
Robotics Across the Curriculum
Elizabeth Sklar1,2, Simon Parsons1,2 and M Q Azhar 2

1Dept of Computer and Information Science
Brooklyn College, City University of New York
2900 Bedford Ave, Brooklyn, NY, USA 11210

2Dept of Computer Science
Graduate Center, City University of New York
365 5th Avenue, New York, NY, USA 10016

sklar,parsons@sci.brooklyn.cuny.edu
mazhar@gc.cuny.edu

Abstract

We describe a comprehensive program using educational
robotics as a hands-on, constructionist learning environment,
integrated into teaching across the undergraduate computer
science curriculum. Five courses are described in detail. For
the three courses which have been offered multiple times,
evaluations were conducted to assess students’ attitudes to-
wards the robotics-based curriculum. These results are pre-
sented here. Lessons learned are shared, and new directions
for the future are highlighted.

Introduction
For the past six years, we have been bringingLEGO robots
into university classrooms to enhance courses on introduc-
tory programming and computer science (both for computer
science majors and non-majors), object-oriented program-
ming, artificial intelligence, embodied agents and multia-
gent systems. We have also experimented with the use of
SonyAIBO robots and are currently investigating other plat-
forms for teaching.

There is a rich history of instructors bringing robotics into
undergraduate classrooms over the last 10 years as a means
to teach a range of topics. Early work explored the use
of robotics for teaching introductory programming (Stein
1996; Meeden 1996; Lawheadet al. 2002; Gossett & Flow-
ers 2003). Other efforts examined the use of robotics for
interdisciplinary subjects and for advanced undergraduate
computer science topics such as artificial intelligence. Beer,
Chiel, & Drushel (1999) used autonomous robots to teach
an interdisciplinary science and engineering, attractingstu-
dents from a wide range of majors (from biology and neu-
roscience to physics). Klassner (2002) outlines early expe-
riences usingLEGO robotics in artificial intelligence classes,
pointing out the lack of aLISP-based programming environ-
ment, which the author later addressed in (Klassner & An-
derson 2003). Kumar (2004) describes the integration and
evaluation of robotics into artificial intelligence curriculum
for undergraduates, weighing the increase in student excite-
ment against the increased preparation time for instructors.

Others have detailed specific experiences, hardware and
software problems and solutions for integratingLEGO Mind-
storms into a range of undergraduate classrooms (Martin

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1994; Fagin 2003; Mayer, Weinberg, & Yu 2004; Jacob-
sen & Jadud 2005; Sklar, Parsons, & Stone 2004). Some
of the issues highlighted are lack of a simulator that stu-
dents can use for debugging when they are not in the lab,
longer preparation time for instructors (not only designing
new curricula and projects, but also organizing and main-
taining robotics equipment), increased time spent away from
the curriculum for students—particularly time spent learn-
ing how to program the robots in non-programming classes
(like AI ) or time spent fixing hardware problems in non-
hardware classes.

Several approaches have been taken to address these is-
sues by providing programming interfaces that are designed
for easy debugging and offer simulation capabilities. One
is Pyro (Blank, Meeden, & Kumar 2003), based on Python,
which provides solutions for several of these problems, mov-
ing beyondLEGO and defining a universal programming in-
terface for several robotics platforms, e.g., theAIBO, Khep-
era and Pioneer robots, and includes a simulation environ-
ment. Another isTekkotsu(Touretzky & Tira-Thompson
2005), based in C++, which uses an object-oriented, event-
passing architecture and was designed to work with the Sony
AIBO, though it can also be compiled for other platforms.

This paper is organized as follows. The first section de-
scribes the courses that we have developed for teaching with
robotics across the curriculum. The second section presents
results of evaluations we have conducted in the three courses
that have been taught more than once. Finally, we conclude
with a summary of lessons learned and future directions.

It should be noted that all the courses described have been
taught at Brooklyn College, one of 19 campuses that com-
prise the City University of New York, an urban university
with 400,000 students. Approximately 12,000 students are
enrolled in undergraduate programs at Brooklyn College,
a public liberal arts school that primarily attracts working-
class students; many are the first in their families to attend
college and most hold part-time jobs while they go to school.
The student body is 60% female; and nearly half the stu-
dents are ethnic minorities (30.7% African American and
11% Hispanic).

