
CEL: A Framework for Enabling anInternet Learning CommunityA DissertationPresented toThe Faculty of the Graduate School of Arts and SciencesBrandeis UniversityDepartment of Computer ScienceJordan B. Pollack, AdvisorIn Partial Ful�llmentof the Requirements for the DegreeDoctor of PhilosophybyElizabeth Ida SklarMay 8, 2000

This dissertation, directed and approved by Elizabeth Ida Sklar's Committee,has been accepted and approved by the Graduate Faculty of BrandeisUniversity in partial ful�llment of the requirements for the degree ofDOCTOR OF PHILOSOPHYDean of Arts and SciencesDissertation CommitteeProfessor Jordan B. Pollack, ChairProfessor Richard AltermanProfessor Pattie MaesProfessor James Storer

Copyright c byElizabeth Ida Sklar2000

for my two grandmothers, Mildred and Sadiethe faces of my yesterday who gave me the strength and the courage to pursue the dreamsof my tomorrowand my three children, Suzanne, Jennifer and Alexthe faces of my tomorrow who make all the todays worthwhile

AcknowledgmentsMany people have helped me along the journey that has culminated in this thesis.I would like to o�er special thanks to the following |To my advisor, Jordan Pollack, for supplying an endless stream of new ideas, fortrusting in me and for being my friend. To my committee, Rick Alterman, Pattie Maesand Jim Storer for their wisdom and advice and for taking an interest in my work. ToTom Banaszewski and Jackie Kagey, for supporting the pilot study.To the members of my department, with whom I've shared friendship and sometimesauthorship over the past 5 years: Paul Buitelaar, Carina Canaan, Paul Darwen, JeanneDeBaie, Sevan Ficici, Andy Garland, Greg Hornby, Hugues Juill�e, Simon Levy, HodLipson, Ofer Melnik, Julio Santana, Miguel Schneider, Marc Verhagen, Richard Watson,and especially to Pablo Funes, for many an afternoon hack and for his devotion toTron, with besitos. To the faithful stream of undergraduate programmers who helpedme implement the CEL system: John Abercrombie, Robert Gebhardt, Travis Gebhardt,Matthew Hugger, Louis Lapat and Maccabee Levine.To Myrna Fox, for listening patiently to my daily woes and always giving me soundadvice. To my sister, Deborah Sklar, for supplying the beautiful artwork that becamethe CEL logo. To Ed Rozier, for being an ever-faithful babysitter and father. To myever-faithful babysitter and friend, Linea Hopwood, who always kept my guys safe andsound.To my parents, Jay and Ellen Sklar, for teaching me to stand up on my own twofeet and for letting go, because you always knew I wanted to do it all by myself; forloving me despite my mistakes and for being proud of me.To my guys | Suzanne, for your enthusiasm and willingness to test anything andeverything; Jennifer, for the best hugs ever and for continually enlightening me by care-fully explaining the world to me; and Alex, for quietly growing from an infant into acapable little boy, waiting patiently each day for your frantic mother to get the girls onthe bus so we could �nally sit down and share our breakfast together.And to Alan Blair, my best friend and wonder twin, for all your love and supportthroughout this process, at any time of day or night, through lice and oods and boneinfections. You always believed in me, even when no-one else did, even when I lost faithin myself. Thank you, from the bottom of my heart.Go team! | Betsy.

ABSTRACTCEL: A Framework for Enabling an Internet Learning CommunityA dissertation presented to the Faculty ofthe Graduate School of Arts and Sciences ofBrandeis University, Waltham, Massachusettsby Elizabeth Ida SklarWith the introduction of personal computers into schools, educational software hasin�ltrated classrooms. Yet despite all the technology that is currently available, theorder of magnitude improvement in student performance which many expected as aresult of computer-based interactive learning systems is not evident. There are manyreasons for this shortcoming. This thesis discusses these reasons and responds to threespeci�c issues: the practical needs of schools, the curricular needs of teachers, and theoverlapping system needs of researchers.We present a prototype system called CEL (Community of Evolving Learners) whichprovides an environment that is: accessible, because it can be reached by schools withminimal hardware capabilities and no specialized software installation requirements; ex-ible, because it can host a variety of curricular and experimental activities; and extensi-ble, because it o�ers a shareable framework to which others can add their own activities.CEL is an Internet environment in which users engage in multi-player educationalgames, with each other and/or with software agents. This thesis describes the CELsystem, detailing its design and explaining the kinds of activities that can be hosted byCEL and the types of data that can be gathered. Pilot testing that was used to validatethe CEL mechanism is outlined. Throughout, we demonstrate CEL as an accessible,exible and extensible platform capable of supporting many types of curricular activitiesand research experiments.
vi

Contents1 Introduction 11.1 Contribution : 31.2 Outline : 72 Background 92.1 What are interactive learning systems? : : : : : : : : : : : : : : : 112.1.1 Instructive learning systems : : : : : : : : : : : : : : : : : 112.1.2 Constructive learning systems : : : : : : : : : : : : : : : : 122.2 How are interactive learning systems evaluated? : : : : : : : : : : 132.3 Interactive learning studies : 162.3.1 Experimental research: motivation : : : : : : : : : : : : : 172.3.2 Experimental research: skill acquisition : : : : : : : : : : 212.3.3 Field study: KIE : 242.3.4 Field study: Pueblo : 252.3.5 Field study: MOOSE Crossing : : : : : : : : : : : : : : : 282.3.6 Pilot study: MANIC : 30vii

2.3.7 Pilot study: Counting on Frank : : : : : : : : : : : : : : : 312.3.8 Pilot study: Phoenix Quest : : : : : : : : : : : : : : : : : 322.3.9 Pilot study: ScienceSpace : : : : : : : : : : : : : : : : : : 332.3.10 Pilot study: Zadarh : 342.3.11 System design: Belvedere : : : : : : : : : : : : : : : : : : 352.3.12 System design: CoVis : 362.4 Summary : 383 An Overview of CEL 453.1 A brief tour of CEL : 453.2 The IDsigner : 513.3 Prototype Activities : 533.3.1 Keyit : 533.3.2 Pickey : 563.3.3 Monkey : 583.3.4 Automath : 603.3.5 Loois : 623.3.6 Tron : 643.4 Summary : 664 System Architecture 674.1 Server : 694.2 Messenger : 734.3 Monitor : 73viii

4.4 Database Manager : 744.5 Matchmaker : 754.6 Secret Agent : 764.7 Player : 784.7.1 Formative assessment : 794.7.2 Final design : 834.8 CEL Message Language : 844.9 Player States : 895 Data in CEL 935.1 Domain knowledge : 945.1.1 Words database : 965.1.2 Arithmetic database : 995.2 Data products : 1015.2.1 Student model : 1015.2.2 Performance : 1035.2.3 Match Results : 1065.2.4 Survey Results : 1085.2.5 System Logs : 1095.3 Summary : 1106 Pilot Testing 1136.1 Activity : 1186.2 Interaction : 121ix

6.3 Learning : 1276.4 Interest : 1296.5 O�-line survey : 1316.6 Summary : 1357 Agents as learning partners 1377.1 Functional description : 1387.2 Playground behavior : 1417.3 Game behavior : 1437.4 Training agents to emulate humans : : : : : : : : : : : : : : : : : 1457.4.1 Architecture : 1477.4.2 Training : 1487.4.3 Results : 1507.5 Discussion : 1548 Domain coverage 1558.1 The domain : 1578.2 Selection algorithm : 1588.2.1 Merging : 1618.2.2 Reproduction through sampling : : : : : : : : : : : : : : : 1648.3 Results : 1698.3.1 Domain coverage : 1708.3.2 Feature correlation : 1728.4 Discussion : 177x

9 Conclusion 1799.1 Accessibility : 1799.2 Flexibility : 1809.3 Extensibility : 1819.4 Issues in Internet communities : : : : : : : : : : : : : : : : : : : 1819.4.1 Safety and privacy in CEL : : : : : : : : : : : : : : : : : 1829.4.2 Identity in CEL : 1859.4.3 Communication in CEL : : : : : : : : : : : : : : : : : : : 1879.5 Future work : 1889.5.1 Visualization : 1899.5.2 Player clustering : 1899.6 Finally : 193

xi

xii

List of Figures2.1 System development cycle : 163.1 CEL Home Page. : 463.2 Logging in to CEL. : 473.3 The CEL menu. : 483.4 The CEL Playground. : 493.5 An invitation to play a match. : : : : : : : : : : : : : : : : : : : 503.6 Site Map. : 513.7 The IDsigner. : 523.8 The game of Keyit. : 553.9 The game of Pickey. : 573.10 The game of Monkey. : 593.11 The game of Automath. : 613.12 The game of Loois. : 633.13 The game of Tron. : 654.1 System Architecture. : 67xiii

