool iterates over a fixed number of
timesteps (for simplicity, each timestep corresponds
to a scene in a performative framework of the institu-
tion). At each timestep, 4, the teacher 7" asks each student
S; a question. The student’s response depends on its inter-
nal state and on the external factor H. The student’s action
also consists of updating its internal state { E, M, X.}. In re-
lated work, we are exploring rules for updating E and M
[14].

At time 4, a student’s behavior is governed by the 5-tuple
(A;, My, E;, 2, H;), where A, M, E and X are internal at-
tributes unique to each student. The evolution of the values
of internal factors is determined individually for each stu-
dent by a common (parameterized) update procedure, while

3 Note that the first three values are scalars, while X is a set.

the progression of question difficulties is determined by the
teacher. Although in theory, all five of these factors might be
considered continuous, real, possibly vector-valued, func-
tions of time, for the present we discretize the values. Abil-
ity, emotion and motivation are binary or n-ary scalar val-
ues. These values range between a minimum (0) and a max-
imum of degree — 1, where degree is a parameter of the
simulation that the user can select.

For the simulations described here, we used the follow-
ing parameter constants: A.degree = 20, M.degree = 4,
E.degree = 4, H.degree = 10. (Earlier work established
that varying these degree values from 2 to 10 affects the pre-
cise outcome, but not the important characteristics, of class-
room simulations [14].) We assume that ability is innate and
hence constant over the course of each simulation. In gen-
eral, however, ability might change over time. For all stu-
dents in Q, the value of A is set randomly using a normal
distribution centered around A.degree/2. The initial val-
ues of M and E are set randomly using a uniform distribu-
tion. X is initially the empty set (at present, we only model
knowledge obtained during the course of a simulation run)
and accumulates elements as the student learns. H is delib-
erately initialized to A.degree/2 (e.g., targeting concepts
toward the class mean). This implementation is designed to
be flexible, allowing for a variety of initialization and up-
date methods, as well as definition of other factors, both in-
ternal and external.

We represent the knowledge domain that the students are
learning as an ordered set of concepts {C}. This is the set
from which the teacher chooses elements to present to each
student, one element per time step. The teacher’s presenta-
tion ordering could in general be quite complex and inter-
dependent, but in the present model a concept Cy, is always
presented following C,—1 , where Cj is the first concept pre-
sented. If a student “learns” concept k, S.3 updates accord-
ing to

S.E + 83X U (Ck,v)

where ~ is a value between 0 and 1 that represents the
amount of concept C}, that the student actually learned; we
refer to this value as grasp. We define progress to be the av-
erage of all - values corresponding to each elements in 3.
We conducted two sets of experiments with the class-
room tool. In the first set of experiments, -y is binary, so that
a concept is either learned (1) or not learned (0). Two dif-
ferent styles of instruction were evaluated for a simulated
class of one teacher and 100 students, by comparing the dis-
tribution of progress after 180 timesteps, averaged over 10
runs. The results are shown in figure 3. Figure 3a shows
what happens when the teacher conducts the class in a tra-
ditional lecture format: at each timestep & = ¢, moving from
concept C, to concept C41, regardless of each student’s
~ value. Any student .S; who did not learn C}, at timestep
k cannot learn any subsequent concept, and hence experi-
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Figure 3. Different teacher behaviors.
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Figure 4. Effect of absenteeism.

ences no change in progress, until Cy, is learned. The graph
shows the distribution of students at the end of the lesson
sequence, according to their progress, representing the pro-
portion of concepts learned.

In figure 3b, the teacher personalizes her behav-
ior through an abstractly modeled tutoring mechanism that
allows her to interact with each student as though on an in-
dividual basis, stepping back to easier concepts when
frustration sets in, and jumping ahead to more difficult con-
cepts when boredom threatens. In this case, each concept
index S; .k is independent of the timestep ¢ and of other stu-
dents. The difference between the two graphs is marked,
illustrating how effective personalized tutoring can be.

Using these experiments as a control, we can estimate
the impact of absenteeism on the mean progress over all the
students in the classroom. At each timestep, each student
has a chance of being absent, as determined by the absentee
rate (set to 17%)*. Figure 4a shows the effect of 17% absen-
teeism on the traditional group lecture classroom. The pro-
portional decrease in average progress is an expected conse-
quence of the simple model of learning used. Teachers and
school administrators might hope that some kind of tutoring
mechanism would reduce the impact of absenteeism, and
justsuch aresult is indicated in figure 4b, where in the class-
room employing individualized instruction the 17% absen-
tee rate results in a mere 4.56% reduction in performance.
This demonstrates the types of effects SimEd can highlight.