Teaching
Our university teaching experiences with robotics began in
Spring 2001 and have grown from one introductory robotics



course for non-engineering computer science students to en-
compass a spectrum of seven courses, ranging from explor-
ing robotics for non-majors to introductory programming for
majors and advanced artificial intelligence for graduate stu-
dents. Five of these courses have been taught at the time of
writing: Exploring Robotics(for non-majors),Computing:
Nature, Power and Limits(for non-majors),Object-Oriented
Programming(for intermediate majors),Artificial Intelli-
gence(for advanced majors), andIntroduction to Robotics
(for advanced majors). The middle three of these have been
taught several times. The remaining two courses are sched-
uled to be taught in Spring and Fall 2007; these are:In-
troduction to Computing Using C++(for first-semester ma-
jors) andAdvanced Programming Techniques(for second-
semester majors). This section describes each of the five
courses which have already been offered.

Exploring Robotics
This course provides an introduction to robotics for ad-
vanced students who are not computer science majors,
through the use of case studies and project-based activities.
Students work together in small groups on a series of two-
week creative projects, using robots to address meaningful
and socially important issues, such as urban search and res-
cue or elder care. Along the way, students are introduced to
the fundamentals of robotics (including aspects of mechan-
ical design) and elementary programming within a graph-
ical environment called RoboLab1 (Erwin, Cyr, & Rogers
2000). A series of seven scaffolded units build in complex-
ity in terms of the robot solution, the task environment and
the task(s) to be accomplished. Each unit is accompanied
by a case study, with which to situate the technical material
being introduced. Following is a brief outline of each unit:

1. Introduction to Robotics:this unit outlines basic robot
construction and uses the “BigDog” project (Hambling
2006) as a case study.

2. Simple Go-bot:this unit introduces students to basic con-
trol ideas; the case study is the DARPA Grand Challenge
(Thrunet al. forthcoming; Gutierrezet al. 2005).

3. Dancing Go-bot:this unit brings in touch sensors and the
programming concept ofiteration, using robotic dance as
a case study.

4. Home-helper Go-bot:this unit explains the programming
concept ofbranchingand the notion of event-driven pro-
grams; the case study presents the Roomba2.

5. Robot Teams: this unit discusses multiple robots op-
erating in a complex, dynamic environment and uses
RoboCup Soccer as the case study; the technical chal-
lenge is RoboCupJunior soccer, which only requires a
light sensor to perform the task of finding the ball, lo-
calizing, and kicking towards the goal.

6. Search-and-rescue Go-bot:this unit combines touch and
light sensors, making more sophisticated use of the light
sensors to recognize multiple light levels. The case study

1http://www.ceeo.tufts.edu/robolabatceeo/
2http://www.irobot.com/

core technical topic(s) case study
Introduction to tele-operated robots
Computers and Networks
Algorithms and dancing robots
Computer Languages
Machine Architecture, self-reproducing
Data Representation machines
and Storage
Event-driven home-helper robots
Programming
Solvability and urban search and
Feasibility rescue robots
Programmer-defined evolutionary robotics
functions
Security, Privacy, security robots
Encryption and Plagiarism

Table 1: Topics covered in Computing: Nature, Power and
Limits.

is Urban Search and Rescue (USAR) robotics (Kleiner
2006), and the labs use the RoboCupJunior Rescue chal-
lenge (Sklar 2004) in which robots attempt to locate
dummy victims in a mock collapsed building.

7. State-of-the-art Robotics:this unit presents exciting new
topics in the field of robotics; the case study currently be-
ing used is in the area of evolutionary robotics (Zykovet
al. 2005).

This course has become quite popular, and currently (Fall
2006) we are offering five sections of the course with a total
enrollment of 88 students.

Computing: Nature, Power and Limits
This course offers an introduction to computer science and
programming through the use of project-based educational
robotics activities for beginning college students who have
not yet declared a major. The course is part of thecore cur-
riculum required of all undergraduates at Brooklyn College,
and our department is experimentally offering several “fla-
vors” of the course to provide a variety of interdisciplinary,
applied, context-based entries into the world of computing,
as part of a larger project that is attempting to broaden the
demographics of students pursuing careers in computer sci-
ence, particularly aiming to attract female and minority stu-
dents3. The course is organized as above, into seven cur-
ricular units, where each unit explores a technical topic and
is framed with a case study and application area for hands-
on laboratory work. The curricular areas are defined by the
core course, and robotics topics provide the flavor for this
particular section. The areas are shown in table 1.