4.2 Sockets. : 704.3 Server architecture, with overview of clients. : : : : : : : : : : : : 724.4 The Monitor. : 744.5 The Matchmaker. : 754.6 Typical software agent architecture. : : : : : : : : : : : : : : : : 774.7 Overview of the player. : 794.8 The CEL Playground, initial version. : : : : : : : : : : : : : : : : 804.9 The CEL Playground, intermediate version. : : : : : : : : : : : : 824.10 Player state diagram. : 905.1 Sample word with feature vector. : : : : : : : : : : : : : : : : : : 985.2 RATE de�nition for Keyit, Pickey and Automath. : : : : : : : : : 1045.3 RATE de�nition for Monkey. : 1046.1 Data collection time, per day. : 1166.2 Number of words completed versus typing speed, per student. : : 1176.3 Activity charts for sample students. : : : : : : : : : : : : : : : : 1196.4 Summary activity chart. : 1206.5 Number of games played per minute. : : : : : : : : : : : : : : : : 1236.6 Interactions between types of participants. : : : : : : : : : : : : : 1246.7 Who plays whom, grouped by age and gender. : : : : : : : : : : 1256.8 Who plays whom, ordered by typing speed. : : : : : : : : : : : : 1266.9 Tracking learning in sample students. : : : : : : : : : : : : : : : : 1276.10 Change in typing speed. : 128xiv

6.11 Exit poll. : 1296.12 \How much did you enjoy the match?" : : : : : : : : : : : : : : : 1306.13 \How hard was the match?" : 1306.14 Post-study survey. : 1317.1 Basic control architecture. : 1397.2 Playground behavior. : 1427.3 Command probability. : 1437.4 Game behavior. : 1447.5 Neural network architecture. : 1487.6 Average typing speeds of players. : : : : : : : : : : : : : : : : : : 1497.7 Improvement during training. : 1517.8 Correlation between trainers and best trainees. : : : : : : : : : : 1527.9 Correlation between populations of trainers and best trainees. : : 1538.1 Distance between words in feature space. : : : : : : : : : : : : : 1578.2 Selection and reproduction. : 1608.3 Exploitation and exploration in feature space. : : : : : : : : : : : 1618.4 Sampling illustration. : 1678.5 Sample domain coverage chart. : : : : : : : : : : : : : : : : : : : 1708.6 Domain coverage charts for sample users. : : : : : : : : : : : : : 1718.7 Word length vs typing speed. : 1728.8 Feature correlation with typing speed. : : : : : : : : : : : : : : : 1738.9 Correlation coe�cients. : 176xv

9.1 Sample IDsigns. : 1869.2 Sample playgroup graph. : 191

xvi

Chapter 1IntroductionIn the last two decades, the rise in popularity of personal computers has spawneda new and burgeoning market for educational software. With the introductionof computers into schools, this software has in�ltrated classrooms. Schools arebeing \wired" at a rapid rate, giving teachers and students direct access to theInternet. Yet despite all the vast and varied hardware and software, the order ofmagnitude improvement in student performance that many expected as a resultof computer-based interactive learning systems is not evident.There are many reasons for this shortcoming. Some believe that the educa-tional software market has exploded too fast, without enough pedagogy behindthe software or developmental psychology supporting schools' technology inte-gration decisions [Healy, 1999]. \Once net connections are established,...manyteachers �nd a shortage of quality software tools and curricula to make useof them." [Bruckman & DeBonte, 1997] And there are practical issues as well.1

\Computer software and hardware become obsolete every 30 months, too swifta change for most schools to handle economically." [Gonzalez, 2000]Most learning systems have not been successfully deployed in practical en-vironments, in spite of expensive resources and years of research. Kinshuk andPatel [1997] cite two primary reasons for this failure: (1) the underlying method-ologies for developing most learning systems were not designed from an educa-tional viewpoint, and (2) the development of most learning systems has left outthe needs of teachers and students.Indeed, John Anderson's original motivation was \to learn more about skillacquisition rather than to produce practical classroom results." [Anderson et al.,1995] In a paper outlining lessons learned from working on intelligent tutoringsystems (ITS) for over 10 years, Anderson et al. [1995] list several reasons whytheir tutors were not put into general use in classrooms, including: \there wasnever any attempt on our part to address the curriculum that educators wantedto teach." As well, \the systems that we developed were inexible in the waythey had to be used and gave teachers no ability to tune the application of thetutors to their own needs and beliefs about instruction."However, \there is no mention of any existing ITS in the literature whichallows the teaching community to contribute towards the development of an ITSwithout starting the design process from scratch." [Kinshuk & Patel, 1997] Pri-marily, this is because \knowledge-based educational software, such as intelligenttutoring systems, have historically been large, self-contained programs with spe-cialized platform requirements." [Suthers & Jones, 1997]2

Clearly, the �eld of interactive learning systems (ILS), which includes in-structive intelligent tutoring systems as well as constructive environments, hasproblems. The work presented in this thesis responds to three speci�c issues:1. The practical needs of schools. It is impractical to ask schools to installfancy educational systems and keep up with hardware and software up-grades. Additionally, the hardware at many schools is several generationsbehind the equipment used in research labs.2. The curricular needs of teachers. Educational practitioners should havean active role in building educational software, both for experimental andcommercial implementations.3. The overlapping system needs of researchers. Many researchers with a vari-ety of backgrounds and goals are studying human learning and technology,and each group is building their own complete system, despite the fact thatmany underlying system components are the same.1.1 ContributionThe main contribution of this thesis is to put forth a practicable interactivelearning system designed to support the types of activities, experiments and datacollection which are common to the ILS �eld, while answering needs that havenot been addressed satisfactorily in the past. The thesis presents a prototypesystem called CEL (Community of Evolving Learners) [Sklar & Pollack, 1998;3

Sklar & Pollack, 1999; Sklar & Pollack, 2000b] which provides an environmentthat is:� accessible, because it can be reached by schools with minimal hardwarecapabilities and no specialized software installation requirements;� exible, because it can host a variety of curricular and experimental activ-ities; and� extensible, because it o�ers a shareable framework to which others can addtheir own activities.The basis of this work is in computer science, not education, psychologyor cognitive science; so the purpose here is not to set forth a new pedagogicalexample. On the contrary, the goal is to establish a platform that others withresearch interests in human learning can use to de�ne and implement their ownstudies. The CEL system is speci�cally engineered for re-use, so that it can beshared by others to host a variety of activities, without requiring others to buildan entire interactive learning system \from scratch."CEL is implemented on the Internet because in order \to reduce cost...andenable greater collaboration...educational materials should be shareable betweendiverse applications across the Internet." [Suthers & Jones, 1997] As well, Inter-net learning communities o�er several advantages over traditional educationalsoftware [Kinshuk & Patel, 1997; Stanchev, 1993]: many-to-many communica-tion, place independence, time independence, multi-media support and computer-mediated interaction. Inside CEL, users engage in multi-player educational games4

because \play appears to be a universally accepted mode of learning." [Amoryet al., 1998] Also, games are \attractive to many children, and exploratory andinteractive in nature." [Klawe & Phillips, 1995] Multi-player activities are imple-mented because much research has shown group learning to be highly e�ective[Johnson & Johnson, 1989; Slavin, 1992; Slavin, 1995].CEL is accessible, taking advantage of the Internet in two ways. First, thetechnology behind the Internet means that the system can be used by peoplefrom all over the world with varying hardware and software capabilities. Sec-ond, the distributed nature of the Internet means that learners can participateanonymously, allowing students to succeed and fail incognito, without the normalsocial pressures of a traditional classroom setting.CEL is exible, having the ability to host many types of games and collectmany types of data, supporting teachers and researchers by enabling a variety ofcurricular activities and experiments. The games in CEL may be synchronous,where players take turns, or asynchronous, where play happens in pseudo real-time. Games in CEL may be collaborative or competitive. Players may partici-pate openly or secretly, with each other and/or with software agents. Some of thecurricular activities that have been hosted include: a spelling bee, an anagramsgame, typing races, a collaborative building activity and arithmetic exercises.Some of the types of experiments that can be conducted include:5

� comparison of methods for de�ning curricular paths within a knowledgedomain� analysis of competitive versus collaborative settings for an educational game� study of interactions in human-human versus human-agent encounters asopponents in competitive, or partners in collaborative, activities� comparison of di�erent user interfaces for the same underlying engineCEL is extensible, allowing others to implement and host their own activi-ties and collect their own data, while tapping into our client-server architecture,facilitating communication through our system server, handling data with ourdatabase manager and gaining access to a common infrastructure and user base.This design enables rapid creation and dissemination of additional games andabstracts away complex system building issues such as client-server communi-cation, player distribution and synchronization, and data capture and storage.This means, for example, that contributors could be teachers or non-technicalresearchers, who could lay out new pedagogical activities and then work withundergraduate programmers to extend our model and implement the new activ-ities.Our target user group is primary school children, therefore we pay particularattention to issues of privacy and safety. CEL o�ers an alternative to traditionallearning environments, breaking physical barriers of classroom walls and linkingstudents with similar abilities but diverse ages, genders and locations.6