We are currently expanding the classroom tool to ac-
count for incomplete or partial learning of concepts (where
~ can take on continuous real values between 0 and 1), vari-
able concept difficulty and logical interdependence or “con-
nectedness” between concepts (where ~ for C}, depends not

4 The average absentee rate — percentage of days absent — for New
York City public schools in 2001-02 was 17%.

only on cognitive factors, but also on the values 7q. ;1 as-
sociated with Cy. ;_1). Since concepts are learned to some
degree, tutoring strategies must refer to some threshold
value at which the concept is considered to be learned well
enough. There are many more parameters to take into ac-
count in seeking a best strategy or policy. An example of
how this might be done, figure 5 plots the classroom mean
progress at the end of a set of lessons, as a function of
threshold value ~ and logical connectivity «, for three val-
ues of k, showing the nonlinear relationship between &, 7
and progress. When x = 0, concepts are not dependent
on each other; this was effectively the value used for the
set of experiments shown in figures 3 and 4. When x = 1,
each concept is highly dependent on what came before it, as
would be the case in subjects like geometry, where the theo-
rems introduced in class one day are used in proofs the fol-
lowing day.

kappa =0
+ b +

kappa = .5 °
o o0

0.45 kappa=1 ,

0.2 0.8 1

0.4 0.6
threshold

Figure 5. Concept connectedness.

In this section, we have demonstrated how teachers, pol-
icy makers and administrators could use SimEd to explore



fundamental questions related to classroom management
such as organization and curriculum structure and issues
such as absenteeism. In the next section, we show how our
school district tool can be used to simulate macro-level con-
cerns.

4. No Child Left Behind and the School Dis-
trict Tool

The school district tool centers around the school district
sub-institution ©. Activity is sequenced in scenes, where
the relationship between a scene and a unit of real time de-
pends on the experiment being conducted; in the example
outlined below, one scene equals one school year.

For each student (in each classroom, in each school
house) in the school district, we expand on the feature set
described in section 3 and introduce factors that are rele-
vant at the macro, school district level:

e satisfaction (F) — reflects the student’s happiness
with his/her current school (low satisfaction indicates
that the student wants to transfer to another school),
where F' can be thought of as a longitudinal combina-
tion of E and M described in the previous section;

e family income (I) — represents the economic standing
of the student’s household;

o mobility (V) — indicates the student’s ability to trans-
fer schools (which is determined not by No Child Left
Behind, but rather by a combination of factors such as
income and family’s ability to relocate);

e performance (p) — represents the student’s academic
performance, where p can be thought of as a relative
comparison of a student’s progress (from the previ-
ous section) to that of the other students in the same
peer group.

The school house sub-institution A is represented by a
number of scalar-valued features:

o enrollment — the set of all students enrolled in the
school {Sy,..,S.—1}, which incorporates implicitly
the number of students (z) as well as the feature val-
ues associated with a student agent;

e income — the average income of families of all stu-
dents currently enrolled in the school;

e achievement rate — this is essentially the number of
“good” students, i.e., students who perform better than
average on standardized tests;

o staffing — the set of all teachers working in the school
{Tb, .., Ty_1}, which incorporates implicitly the num-
ber of teachers (y) as well as the feature values associ-
ated with a teacher agent®;

e student-teacher ratio — the number of students per
teacher (a low number is better);

e capacity — the maximum number of students the
school building can physically handle;

e funding — the amount of financing that the school re-
ceives, expressed in dollars per student (higher is bet-

ter);

e performance — the school’s overall performance,
which takes into account all of the above fac-
tors.

The school district sub-institution € is represented by the
following features, many of which are aggregates of those
at the school house level:

o enrollment — the set of all students enrolled in the
school district {So, .., S,—1}, which incorporates im-
plicitly the number of students (z) as well as the fea-
ture values associated with a student agent;

o staffing — the set of all teachers working in the school
district {To, .., Ty—1}, which incorporates implicitly
the number of teachers (y) as well as the feature val-
ues associated with a teacher agent;

e funding — the total amount of funding allocated to the
district (includes dollars from all sources, local and na-
tional, public and private);

e schools — the total number of schools in the district;
and

e teachers’ salary — the average salary for all teachers
in the district.