We are currently (Fall 2006) offering one section of this
course, with an enrollment of 22 students. A formal evalu-
ation is being conducted, with pre- and post- attitudinal sur-
veys. In addition, a standard academic assessment for this
flavor of the course will be compared with that of the other

3http://bridges.brooklyn.cuny.edu



flavors and the non-flavored course; altogether, there are 29
sections of the course (three of which are flavored, and one is
the robotics flavor) with a total enrollment of approximately
600 students. Formal evaluation results are forthcoming.

Object-Oriented Programming
This course introduces object-oriented programming using
Java, with robotics used as a supplemental educational tool.
This “flavored” section of this course has been offered four
times since Fall 2004, employing LEGO Mindstorms robots
and the Java-based leJOS4 programming environment. Ini-
tially (i.e., during Fall 2004), we introduced educational
robotics activities as a project toward the end of the semester,
and feedback from the students was positive. Some students
said that we should introduce robotics from the beginning
of the semester, and since we agreed that time was short for
robotics, during Spring 2004, we started integrating robotics
activities throughout the course, eventually replacing signifi-
cant portions of the take-home exercises (from non-robotics
offerings of the course) with hands-on lab activities. Ev-
ery semester, we have modified our curriculum based on our
classroom experience and students’ feedback.

All of our labs have pre-lab and post-lab activities. The
idea of the pre-lab is to make the students’ in-class lab ac-
tivities more efficient. During the lab session, we give the
students problems such as line-following, search and res-
cue, and RoboCupJunior soccer. The post-lab activities give
closure to the lab. In addition, we let students come to the
lab outside of class time, so they can finish work they did
not complete in class. This also gives students more time
for problem-solving. We also incorporated a “Showcase” in
Fall 2005 where students can show off their projects to their
peers and to spectators. This event makes students more en-
gaged in the curriculum (Beer, Chiel, & Drushel 1999). Fi-
nally, students work in groups of two or three during lab
activities which increases students’ collaborative skills.

Artificial Intelligence
The metaphor of intelligent agents is a way of bringing to-
gether the many strands of work carried out under the ban-
ner of AI and presenting them to students in a convincing
way. The topics in our AI syllabus include: agency, con-
trol architectures, search, knowledge representation, logic,
and planning. Students engage in two robotics projects dur-
ing the term, using LEGO Mindstorms and the Not Quite C
(NQC) language. The first project is based on RoboCupJu-
nior rescue (Sklar 2004), expanded to incorporate climbing
and descending a ramp or detecting and avoiding obstacles,
in order to make the task harder. In the second project, stu-
dents are confronted with a “grid world” delineated with
black lines where some of the squares contain colored fig-
ures. The challenge is to survey the grid, identifying the
positions of the figures, and then re-position the robot (at
the start) and move to the figures in a pre-specified order in
the lowest possible time. The idea behind the challenge is
to bring in some of the concepts related tosearchthat the
students have covered in the course, combining these with

4http://lejos.sourceforge.net/

the reactive techniques from the first project (which are still
required to move around the grid). Since the robots cannot
localize, this is a hard challenge, but it is within the capabil-
ities of the more able students.

Introduction to Robotics

This course is intended as the capstone of our robotics cur-
riculum for undergrduates. Unlike the other courses we have
described here, this course not just uses robots, but is ac-
tually about robots. It is intended as a broad introduction
to the field, covering topics such as locomotion, kinemat-
ics, perception, localization and navigation. This theoreti-
cal background is accompanied by extensive practical work,
with at least one hour of lab time for every hour in a conven-
tional lecture. The idea of the practical work is to reinforce
the main lessons explained in the theoretical work (the diffi-
culty of navigating by dead-reckoning for example) as well
as giving the students a feel for the kind of work involved in
robotics research.

In previous offerings of the course, taught to gradu-
ate students, we ran the first few practicals usingLEGO
Mindstorms, as a simple platform that the students could
easily master, before moving onto the more challenging
AIBO. In these offerings we used theLEGO robots to do
a set of increasingly complex tasks—a race that involved
line-following, some simple flocking that involved head-
ing towards a light source, and a contest that involved line-
following plus a pursuer-evader segment—before moving to
the AIBO for work on navigation. Our current offering in-
cludes students who have already taken courses that use the
Mindstorms and jumps right into using theAIBOs, ending
with a multi-week project.

Evaluation

From the start of this effort, we have been keen to evaluate
the impact of the robotics curriculum. While it is clear that
some students are excited by the possibilities of robotics,
and welcome the chance to work on robots as part of the
classes we have decribed above, we have felt it was impor-
tant to get as much data as possible on students’ attitudes
toward the robot work. This has given us feedback which
has been important in improving the courses, and has also
given us hard data on our efforts which have convinced us
that what we are doing has value5.