1.2 OutlineThis thesis presents the CEL environment, detailing the system architecture,explaining the types of activities that can be hosted by CEL and the types ofdata that can be collected in CEL, and demonstrating the accessibility, exibilityand extensibility of the system. The thesis is organized into nine chapters.Chapter two provides background in interactive learning environments, iden-tifying elements of these systems that are pertinent to researchers and describingthe types of data that is generally collected and analyses that are typically per-formed. The focus is on educational games and Internet learning communities.Chapter three introduces the CEL system, from a user's point of view. Anoverview of the environment is given, site components are explained and termi-nology is de�ned that will be used throughout the thesis.Chapter four gives a detailed description of the modular system architecture,focusing on its accessibility and extensibility. The basis is a client-server model.Particular attention is paid to the needs of the client since the user base for CELincludes school children with low-end computers | slow network bandwidth andlimited memory.Chapter �ve discusses the data that is gathered inside CEL and describesthe databases that are in use. The emphasis is on the exibility of the datacollection module.Chapter six reports on pilot testing in which CEL was used in a publicprimary school by fourth and �fth grade children. During the early phase of this7

period, the architecture of the system was adjusted in response to various issuesraised at the client site. The remainder of the period was spent collecting sampledata and this chapter closes by demonstrating the types of analyses that couldbe performed on CEL data, using the pilot study as an example.Chapter seven details the use of software agents as arti�cial learning partnerswho inhabit CEL in order to sustain the community by maintaining a \live"presence at all times. CEL allows exibility in the choice of a control mechanismfor these agents. The agents described here are controlled by neural networksthat were trained using a new approach, based on human usage data gatheredduring pilot testing.Chapter eight outlines a method used for domain knowledge engineering,exhibiting CEL's exibility in the choice of a domain delivery mechanism. Themethod presented is a novel approach in which curricular paths are allowed toemerge as students interact with CEL with the goal of achieving individualizeddomain coverage that adapts on-line to the needs of each student as each studentlearns. Note that this work is likely the �rst to take an evolutionary approach toproblem selection in an interactive learning system.The thesis concludes with a speci�c defense of the three initial claims |that CEL is accessible, exible and extensible. Finally, future endeavors arediscussed, wherein the current capabilities of the system will be expanded, andnew directions will be explored. 8

Chapter 2BackgroundNo matter what we do, a huge infusion of technology is coming toeducation. It doesn't matter if it works or not, whether we makemistakes or not. It's coming because so much money is behind it.And because that infusion of technology is inevitable, it would benice to start adding some new perspectives about technology in theschools. It's just possible our decisions about technology in schoolsare not being guided by the instincts of our best teachers. Right now,we run the risk of being blinded by science. [Snyder, 1994]In general, there is a disconnect between educational researchers and prac-titioners [Reeves, 1999], and this divide is increased when the topic of researchis educational software, or interactive learning systems (ILS). Often the buildersof these systems are either computer scientists, not trained in education, or edu-cators, psychologists and/or cognitive scientists, not trained in system building.There is clearly a need to connect the work of education practitioners withthat of human learning researchers and builders of learning systems. This chapterexamines literature on interactive learning environments, in an e�ort to unify theinterests of the di�erent groups since the motivation behind the CEL system is to9

provide a platform that could be used by any of these groups for experimentationor in support of curricular activities. Because the CEL environment involvesInternet-based educational games, the emphasis in this chapter is on educationalgames and Internet learning communities.This chapter is organized as follows. Initially, two questions are addressed:What are interactive learning systems? How are interactive learning systemsevaluated? Then several interactive learning studies, at varying levels of maturity,are discussed. Particular attention is paid to the following four elements:1. the types of issues addressed in the ILS �eld,2. the kinds of environments supported and system components built,3. the forms of data collected, and4. the various testing and analyses performed.Each of these elements has contributed to the composition of the CEL platform.The chapter closes with a summary that highlights the speci�c ways in whichCEL is designed to address these four elemental requirements.
10

2.1 What are interactive learning systems?Ultimately, all learning is interactive in the sense that learners in-teract with content to process, tasks to accomplish, and/or prob-lems to solve. However...I refer to a speci�c meaning of interactivelearning as involving some sort of technological mediation between ateacher/designer and a learner. [Reeves, 1999]There are two major approaches taken in the �eld of interactive learningsystems (ILS) [Reeves, 1999]:1. instructive and2. constructive.The di�erence can be described as follows: students learn \from" instructivesystems; students learn \with" constructive systems.2.1.1 Instructive learning systemsInstructive learning systems have a basis in educational communication theory,where researchers look to �nd the best ways of communicating new ideas tolearners. Traditional computer-aided instruction (CAI) applications and intelli-gent tutoring systems (ITS) are examples of this type of system.ITS's grew out of �xed-path, drill-and-practice CAI applications. Semi-nal work in the ITS area began with frame-based tutoring systems [Brown &Burton, 1978], exhibiting such desirable characteristics as providing traces ofproblem-solving sessions, customizing for individual users, dynamically select-ing what to do next and coaching users at opportune times [Clancey, 1986].11

Early work combined some or all of these features, each emphasizing issuessuch as memory modeling [Schank, 1981; Kolodner, 1983], construction of rules[Anderson, 1982], and representation of students' misconceptions [VanLehn, 1983;Soloway et al., 1981]. Many of these ideas were developed into systems tested inlaboratories, classrooms and work places [Koedinger & Anderson, 1993; Schank& Cleary, 1995].Subsequent work has continued to explore these areas in more depth. Stu-dent modeling has been aided by statistical techniques [McCalla & Greer, 1994;Conati & VanLehn, 1996; Beck, 1997; VanLehn et al., 1998] as well as arti�cialintelligence methods like case-based reasoning [Shiri-A. et al., 1998].2.1.2 Constructive learning systemsConstructive learning systems are based in cognitive psychology, where the com-puter is seen as a cognitive tool or learning partner. Constructivism originatedwith Jean Piaget and states that knowledge being acquired is built by the stu-dent, rather than being supplied by the teacher [Gruber & Voneche, 1977].Seymour Papert suggested constructionism as an expansion to construc-tivism, postulating that students learn better when they are actively engaged inbuilding something external to themselves. Their construction could be a phys-ical object, like a castle, or a virtual object, such as a room in a virtual world[Papert, 1991]. In constructionist environments, students are able to exploreideas for themselves without having to stick to a �xed curriculum [Papert, 1993];and students at all levels of ability are provided with opportunities to learn.12

For example, Papert developed LOGO [Papert, 1980], a simple computerlanguage that children can use to program graphics environments. In LOGO,the cursor is a \turtle" that moves around the screen based on commands givenby the student. Later, Mitch Resnick and Uri Wilensky developed Star*LOGO[Resnick, 1997], which builds on the LOGO setting and adds a dimension ofparallelism. Instead of having one turtle, the programmer is given many, eventhousands, of turtles. Students can experiment with adaptive behavior, by giv-ing a group of turtles the same commands and observing what happens as themembers of the group perform the commands and in doing so interfere with eachother.2.2 How are interactive learning systems evaluated?There is no simple standard for evaluating the e�ectiveness of interactive learn-ing systems, either instructive or constructive. Mark and Greer [1993] reviewmethodologies commonly used, describing two general categories of assessment1:1. formative | used to assess the design and behavior of asystem in-progress, generally performedby computer scientists2. summative | used to assess the e�ectiveness of a completedsystem, generally performed by educatorsand/or psychologists1following from Littman and Soloway [1988]13