We use the School District Tool to demonstrate possible
effects of the “No Child Left Behind” Act. No Child Left
Behind is an act of U.S. federal government policy, signed
in early 2002, designed to “hold states and schools account-
able for the academic achievement of all students, ensure
that the teaching and paraprofessional staff is highly qual-
ified, and provide parents with access to information and
choice.” [1] Through this act, parents and children are given
“Public School Choice”, which allows them to transfer to
another public school if their school is listed as “In Need of
Improvement.” The performance level of each school is de-
termined primarily by the average grade on state standard-
ized tests; schools which fall far below this average are con-
sidered to be under-performing.

To consider the effects of No Child Left Behind, we want
to show what happens when many students transfer from
one school to another. We use the STAR scenario (described
in section 1) to vary student-teacher ratios and demonstrate
what happens when students are given a choice of changing

5  Although we have not discussed the feature value of a teacher agent in
this paper



e
=
S

enrollment
=
S
@

;D

(a) change in enrollments, base scenario

130]

125(

enrollment

2 4 6 8 10 12 14 16 18 20
time (years)

(b) change in enrollments, STAR scenario

1000

[ base scenario
900 [ STAR scenario

number of students.
@
g
3

ol B0 = . L L —
1

0 5 6

2 3 4
number of transfers

(c) difference in transfer rates

Figure 6. STAR and No Child Left Behind.

schools, based on school performance, following the rea-
soning behind the No Child Left Behind legislation. Results
of a simple experiment investigating the effects of the STAR
policy are shown in figure 6. The experiment was run over
a 20-year period (i.e., across 20 scenes), using 10 schools,
100 teachers and 1000 students; a comparison of two sce-
narios was made. In the first scenario, students and teachers
were assigned randomly to schools in the district (using a
uniform distribution), roughly 10 teachers and 100 students
to each school. Students want to transfer when their satis-
faction level (which takes into account school performance)
drops below a certain threshold; they do transfer if their mo-
bility level is high enough that they are able to transfer. The
second scenario imitates the STAR policy and initializes the
student-teacher ratio to be lower in some of the schools and
higher in others®.

6 The exact allocation was as follows: 4 schools got 15 teachers, 4

The top two line graphs in figure 6 contain one line per
school and show how enrollments fluctuate at each school
over the 20 year period. The bottom bar graph contains a
histogram, grouping students according to how frequently
they transfer in total, over the 20 year period. The first sce-
nario is illustrated in figure 6a, where students are given
the opportunity to transfer to another school, if the school
they are attending is under-performing. It can be seen that
transfers occur with some regularity, although, as indicated
by the leftmost (grey) bar in figure 6c, approximately 90%
of students never transfer. The STAR-like scenario (figure
6b) shows that students transfer with much less frequency.
This is also evident in the unshaded bars of figure 6¢, where
nearly 97% of students never transfer.

5. Summary and Future Work

We have presented the basic framework for our multi
agent simulation model of the education system which we
call “SimEd.” We have demonstrated our classroom and
school district tools, applying them to two current, real-
world issues in education today.

SimEd is structured as an electronic institution, with
well-defined agents, roles and interaction models. We dis-
cussed the notion of a “sub-institution” as an element within
a larger electronic institution framework that could also
conceivably stand on its own. In our case, we define three
sub-institutions that are related to each other hierarchically
(© = A = Q). Our dialogic framework is highly simplis-
tic, but as explained in the text, we are building a formal
model of dialogues for education in related work. We plan
to incorporate these dialogues into SimEd in the near future.
Further experimentation will lead to the addition of perfor-
mative structures, as the system matures and allows model-
ing of a wide variety of situations and issues.

Development of SimEd has included the use of packages
such as Matlab [2] and RePast [3], but we are driving to-
ward a fully agent-oriented version combining the RePast
simulation engine with the ISLANDER electronic institu-
tion specification tool [15], working in collaboration with
researchers at 111A who developed ISLANDER. We have
consulted, and will continue to consult, experts in educa-
tion research and policy, psychology, sociology, anthropol-
ogy and related fields in order to inform our models and
advise on the social science aspects of the project. We be-
lieve that SimEd, in turn, will be able to help these re-
searchers explore and test their hypotheses using the tech-
niques of multi agent simulation. The challenges we face
in the immediate future involve linking together each of the
toolkit sub-institutions so that we can demonstrate cause-
and-effect across levels of the hierarchy, and the design and

schools got 5 teachers and 2 schools got 10 teachers.



implementation of a user-interface that is powerful, yet un-
derstandable by the typical social scientist who represents
the end-user of SimEd.
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