As an example of the results that we have obtained, in
this section we present data from several offerings of the
“Object-oriented Programming” and “Computing: Nature,
Power and Limits classes. The results of this evaluation for
the Artificial Intelligence course have been presented else-
where (Sklar, Parsons, & Stone 2004), and the remaining
classes are, in their current form, being offered for the first
time this semester, so we have no data on them as yet.

5This data has also helped us to persuade our department, and
the administration generally, to provide continued support for our
robotics efforts.



 0

 20

 40

 60

 80

 100

hw cnt mid ex fin  
 0

 20

 40

 60

 80

 100

hw cnt mid ex fin  
 0

 20

 40

 60

 80

 100

hw cnt mid ex fin  

(a) (c) (e)

 0

 20

 40

 60

 80

 100

hw cnt ex note lect text read
 0

 20

 40

 60

 80

 100

hw cnt ex note lect text read
 0

 20

 40

 60

 80

 100

hw cnt ex note lect text read

(b) (d) (f)

Figure 1: Evaluation results from object oriented programming. See text for explanation.

Object-oriented Programming
Figure 1 shows some of the data collected from question-
naires administered to sections of the object-oriented pro-
gramming class that used robotics. Figure 1 (a) and (b) are
from Spring 2005, (c) and (d) are from Fall 2005 and (e) and
(f) are from Spring 2006. These graphs show the propor-
tion of students who indicated various elements of the course
were either helpful indemonstratingtheir understanding of
programming concepts (graphs (a), (c) and (e)) and helpful
in learningprogramming concepts (graphs (b), (d) and (f)).
This information was obtained by asking students to sug-
gest which of the listed elements they found helpful. The
columns in (a), (c) and (e) are, from left to right, those for
homework, robot contest, midterm, the classroom exercises
with robots, and the final. The columns in (b), (d) and (f)
are, from left to right homework, robot contest, classroom
exercises with robots, lecture notes, lectures, textbook,and
additional reading material.

Based on the feedback we received from students, we
changed the course considerably between Spring 2005 and
Fall 2005. In the spring, the robotics component, though
present throughout the semester6 was an addition to the
course rather than an integrated part of it—preparation for
the labs that used the robots (the “pre-labs” described in
the previous section) was assigned in addition to the reg-
ular homework, the lab was physically separate from the
usual classroom, and students could only work on the robots
during class time. Since Spring 2005, we integrated the

6As described above, there was one previous offering of the
course, in Fall 2004, in which the robots were brought in only at
the end of the course and so were even less integrated.

preparatory work for the labs into the homework, made the
lab available outside class hours, and introduced a “robotics
showcase” event at which students from all the sections of
classes in which we were using robots were able to com-
pete together. As a result, students’ appreciation of the robot
contest and the classroom exercises grew, in particular, the
appreciation of the exercises grew greatly.

Other indications of student attitudes come from the open
questions on the questionnaire. One such question was “Did
the experience with robotics help you at all”. Fully 100%
of the 12 students in Fall 05 for whom we have data said
“yes”, and 70% of the 20 students for whom we have data in
Spring 06 said “yes” (only three, 15%, said “no”, the others
gave ambiguous answers). This compares with only 10 of
the 19 for whom we have data in Spring 2005 (52%).

The following comments are taken from the answers to
the same question, giving an indication of the reasons behind
the positive responses:
• “It makes it more fun to learn Java because you see that

you actually accomplish something if your robot does
what you need it to do.”

• “It made programming a lot more interesting.”

• “It was fun seeing computer science in action outside the
narrow screen of the monitor. Actually was an example
of real-world programming scenarios.”

Those students who felt the robotics elements were not help-
ful seem to be students who would have been happy with a
more traditional course. The following is typical: “It was
a bit of a distraction from learning OOP and the Java lan-
guage. The details of the robotics segment didn’t help me to
remember the details of OOP.”



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6  7  8  9

Pre-test

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6  7  8  9

Post-test

Figure 2: Evaluation results from Computing: Nature,
Power and Limit, Spring 2006. See text for explanation.