Table 2.1 lists common components of interactive learning systems and somecorresponding evaluation criteria.Table 2.1: Components of and evaluation criteria for ILS.component evaluation criteriadomain knowledge � accuracyteaching component � range of instructional method(s) o�ered� level of adaptability� degree to which instruction is based oneducational and psychological testinguser interface � comparison of multiple user interfacesfor the same underlying enginestudent knowledge (note that the same criteria are used to evaluatestandard educational and/or psychological tests):� validity | does the test show evidence that itmeasures what it says it measures?� reliability | are multiple results for the samesubject consistent?� objectivity | is the test administered and scoredthe same way for every participant?� standardization | can results be translated intoa meaningful representationof student performance?system adaptivity � comparison of interactions at di�erent skill levelscontrol component � system performance measures (e.g., speed)(Source: interpretation of [Mark & Greer, 1993])The techniques for performing assessments vary depending on which compo-nent is being evaluated, where in the system development cycle the evaluation isbeing performed and who is performing the evaluation. Pilot testing often occurslate in formative evaluation, bridging the gap to summative evaluation. Thereare three methods of pilot testing: one-to-one, which is performed early in thedevelopment cycle, with one student, teacher or researcher providing feedback;small-group, which is performed later in the development cycle, with a small14

group of students (or teachers) providing feedback; and �eld, which is performednear the end of development, emulating experimental conditions with teachersand students in a \live" (school) setting.The list of criteria in table 2.1 is of primary concern during formative eval-uation. Other techniques are more pertinent during summative evaluation. Incriterion-based evaluation, a general list of guidelines is developed and systemsare evaluated based on their adherence to these guidelines, for example, programconstruction, behavior and characteristics. While developing speci�cally relevantcriteria is not an easy task, this method may prove useful in formative assessmentand in comparing di�erent systems. With expert knowledge and behavior assess-ment, system performance is compared to that of a human expert performingthe same task. One famous example is the Turing test [Turing, 1963]. Softwaresystems may be subjected to a standard certi�cation process, just as humanteachers are, perhaps through careful examination by quali�ed human experts.In sensitivity analysis, the responsiveness of a system is tested on a variety ofdi�erent user behaviors. This may be particularly useful for evaluating systemadaptivity. After system development and pilot testing are complete, experimen-tal research begins. The conditions should be the same as those during the �eldtesting phase. Figure 2.1 illustrates the progression from system developmentthrough experimental research.In reviewing the pilot testing and experimental literature, two types of eval-uations are common: (1) comparison of pre- and post-tests, to measure changesin student performance, and (2) analysis of on- and o�-line surveys, to deter-15

experimental research

field pilot testing

small-group pilot testing

one-to-one pilot testing

system design

summative assessment

formative assessment

Figure 2.1: System development cyclemine students' interest in a system. This reects the fact that most systems areassessed based on learning and/or motivation.2.3 Interactive learning studiesAs mentioned earlier, there are many diverse groups studying interactive learning,each with its own interests, goals and methods of analysis. This section samplessome of the interactive learning literature, describing several projects at varyinglevels of maturity (see �gure 2.1).First, the experimental work of two prominent researchers is outlined: ThomasMalone, a psychologist who examined motivation in educational games, and JohnAnderson, a cognitive scientist who looked at skill acquisition in human learning.Second, three �eld studies performed using Internet-based systems are dis-16

cussed. The KIE system [Bell et al., 1995] is designed to help students learnto integrate knowledge when facing scienti�c problems. The other two systemsmentioned are educational MUD's2. MUD's were introduced in the late 1960's,originating with o�-line text-based role-playing adventure games. Probably themost famous was called Dungeons and Dragons. The �rst digital versions cameon-line in the late 1970's, on Arpanet [Bruckman, 1997], and since then MUD'shave been growing in popularity. Some have used the MUD paradigm to buildeducational applications [Fanderclai, 1995; Gordon & Hall, 1998]. The educa-tional MUD's discussed here are Pueblo [Walters & Hughes, 1994] and MOOSECrossing [Bruckman, 1997].Third, �ve small-group studies are detailed. The �rst, describes an Internet-based system called MANIC [Stern et al., 1997] that is designed to deliver coursematerials e�ectively. The remainder discuss educational games: Counting onFrank [Klawe & Phillips, 1995], Phoenix Quest [Klawe et al., 1996], ScienceSpace[Dede et al., 1996] and Zadarh [Amory et al., 1998].Finally, two system design reports are summarized: Belvedere [Suthers &Jones, 1997] and CoVis [Pea, 1993]. Both are Internet-based systems used tosupport collaboration in science learning at the high school level.2.3.1 Experimental research: motivationMany believe that the secret to education is motivating the student. Researchersin human learning have been trying to identify the elements of electronic environ-2Multi-User Dungeon/Dimension/Domain 17

ments that work to captivate young learners. In 1991, Eliot Soloway wrote \Oh, ifkids were only as motivated in school as they are in playing Nintendo." [Soloway, 1991]Two years later, Herb Brody wrote: \Children assimilate information and acquireskills with astonishing speed when playing video games. Although much of thisgain is of dubious value, the phenomenon suggests a potent medium for learningmore practical things." [Brody, 1993]Thomas Malone is probably the most frequently referenced author on thetopic of motivation in educational games. In the late 1970's and early 1980's,he conducted comprehensive experimental research to identify elements of ed-ucational games that made them intrinsically motivating. He highlights threecharacteristics: challenge, fantasy and curiosity.Challenge involves games having an obvious goal and an uncertain outcome.Malone recommends that goals be \personally meaningful", reaching beyondsimple demonstration of a certain skill (such as being able to solve a multiplicationproblem or spell a word). Instead, goals should be intrinsically practical orcreative, like solving a multiplication problem in order to compute the cost oflemons needed to make a gallon of lemonade for a lemonade stand, or spellingthe words in the marketing copy that will advertise the lemonade stand.Malone emphasizes that achieving the goal should not be guaranteed andsuggests several methods for providing this uncertainty:1. variable di�culty level | this can be determined automatically by thesystem or manually by the player;18

2. multiple goal levels | this can include performing a task correctly and alsoquickly, so that once the player has learned how to do the task right, s/hewill then be motivated to learn to accomplish the goal with greater speed;3. hidden information | as the learner progresses at the task, more informa-tion can be revealed, for example by making the task simpler when playerstake longer to �nd solutions;4. randomness | an element of surprise or risk may engage a learner, e.g.,games that involve gambling.Fantasy is a feature that is designed to enhance the fun of learning. Fantasycan be intrinsic or extrinsic. Extrinsic fantasy involves overlaying some kind storyon top of the learning task, for example allowing the player to move around abaseball diamond by providing correct answers to arithmetic problems. Intrinsicfantasy implies that the skill being learned is inherent in the problems presented,for example teaching a player about Cartesian coordinates by letting him movearound in a grid space.Curiosity provides \novel and surprising" elements, but these should not beuncomprehensible to the learner. There are two forms of curiosity elements |sensory and cognitive. Sensory refers to audio and visual e�ects. Cognitive refersto surprises within the game content. These should also be constructive, movingthe learner toward the goal, not distracting him from the goal.Malone makes an important distinction between toys and tools. He de�nestoys to be systems that exist for their own sake, with no external goals; in19

contrast, tools are systems that exist because of their external goals. Goodgames are di�cult to play, in order to increase the challenge provided to theplayer. Good tools should be easy to use, in order to expedite the user's externalgoal. We can infer that good educational games should encompass elements ofboth. There is an external goal | for the user to learn how to perform a giventask | and the learning process should be made as easy as possible. At the sametime, the learner should be challenged during the learning process.The simplest educational games take old-fashioned tutoring systems andsurround them with extrinsic motivational features like attractive multi-mediaspecial e�ects. However, according to Mitch Resnick, building an animated worldaround a series of puzzles, all having correct answers, imposes an arti�cial en-vironment and reduces the educational encounter to a fact-learning experience.\Pedagogically, children will learn more if the acquisition of knowledge is madeintegral to the game." [Brody, 1993] The E-GEMS group at the University ofBritish Columbia agrees, promoting \the playing of games as an integral compo-nent of [mathematics] learning." [Klawe & Phillips, 1995]With a rise in computer-supported collaborative learning environments, manyeducational games are moving into multi-player modes. McGrenere [1996] re-viewed much of the literature and summarized her �ndings with a series ofguidelines for designing educational multi-player games: provide for challenge,fantasy, curiosity and creativity; design the learning task carefully; allow learnercontrol; allow for communication possibly through multiple modalities (audio,video, text messages); provide instant update of the game space; and provide for20

awareness through the use of various views and color. These recommendationsclearly follow on Malone's research, while promoting constructivist environmentsas well.2.3.2 Experimental research: skill acquisitionJohn Anderson is one of the most renowned early researchers in instructive in-teractive learning systems. His overarching research question can be summed upas follows:One of the current controversies in cognitive science and education iswhether it is possible to take a complex competence, break it downinto its components, and understand the learning and performanceof that competence in terms of the learning and performance of thecomponents. [Anderson et al., 1995]Anderson's work is based on the ACT theory, which is a theory of skill acqui-sition that began with ACT* [Anderson, 1982] and became ACT-R [Anderson,1993]. The basic principles of ACT include distinguishing between declarativeknowledge and procedural knowledge (i.e., stating a fact and knowing how to usethat fact), relating this knowledge to task goals and converting the declarativeknowledge into production rules to help achieve the task, and strengthening theknowledge through practice. In general, Anderson de�nes computer-based tu-toring systems using a \model-tracing" approach wherein a correct behavior ismodeled as a set of production rules and it is intended that the student shouldfollow this model in his learning.Anderson and his colleagues developed three major systems: geometry tutor,algebra tutor and LISP tutor. Many experiments were performed over a number21

of years with these systems. Their summative analysis included four components:1. production practice | this is a measure of how often students apply therelevant production rules,2. within-problem practice e�ects | this is a measure, over time, of how astudent improves his application of the appropriate production rules,3. acquisition factor | this is a measure of how well students performed withnew rules introduced during a lesson, and4. retention factor | this is a measure of how well students retained ruleslearned during earlier lessons.They performed formative experiments to determine the appropriate formand level of feedback that should be given to students and the amount of errorcorrection that should be required. They compared several levels, including nofeedback, feedback provided immediately by the system and feedback providedon demand (only when requested by the student). They gave students a �xed setof exercises to complete with one version of the system. They administered bothon-line and paper-and-pencil post-tests to determine which feedback mechanismwas most e�ective. The version that provided immediate feedback and immediateerror correction gave the best results.They also carried out some tests to determine what the content of feed-back messages should be. Measuring the speed with which students providedcorrect answers showed that feedback messages containing some explanation of22

a student's error were signi�cantly more e�ective than feedback which simplyindicated that the student had made an error. However, post-testing, after thesession was over, did not result in statistically signi�cant di�erences, indicatingthat providing more explanation during initial learning did not appear to o�erlongterm learning bene�ts.One issue they point out is that creators of tutoring systems need to payattention to user interface design early on, rather than building the underlyingtutoring mechanism �rst. It is important to identify the skills being learnedand the environment in which these skills will be used, once acquired. The userinterface should be designed so that transferral of these skills from the learningenvironment to the \real world" will be smooth.Practical deployment of these systems o�ered further learning opportunitiesfor the researchers. They stated [Anderson et al., 1995] that there was no at-tempt on the part of the researchers to address the curricular needs of teachers.There was no larger educational objective | the post-tests were the only mea-sure of success. There was little understanding of how to deploy the softwaretutors in the classroom, and the tutors were not exible, so teachers could notcustomize the tutors to the meet the needs of their classrooms. As a result,the researchers began to develop working relationships with public schools andclassroom teachers. 23

2.3.3 Field study: KIEKIE3 (Knowledge Integration Environment) is designed to help students withscience learning and is focused on bringing students and evidence together to solveproblems. This system includes tools like an electronic space for taking notes, anon-line discussion facility and a knowledge integration coach that provides hintsto students as they work together to answer scienti�c questions. A more recentversion of this system is called the Web-based Integrated Science Environment(WISE)4.KIE stresses the integration of science knowledge, arguing that today, sci-ence education is often too abstract. Students are exposed to a broad scopeinformation and they do not gain in-depth understanding of this knowledge. Thepedagogical basis of the KIE project lies in a \sca�olded knowledge integrationframework", which aims to teach students to reconcile scienti�c models withintuitive observation and distinguish between technical and colloquial use of sci-enti�c terminology. KIE de�nes activities and software tools designed to helpstudents learn to use the Internet e�ectively for research, critique evidence andintegrate new knowledge. The overall goal is for students to gain an integratedunderstanding of science topics.A pilot study was conducted with KIE in which students were given thefollowing question to answer: \How far does light go?" 165 eighth grade studentsparticipated in a school setting. They worked in pairs, sharing 16 computers. The3http://www.clp.berkeley.edu/KIE.html4http://wise.berkeley.edu/WISE/welcome.php24

study began with students providing their intuitive answer to the question, priorto doing any research. Next, students reviewed evidence on the web to supportor refute their intuitions. Third, the students collaborated to come up with theirown empirical evidence, and then they posted that evidence on the web for othersto share. Fourth, they built a scienti�c argument, by integrating the evidencefound in the second and third steps. Fifth, they presented their arguments to theclass and discussion ensued. Finally, they took a post-test and provided informedanswers to the original question. Overall, the study demonstrated that the KIEapproach was feasible and the study suggested and motivated improvements tothe system, both in terms of software and curriculum.The technical components of the system include: a web browser, an HTMLeditor, email software, a system navigation tool for selecting components, an on-line notebook, a networked evidence database (containing information from stepstwo and three, above), a multi-media discussion tool, a teacher tool for designingactivities, and an on-line coach.The overall goal of the KIE system is to help make the Internet a partner ineducation and to teach students lifelong skills for science exploration.2.3.4 Field study: PuebloPueblo5 was originally called MariMUSE and was used at a summer camp forprimary school children in Arizona in 1993. Two years later, the MUD wasgiven its current name. The focus in Pueblo is on learning through writing,5http://pcacad.pc.maricopa.edu/Pueblo/index frame.html25

programming and simulation. Participants create their own virtual world andtake on new identities, using the language of the MUD to invent and describeplaces and creatures, de�ning appearances and enacting behaviors. Researchersfound that Pueblo served to draw otherwise uninterested children into literacyactivities and that the paradigm helped to break down traditional classroom andsocial boundaries.The motivation behind Pueblo is to be able to link experts and learners viathe Internet. Typically, a classroom contains one expert (a teacher) and manylearners (students). The Internet facilitates linking many experts with studentsand allows people to participate anonymously.Researchers were interested in answering several questions with regard tothe system. Can elementary students use a MUSE environment? Is there anyindication that writing skills develop as a result of using Pueblo? Do primaryschool teachers believe in the system?The data collected in the Pueblo system includes demographic information(gender, age and race of participants), experimenters' observations, anecdotalinformation, session transcripts, daily evaluations and journal entries.Two years after the introduction of the Pueblo project, Billie Hughes high-lighted some on-going challenges in making the system useful in a school setting[Hughes, 1995]. These could be considered recommendations for any type ofsystem designed to be used in schools. Key issues are:26

� Teacher start-up | School implementations entail use of local sta� forsolving technical installation problems, who must be trained. As well, thereare training issues involved in introducing teachers to the system.� Student start-up | Early use of the system is di�cult because studentshave to learn many commands in order to just get around in the environ-ment, before being able to really create anything.� Toolbox creation | It is helpful to have a toolbox of generic objects withgeneric behaviors that teachers and students can invoke when they �rstbegin using the system, before they are ready to learn/perform low-levelprogramming tasks.� Help | Even after initial start-up, help is often needed, especially for userswithout a programming background; in addition to creation of a toolbox(above), a tutoring facility would be useful.� Reporting mechanism | In order for this environment to be useful forteachers, there needs to be a toolbox of reporting mechanisms for extractingsamples of students' work, examining students' activities with the systemand showing students' progress over time.� Reality check | Young children have trouble distinguishing the real fromthe virtual, and researchers and teachers need to be aware of this.27

2.3.5 Field study: MOOSE CrossingMOOSE Crossing6 is a constructionist environment designed for late primaryand middle school students. It is a text-based MUD, however MOOSE Crossinguses a new language called MOOSE which was the �rst MUD language designedexplicitly for children. MOOSE Crossing is enabled on the Internet, howeverit is not accessible from inside a browser. Participants must download softwareonto their computers and connect to the MUD using this software. Participantsenter MOOSE Crossing with a user name and password, but must apply formembership o�-line by sending in forms signed by the child member and herparent/guardian. Adults monitor discussion on the site, and anyone found mis-behaving will be denied future access. MOOSE Crossing has been extremelywell-received by researchers as probably the �rst widely available environmentof its kind, and analysis of participation has revealed positive results similar tothose found in Pueblo.MOOSE Crossing is designed to be used from home, as part of organizedafter-school activities and as a classroom activity. [Bruckman & DeBonte, 1997]reports on pilot testing that was performed with �ve classes in four schools inthree di�erent states. \Too many factors vary among these classes to warrant aformal comparison. However, a case-study analysis reveals a number of educa-tionally signi�cant features." [Bruckman & DeBonte, 1997]Data collected during pilot testing included: transcripts of discussions with6http://www.cc.gatech.edu/fac/Amy.Bruckman/moose-crossing/28

students and teachers (both on- and o�-line), objects created by children, log �lesof interactions and observations of researchers. Permission for collecting this datawas obtained from both students and their parents. Statistics include: locationof study, grade level of participants, number of participants, number of adultspresent to assist, length and frequency of sessions, average number of commandstyped per student, average number of objects owned per student, and averagenumber of scripts written per student.Results are presented both in terms of overall averages, grouped averages (foreach classroom) and individual averages and examples. The system is assessedon four measures: access, peer experts, free-form versus structured activity andatmosphere. Access refers to the ease with which students have access to acomputer where they can log on to MOOSE Crossing.In schools where a computer is physically located in the classroom, childrenare often allowed to use that computer during their free \choice" time. Bruckman[1997] states that in these classrooms, children \regularly" use MOOSE Crossingduring their free time. There is no statistical data to support this claim, nor anyindication as to the percentage of children who chose to use MOOSE Crossing\regularly", nor what other computer programs are available to children at thattime, etc.Other factors were observed during the pilot testing. The presence of peer ex-perts improved use of the system and these students served as a valuable resourcefor others. Some of the students' experiences with the system were motivatedby collaborative projects designated by the teacher; the structure appeared to29