Computing: Nature, Power and Limits
For the introductory computing class, we adminstered pre-
and post-tests to the students. These tests contained a range
of questions, some of which asked students to rate the ex-
tent to which they agreed with the following statements us-
ing a five point scale (ranging from 1=Strongly disagree to
5=Strongly agree):

1. Computer programming is hard for me.

2. I will not use a lot of computer science when I get out of
college.

3. I can get good grades in computer science.

4. I am no good in science.

5. I study computer science because I know how useful it is.

6. I will choose a career in computer science.

7. A degree in computer science will allow me to obtain a
well-paying job.

8. Web design is fun.

The average scores given to these questions on each test are
given in Figure 27. It seems a reasonable assumption that
students with a postive view of computer science should re-
port high values for questions 3, 5, 6, 7, 8 and low values for
questions 1, 2 and 4.

The results we have are ambiguous. The scores that we
would expect to be lower due to a positive experience in

7The questions were asked in different ways on the two tests—
each question was asked once in a positive way and once in a neg-
ative way—and the scores reported correct for this.

Section Average stdev
Fall 2005 without robotics 54 22
Fall 2005 with robotics 57 16
Spring 2006 with robotics 65 8

Table 2: Student marks for the core computing course.

computer science (those for questions 1, 2 and 4) do in-
deed decrease. However, the scores that we would expect
to increase due to a postive experience in computer science
(questions 3 and 5 through 8), also decline. Thus, while stu-
dents, on average, are less inclined to believe that computer
programming is hard after the course, they are also less in-
clined to choose a career in computer science.

More encouraging are the results from the final exam for
the class. Here we have data from three sections of the class,
two in Fall 2005, and one in Spring 2006. All sections were
taught by the same instructor. as described above, one of
the sections in Fall 2005 was taught using robotics (14 stu-
dents enrolled) and one was not (16 students). The section
in Spring 2006 was taught using robotics (18 students). The
average marks for the final exam and the standard deviations
of those marks, are given in Table 2. These are the marks for
the parts of the exam that are common to all the sections (in
other words the bits that are not due to the robotics mate-
rial), in order to avoid any bias due to the robotics material
being easier than the material it replaced. The marks are
lowest for the section without robotics—both sections that
used robotics are rather higher. The results are not statisti-
cally significant, as can be seen from the standard deviations,
but the trend is worth noting.

Summary
We have evolved over the past five years a comprehensive set
of courses that allow us to integrate educational robotics as
a hands-on learning environment across the undergraduate
computer science curriculum. Students with no program-
ming background and those almost finished with their major
have had opportunities to take these courses, and we have
conducted both quantitative and qualitative evaluations with
each course that we have offered. The results have shown
that the students, for the most part, find the experiences with
robotics to be enjoyable and motivating. As instructors, we
have found that the course preparation time increases and
that we have to design our course materials carefully to en-
sure that the curricular material we need to cover is properly
presented and that the link between the curriculum and the
robots is explicit.

Our most recent work involves development of a univer-
sal interface and simulator for educational robotics. While
the use of low-cost robotics platforms in the classroom has
many attractive features, there are still several shortcomings
that must be overcome in order to realize the full potential
of educational robotics as a practical learning environment.
Particularly since time for “practice” is limited, there isa
need to reduce debugging time when using robots in instruc-
tional settings. Most robotics programming interfaces are



designed for university-level or late high school studentsand
are implemented as extensions to existing languages (such
as C/NQC, C++/Brickos, Java/leJOS and Python/Pyro). We
have been developing an agent-oriented, behavior-based in-
terface framework targetting students with no programming
experience and designed to ease them from a graphical inter-
face into a text-based structured language (Azhar, Goldman,
& Sklar 2006). This framework has the capability to inter-
act with multiple agent platforms and a simulator through
an XML-based agent behavior language. Our longterm goal
is to create a standard middle ground that can act as a
“magic black box”, providing a seamless transition between
simulator-based learning and debugging environments and a
range of robotic platforms.

Acknowledgements
This work was partially supported by NSF ITR #02-19347,
NSF IIS #03-29037, NSF BPC #05-40549, and DOE
GEAR-UP #P334A050232.

References
Azhar, M. Q.; Goldman, R.; and Sklar, E. 2006. An
agent-oriented behavior-based interface framework for ed-
ucationa robotics. InAgent-Based Systems for Human
Learning (ABSHL) Workshop at Autonomous Agents and
MultiAgent Systems (AAMAS-2006).

Beer, R. D.; Chiel, H. J.; and Drushel, R. F. 1999. Us-
ing autonomous robotics to teach science and engineering.
Communications of the ACM42(6).

Blank, D.; Meeden, L.; and Kumar, D. 2003. Python
robotics: an environment for exploring robotics beyond
lego. In Proceedings of the 34th SIGCSE technical sym-
posium on Computer science education, 317–321.