help keep students involved in using the system. There seems to be a mixture ofattitudes and cultures toward allowing students to get up and walk around andtalk to each other during computer lab time.More comprehensive analysis and statistical results can be found in[Bruckman, 1997].2.3.6 Pilot study: MANICMANIC is a system designed to intelligently and adaptively deliver course ma-terial over the WWW, using existing slides and video. The authors want topersonalize the delivery according to the educational needs and learning style ofindividual students. There were three main goals of the project: to guide stu-dents through the course material, to provide interactive/adaptive quizzes, andto pre-fetch course material.The system architecture is based on a client-server model. There is a server-side database that contains the slides and video. The client-side contains a webbrowser and plug-ins (to support presentation of audio and visual materials).The domain being delivered is organized into a set of topics. Unlike tra-ditional ITS's (like Anderson's LISP tutor) that pre-determine what a studentwill see, MANIC does not impose a strict presentation order. As well, MANICincludes multiple versions of the same slide (e.g., easy and hard).A student model is maintained, containing scores for �ve measures: amountof a topic viewed, version viewed (e.g., easy or hard), access patterns, hyper-linksfollowed to review topic (which implies some level of uncomprehension or perhaps30

inattention), and quiz performance. Based on the student model, two methodsare used for guiding students: adaptive navigation support (as in ELM-ART[Brusilovsky et al., 1996]), which adapts which links are shown, and adaptivepresentation, which adapts the content shown.A study was performed with 15 university students. Aside from the infor-mation gathered by the student model, additional data was collected including apost-study questionnaire, primarily to ascertain if the students liked the system.9 of the 15 students completed the survey.2.3.7 Pilot study: Counting on Frank[Klawe & Phillips, 1995] describes a study involving an educational game calledCounting on Frank, which was designed for teaching math. In this study, thegame was used by primary school students in a collaborative mode where smallgroups of learners worked together at one computer.Games are an attractive medium for teaching math because they are ap-pealing to children, they are exploratory and interactive in nature, and theyfacilitate visualization. The philosophy embraced by the researchers here assertsthat the \playing of games is an integral component of mathematics learning,rather than as a way to trick students into paying attention before the `realteaching' starts." [Klawe & Phillips, 1995]The Counting on Frank study puts forth the notion of \student as re-searcher", because the students kept logs of their experiences with the system,which included bugs they found and criticisms they had. The study emphasizes31

group discussion, both before and after the sessions with the system. The re-sults are anecdotal, based on data collected in students' logs and observations ofexperimenters.The authors conclude by outlining several issues highlighted by their work.First, it is bene�cial to have two students work together at one computer. How-ever, the authors o�er no comparison | is their scenario better than studentsworking alone at one computer or better than two students working together attwo computers? Second, requiring students to make use of external tools whileusing a computer may help with knowledge transfer. Third, careful considerationmust go into the design of user interfaces for education, particularly in relation tochoosing a highly intuitive versus more deliberate design because students maylose opportunities for learning when using an interface that does too much. Insummary: \making computer use more e�cient for learners can sometimes resultin less e�ective learning." [Klawe & Phillips, 1995]2.3.8 Pilot study: Phoenix QuestPhoenix Quest is a computer game designed to encourage (especially) girls ages10-14 to explore concepts in mathematics and language arts. [Klawe et al., 1996]describes a study which showed that girls value story line, characters, worthwhilegoals, social interactions, creative activities and challenge. In comparison, boysvalue fast action, adventure, challenge and violence. The results are largelyanecdotal.The study took place over a 6 week period, in 40 minute sessions. The �rst32

half of the study was spent �xing implementation problems. Approximately 120groups of primary school children (grades 3-7) participated. There were betweenone and three children in a group. Overall, there were nearly the same numbersof girls as boys.The following data was collected: log �les, which included correspondenceand game events, participants' ratings, researchers' observations, and interviewswith teachers and some of the students. The ratings mentioned came from a post-session survey that was conducted on-line, where students rated their experienceafter each session according to three criterion: fun, importance and challenge.Analysis examined session completion rate (normal or error) for both boysand girls and the average rating (from the post-session survey) per category forboth genders. Gender di�erences were noted. No data or results on learning waspresented.2.3.9 Pilot study: ScienceSpace[Dede et al., 1996] compares and evaluates three virtual reality microworlds thatcomprise a system called ScienceSpace. Formative evaluation compared threeuser interface styles. Summative assessment was performed in terms of usabilityand learning.Usability was evaluated according to the following objective and subjectivemeasures: task completion, error frequency, ratings by participants (\easy" or\hard"), rankings of interaction styles, participants' comments, and researchersobservations. Learning was measured by comparing results of pre- and post-tests33

of participants' knowledge.Three multi-sensing interfaces were compared: (1) visual only, (2) visual andauditory, and (3) visual, auditory and haptic. The determination was that themore multi-sensory cues that were available, the more the students were engagedin using the system, concluding that students �nd virtual reality attractive forlearning.Anecdotal remarks are shared, however no statistical results are reported.2.3.10 Pilot study: Zadarh[Amory et al., 1998] conducted a study in which they compared four single-player games in order to determine the types of games enjoyed by students, inthis case undergraduate biology students, and then used the results to designtheir own game. The four types were: strategy, adventure, simulation, andshoot-em up. They divided participants into racially and gender balanced groupsand recorded additional demographics which included age, race and amount ofcomputer experience.The participants played each of the four games and afterwards completed aquestionnaire. They rated the games on a scale of 0 to 4, for speci�c character-istics within three categories:
34

1. game aspects funness, sound/graphics, game type,story, technology2. assessment of skills required logic, memory, visualization, math,reexes, problem solving3. game play too easy, addictive, boring, too long,challenging, confusing, too di�cult,illogical, di�cult to play,practice makes perfectAfter this study, a new learning game was built, called \Zadarh". This gamewas assessed using the same questionnaire as above. In addition, the groups com-pleted pre- and post-tests. The results showed that adventure and strategy gameswere preferred (over the other types tested). They report that \[the students] alsolearnt something while playing," [Amory et al., 1998] although this statement isnot supported with any statistical or even anecdotal evidence.2.3.11 System design: BelvedereBelvedere7 is designed to assist students learning critical inquiry skills for sciencedomains. The primary element of the system is a collaborative inquiry database,which students can access through a variety of interfaces. The database helpsthem keep track of the problem they are addressing, their hypotheses, evidenceand references. The system also includes a sophisticated coach that can helpstudents during the critical inquiry process.Belvedere has �ve components: (1) a collaborative inquiry database, wherestudents keep a record of their inquiry process, (2) a Java-based interface into7http://lilt.ics.hawaii.edu/belvedere/ 35

the collaborative inquiry database, (3) HTML interfaces which serve as a backupto the Java interface, (4) a coach designed to stimulate students, and (5) HTMLreference materials designed to sca�old students. Components are implementedusing Java, CGI, Lisp, HTML and SQL.There are several educational issues at hand: lack of motivation, limitedknowledge of scienti�c domains, inability to understand theories and arguments,particularly abstract concepts, di�culty in keeping track of debate, and lack ofscienti�c basis in arguments. The interface is speci�cally designed to addresseach of these issues.2.3.12 System design: CoVisCoVis8 is geared towards forming distributed electronic communities dedicatedto science learning in K-12 environments, particularly through scienti�c visu-alization. As well, the system provides links to Internet resources and severalinteraction devices, such as real-time collaborative environments for conversingwith teachers and other students. Speci�c curricular activities are built into thesystem, such as learning about the weather using graphics tools that let usersview climate maps or satellite imagery.School-based learning communities are formed by teachers and students tosupport long-term collaborative projects, \allowing them to learn from one an-other and letting the problems to be solved dictate the knowledge that must beacquired,...frequently and purposefully crossing disciplinary boundaries." [Gordin8http://www.covis.nwu.edu/ 36

et al., 1996] There are various levels of interaction in these communities that arecurrently in use:1. Information resources | Examples are published work and analyzed data.This includes information provided by libraries, museums and governmentsites, as well as curricula and activities found on educational sites, and in-dices o�ered by a variety of sources. This information is generally availableas text or hypertext with images.2. Analysis resources | Examples are raw data and analysis tools, such asweather data and visualization software.3. Interaction with community members | There are several categories ofinteraction: connecting teachers to each other, connecting students to eachother and connecting parents and local communities with schools. Addi-tionally, some sites provide connections between students of one school withteachers at another school.4. Collaboration with community members | The vision here is to connect ex-perts from within a local community with teachers and students in schools.5. Publication of community's work | The result of a community's workcan, if published on-line, feed back as information and analysis resources,described above. 37

2.4 SummaryIn designing CEL to be an accessible, exible and extensible interactive learningsystem, it is necessary to position CEL solidly as a viable ILS so that it cansustain the basic requirements of the �eld. As such, CEL must be able to supportthe types of issues, environments, data collection, testing and analysis put forththroughout this chapter.CEL responds to the most prominent issues in the ILS �eld of study asfollows:� motivation in learning | Using Malone's de�nition, CEL is both a tool anda toy. It is a tool for researchers and teachers, but the games inside CELshould be considered toys by the students that use them. They shouldbe intrinsically motivating, providing elements of challenge, fantasy andcuriosity. The sample activities outlined in chapter 3 take these concernsinto account.� acquisition and synthesis of complex skills | Following from Anderson'swork as well as the three systems that support collaborative scienti�c in-quiry (KIE, CoVis and Belvedere), it is important that CEL be able tohandle simple domain elements and support individual acquisition of theseelements as well as integration of multiple elements into complex groupings.The nature of CEL promotes exible de�nition of domains, elements withinthese domains, groupings of elements and actions concerning the elements.The message language described in chapter 4 and the data handling tech-38

niques discussed in chapter 5 outline the mechanisms in CEL that addressthis issue.� e�ective use of Internet technology at varying age levels | The philosophyof CEL is to adjust to the broadest standard software environment thatis sensible in order to service the most number of participants while stilldelivering a useful system. This means that the hardware requirementsshould be minimal, an issue which is discussed in chapters 4 and 6. Aswell, the user interface, described in chapter 3, is designed to be usableby children as young as age 8. Although this means that some of thenomenclature (e.g., \playground") may seem silly to older children, theenvironment will be understandable by a larger segment of the population.� productive integration of learning systems in schools | The startup issueshighlighted by [Hughes, 1995] as well as installation and upgrade concernsmentioned by [Gonzalez, 2000] are addressed by the accessible feature ofCEL. The basic CEL \playground" interface (see chapter 3) requires aminimum of instruction to use, and so startup time for both teachers andstudents is short. Because CEL runs inside a standard web browser, itrequires no special software installation, hence no special upgrades.The exibility of CEL enables it to support the di�erent types of environ-ments that are popular in the ILS �eld. This includes both instructive andconstructive activities. While many ILS environments are single-user, CEL ac-tivities are all multi-player games (currently two players). Note that in CEL39

both players need not be human; chapter 7 discusses the use of software agentsas arti�cial game partners or opponents. ILS environments may be competitiveor cooperative; the latter is more typical, since collaborative learning is highlytouted by today's experts and competition in education, especially in the UnitedStates, is highly controversial [Kohn, 1986]. Chapter 3 illustrates competitiveand collaborative games in CEL.Quite a few ILS's allow direct on-line communication between participants.In most Internet learning communities, communication is explicit, e.g., via acollaborative workspace (as in KIE) or through the English-like language of aMUD (as in Pueblo and MOOSE Crossing). In CEL, open communication isnot permitted, in order to protect young participants. Instead, CEL membersinteract with each other and/or with software agents, using the \language" ofthe games they are playing:a game like, say, chess has highly formalized signs and rules; the`language' of chess may be exhaustively described by logical syn-tax, without the uidity and uncertainty of human language. Sosuch games form an oversimpli�ed analogy to human conversation.[Cherry, 1978], p.252.This restricted mode of communication not only serves to protect the privacyof young participants but also o�ers two additional bene�ts. First, simple soft-ware agents can interact in CEL and pass a minimal Turing test, because the nor-mal complications of natural language are avoided. Second, while the absence ofopen conversation diverges from typical computer supported collaborative learn-ing (CSCL) systems, CEL provides the opportunity to explore non-conversationalcollaborative learning, which e.g., could support learning partnerships between40

members who do not speak the same language.The common components to most interactive learning systems include auser interface, a student model, a communication facility (for multi-user environ-ments) and a control mechanism. Chapter 4 describes each of these components,which are all implemented in CEL.The data gathered during ILS studies is typically in the form of oral dis-cussions, video tapes, paper-and-pencil surveys and tests, on-line surveys andtests, on-line system products and on-line session logs. This data comes from(objective) pre- and post-tests, (subjective) on- and o�-line surveys (where typ-ically users are asked to rate various features on a numeric scale), user demo-graphic questionnaires (including information like age, gender, race, location andcomputer experience), and observations of experimenters, teachers and students.CEL supports on-line collection of user demographics (through a login facility),surveys, system products and session logs. On-line testing is not currently im-plemented, but would be quite feasible in future work. Chapter 5 describes theon-line data capture and storage methods used in CEL. Of course, experimentersare free to employ any o�-line methods they choose. For example, during thepilot testing outlined in chapter 6, we took video footage and administered ano�-line survey.The types of analyses performed on this data is obviously geared toward theparticular goals of individual studies. However, there is often some overlap andwe identify �ve common categories of analysis and the types of questions askedin each category: 41

1. activity | what are participants doing with the time they spend using asystem? what types of activities are they involved in?2. coverage | how much of the knowledge domain have students covered intheir interactions with the system?3. learning | how much have the students learned in their interactions withthe system?4. interaction| with multi-user systems, or systems involving use of softwareagents, how much have students interacted with other users or softwareagents? have these interactions changed students' activity levels? havethese interactions a�ected learning? who have the students interacted with?5. interest | do the participants enjoy using the system? are they motivatedto participate? do they �nd elements of fantasy, curiosity and/or challengein the system?Table 2.2 shows the relationship between the types of data collected and thetypes of analyses performed.
42

Table 2.2: Relationship between data and analysis.activity coverage learning interaction interestpre-tests �post-tests �on-line surveys �o�-line surveys �session logs � � � � �observations � � �system products � � � � �In the �eld of ILS, it appears that the most common testing reported inthe literature is �eld testing. There are very few comprehensive experimentalresults published, particularly with Internet environments, as the technology isrelatively recent. The analyses performed are sometimes statistical and moreoften anecdotal. Chapter 6 describes �eld testing done with the CEL system andshows examples of the types of analyses that could be performed on the datacollected in CEL.Most ILS systems need tools with which to examine the data that is collectedon-line. These should be usable by researchers as well as teachers. Future workwith CEL involves creating a set of analysis tools, particularly for teachers.
43

44

Chapter 3An Overview of CELThis chapter provides a tour of the CEL environment from a user's point ofview. Terminology speci�c to CEL is introduced. We highlight the features ofthe system that make it accessible for participants and exible and extensible forcontributors.3.1 A brief tour of CELCEL is located on a free web site and is open to anyone with Internet access anda Java-enabled browser. Netscape is currently the only browser fully tested. Wehave also performed basic testing with Internet Explorer. CEL has been testedon Windows-95, Macintosh and Linux platforms. Figure 3.1 shows the homepage for CEL, located at: http://www.demo.cs.brandeis.edu/cel.Students log into CEL with an individual user name and password (see�gure 3.2.a). In order to maintain the levels of anonymity and privacy that CEL45

Figure 3.1: CEL Home Page.demands, the user name (and password) are never shown to others. Unlike othervirtual communities where users interact directly in open environments, CELusers only communicate indirectly | the content of each game serves to linkplayers and participants are identi�ed in the system solely by graphical icons.These icons are called IDsigns and users create their IDsigns themselves (see�gure 3.2.b and section 3.2). 46

(a) Login screen. (b) Sample IDsign.Figure 3.2: Logging in to CEL.
47

After logging in, students are shown a simple menu page, containing a listof available activities. Clicking on a game icon selects that activity (�gure 3.3).

Figure 3.3: The CEL menu.
48

Next, users are placed in an open playground, a page that contains a matrix�lled with IDsigns belonging to other users who are currently logged into CEL andare playing the same game (�gure 3.4). These are a user's playmates ; togetherthey comprise a user's playgroup.

Figure 3.4: The CEL Playground.
49

By clicking on a playmate's IDsign, a student invites a playmate to join herin a match (see �gure 3.5). Depending on the type of game being played, thematch could be collaborative or competitive, free-play (asynchronous) or turn-taking (synchronized).