Erwin, B.; Cyr, M.; and Rogers, C. B. 2000. Lego engi-
neer and robolab: Teaching engineering with labview from
kindergarten to graduate school.International Journal of
Engineering Education16(3).

Fagin, B. 2003. Ada/mindstorms 3.0: A computational
environment for introductory robotics and programming.
IEEE Robotics and Automation Magazine10(2):19–24.

Gossett, K. A., and Flowers, T. R. 2003. Using robots
and simulation to teach problem solving in an introductory
course in computing and information technology. InPro-
ceedings of the 2003 Military, Government, and Aerospace
Simulation Symposium.

Gutierrez, A.; Galatai, T.; Gonzalez, J. P.; Urmson, C.;
and Whittaker, W. L. 2005. Preplanning for high per-
formance autonomous traverse of desert terrain exploiting
a priori knowledge to optimize speeds and detail paths.
Technical Report CMU-RI-TR-05-54, Robotics Institute,
Carnegie Mellon University.

Hambling, D. 2006. Robotic ’pack mule’ displays stunning
reflexes.NewScientist.com news service.

Jacobsen, C. L., and Jadud, M. C. 2005. Towards concrete
concurrency: occam-pi on the lego mindstorms.SIGCSE
Bulletin37(1):431–435.

Klassner, F., and Anderson, S. 2003. Lego mindstorms:
Not just for k-12 anymore.IEEE Robotics and Automation
Magazine10(2):12–18.
Klassner, F. 2002. A case study of lego mindstorms suit-
ability for artificial intelligence and robotics courses atthe
college level. InProceeding of the 33rd SIGCSE Technical
Symposium on Computer Science Education, 8–12.
Kleiner, K. 2006. Better robots could help save disaster
victims. NewScientist.com.
Kumar, A. N. 2004. Three years of using robots in an
artificial intelligence course: lessons learned.Journal on
Educational Resources in Computing (JERIC), Special Is-
sue on robotics in undergraduate education, part I4(3).
Lawhead, P. B.; Duncan, M. E.; Bland, C. G.; Goldweber,
M.; Schep, M.; Barnes, D. J.; and Hollingsworth, R. G.
2002. A road map for teaching introductory programming
using lego mindstorms robots. InITiCSE-WGR ’02: Work-
ing group reports from ITiCSE on Innovation and technol-
ogy in computer science education, 191–201.
Martin, F. 1994. Circuits to Control: Learning Engineering
by Designing LEGO Robots. Ph.D. Dissertation, MIT.
Mayer, G.; Weinberg, J. B.; and Yu, X. 2004. Teaching
deliberative navigation using the LEGO RCX and standard
LEGO components. InAccessible Hands on Artificial In-
telligence and Robotics Education: Working Papers of the
2004 AAAI Spring Symposium Series, 30–34.
Meeden, L. 1996. Using robots as introduction to com-
puter science. InProceeding of the Ninth Florida Artificial
Intellegence Research Symposium (FLAIRS), 473–477.
Sklar, E.; Parsons, S.; and Stone, P. 2004. Using RoboCup
in university-level computer science education.Journal on
Educational Resources in Computing (JERIC), Special Is-
sue on robotics in undergraduate education, part I4(2).
Sklar, E. 2004. A long-term approach to improving human-
robot interaction: RoboCupJunior Rescue. InProceedings
of the International Conference on Robotics and Automa-
tion (ICRA).
Stein, L. A. 1996. Rethinking cs101: Or, how robots rev-
olutionize introductory computer programming.Computer
Science Education.
Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.;
Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.;
Hoffman, G.; Lau, K.; Oakley, C.; Palatucci, M.; Pratt,
V.; Stang, P.; Strohband, S.; Dupont, C.; Jendrossek, L.-
E.; Koelen, C.; Markey, C.; Rummel, C.; van Niekerk, J.;
Jensen, E.; Alessandrini, P.; Bradski, G.; Davies, B.; Et-
tinger, S.; Kaehler, A.; Nefian, A.; and Mahoney, P. forth-
coming. Stanley, the robot that won the DARPA grand
challenge.Journal of Field Robotics.
Touretzky, D. S., and Tira-Thompson, E. J. 2005.
Tekkotsu: A framework for AIBO cognitive robotics. In
Proceedings of the Twentieth National Conference on Ar-
tificial Intelligence (AAAI-05). Menlo Park, CA: AAAI
Press.
Zykov, V.; Mytilinaios, E.; Adams, B.; and Lipson, H.
2005. Self-reproducing machines.Nature435(7038).