Figure 3.5: An invitation to play a match.The match begins when the browser displays a game page, containing a Javaapplet that facilitates play. Both players participate according to the particularformat of the selected game. When the match is over, each player is returned tohis playground and is then free to engage in another match.50

A map of the CEL site is shown in �gure 3.6, indicating the relationshipbetween the games menu page (�gure 3.3), and the playground (�gure 3.4) andmatch pages (for example, �gures 3.8, 3.9, 3.10, 3.11 or 3.12). The unshadedboxes represent the static portion of the site. The shaded boxes illustrate play-ground and match pages, which are created dynamically for each activity in CEL,as users enter and exit playgrounds and initiate matches.
CEL home

log in

IDsigner

exit

playground

menu
games

game appletFigure 3.6: Site Map.3.2 The IDsignerUsers create and modify their IDsigns using a pixel editing tool called the ID-signer1 (see �gure 3.7). Each IDsign is 20�20 pixels in size. First-time usersmust create an IDsign during the login process, before they can enter a play-1The IDsigner is similar in operation to the KidPix stamp editor.51

ground. Participants may modify their IDsigns later, by selecting the IDsignerfrom the games menu.Users are given a palette of 13 colors to choose from2 and a straightforwardpoint-and-click interface with which they can set the color of each of the 400pixels. IDsigns are saved on our server, so when users return to CEL, the mostrecent version of their IDsign is loaded automatically.

Figure 3.7: The IDsigner.2The palette contains the standard set of web-safe colors de�ned in the Java classjava.awt.Color. 52

3.3 Prototype ActivitiesFor the prototype implementation of CEL, we built games that would let usdemonstrate the exibility of the system to host various types of activities. Basedon our review of the interactive learning systems literature, we chose to focus ontwo-player games that are either competitive or collaborative and allow eithersynchronous (turn-taking) or asynchronous (real-time) interaction between play-ers. The games were designed to be easily accessible by participants with com-puters that have limited memory and low network bandwidth. So we restrictedthe games to small footprint Java applets, which means they take less time toload on participants' computers and require little memory once loaded. Theseaspects are discussed further in chapter 4.Currently, three word games, one math game, one construction activity andone spatial reasoning game have been built and tested. These are called Keyit,Pickey, Monkey, Automath, Loois and Tron. Each is described below. Twoadditional games are also in progress: SpellebrityBee and Mathtree.3.3.1 KeyitThe keyboarding game called Keyit3 is pictured in �gure 3.8.a, and a close-up isshown in �gure 3.8.b. This is a competitive game in which participants are giventen words to type as fast as they can, with 100% accuracy. For each player, atimer begins when she enters the �rst letter of a word. Time is measured using3Keyit was implemented in collaboration with Maccabee Levine and Travis Gebhardt.53

the system clock on the client's computer, and a score is calculated, which issimply the time in hundredths of a second.When the game page is �rst displayed, the column of words to type is empty.The user clicks on the \start" button, and the game begins. A word appears inthe top row and is highlighted in yellow. The user attempts to type the wordcorrectly, in the white text �eld provided at the bottom of the applet. By pressingthe Enter key, the user signi�es that she has �nished typing the word. The systemveri�es the entry, and if it is correct, the word box turns green, and the user'stime is displayed in the \my score" column. If the entry is incorrect, a messageappears in the status message line (under the game button at the top of theapplet): \oops! try again." The user must correct the entry before being giventhe next word or she may opt to skip the word (by clicking on the \skip" button).When the user's playmate completes the same word, her time appears in the\your score" column. Whoever has a lower score becomes the \owner" of theword, and her IDsign appears in the \owner" column. During the course of agame, feedback is provided to both players by �lling in these columns as wordsare typed.The match need not be synchronized. For example, a network link may beslow or one user may be interrupted. In this case, the system provides to eachuser whatever moves are available from their playmate.54

(a) The game page.
(b) A close-up view.Figure 3.8: The game of Keyit.55

3.3.2 PickeyThe keyboarding game called Pickey4 is pictured in �gure 3.9. This game is verysimilar to Keyit, except that users start with the full list of ten words, and theypick which ones they want to type.The Pickey game board has two columns: the left column contains the listof words to be typed and the right column contains text �elds where the playerattempts to type each word. When the game page is �rst displayed, both columnsare empty. The user clicks on the \start" button, the left column turns yellowand �lls with words, and the game begins.Play proceeds by the user selecting a word to type, clicking on the corre-sponding box in the \attempt" column (which turns white), typing the word andpressing the Enter key, to signify that she has �nished typing the word. The sys-tem veri�es the entry, and if it is correct, both boxes in the row turn green andthe user's time is displayed in the \my score" column. If the entry is incorrect,a message appears in the status message line (under the game button at the topof the applet): \oops! try again." The user may correct her entry or pass onthat word and go on to another one. The mechanisms for reporting scores andgranting ownership of words are handled the same way as they are in Keyit.
4Pickey was implemented by John Abercrombie.56

Figure 3.9: The game of Pickey.
57

3.3.3 MonkeyMonkey5 is a collaborative anagrams game in which players are given one longword and they work together to �nd as many smaller words as they can, usingthe letters from the long word. The long word is referred to as the \monkey'sword" and players \monkey around" with the letters in the monkey's word tocreate new words, referred to as \sub-words". When forming sub-words, lettersmay appear only as many times as they appear in the monkey's word.Here are some examples of valid sub-words for the monkey's word \alien-ation": alien, nation, line and in. An invalid sub-word would be \teen", sincethe letter \e" appears only once in alienation, but twice in teen.The Monkey game page also has a \start" button, which each player clickson to begin his game. The monkey's word is shown under the \start" button.Players enter sub-words in the text �eld at the bottom of the applet, ending withthe Enter key. Each entry is validated by the system as follows. First, the entryis checked to make sure it is long enough (sub-words must be at least two letterslong). Then it is checked to see if it has already been used in this game. Next,the system makes sure that the letters in the entry appear in the monkey's word.Finally, the entry is veri�ed by checking in a dictionary, to make sure it is a realword6. Valid sub-words are listed in the scrolling area which appears between5Monkey was implemented in collaboration with John Abercrombie.6Currently, we are using the standard dictionary that comes with Linux. We use this samedictionary as the database for all word games. We have �ltered out any crude words by hand.This dictionary, although it contains almost 35,000 words, is incomplete. In future, we will58

the monkey's word and the word entry �eld. Play continues until both playerswant to quit or until all valid sub-words have been found.There is no concept of individual score in Monkey, because it is collabora-tive rather than competitive (like Keyit and Pickey). On each playground pagefor every game in CEL, users can see a record of all the matches they have played

Figure 3.10: The game of Monkey.replace it with a more comprehensive dictionary.59

and some value associated with each match. For Keyit and Pickey, this is simplythe number of words owned by each player owned at the end of the match. ForMonkey, the total number of sub-words found by both players is shown.3.3.4 AutomathThe game of Automath7 is a competitive math game that follows the same struc-ture as Keyit. However, instead of being given words to type, players are givenequations to solve. All the equations are in the form: a <operator> b. Valid oper-ators are: + (addition), � (subtraction), � (multiplication), = (integer division)and ^ (power).Like Pickey, the Automath game board has two columns: one for the equa-tions to be solved and one for the user's answers. But like Keyit, each row �lls inone at a time. The game begins when each player clicks on her \start" button.The �rst equation turns yellow, and the user must solve the equation by typingthe correct answer in the corresponding box to the right of the equation, endingwith the Enter key. The user's entry is timed, and score is reported (the time,in hundredths of a second), in the \my score" and \your score" columns. TheIDsign for \owner" of each problem | she who solves each equation correctly andmore quickly | is shown in the same row as the problem. Players are allowedto skip an equation by clicking on the \skip" button.7Automath was implemented by Elizabeth Sklar, based on the InOutMachine game [Sklaret al., 1998]. 60

Figure 3.11: The game of Automath.
61

3.3.5 LooisLoois8 is a collaborative construction game in which players work together tocreate structures out of building blocks. This is a turn-taking game. The playerwho initiates the match goes �rst. He selects a block from a bank of buildingblocks and uses his mouse to drag it onto the building area. When he releaseshis mouse, his move is sent to his partner. Every move is checked for structuralintegrity, using the Lego simulator built by Pablo Funes [Funes & Pollack, 1998a;Funes & Pollack, 1998b]. If any blocks are deemed instable, they are highlightedin black in the building area.When the players have �nished constructing, they may print out a schematic,containing plans for building the structure they have designed on-line. This pro-cess promotes transference of information from the virtual world to the physicalworld and helps teach students about visualization, projection and dimensional-ity. For young children, learning how to assemble physical structures by followingpaper instructions is a valuable skill; because they have designed the structuresthemselves, they may more easily understand the relationship between the ele-ments of the structure as they are represented on paper (and/or on a computerscreen) and their physical instantiations. As well, this game serves to introducechildren to the �eld of computer-aided design.In an expanded version of this game, children will be able to work togetherto design entire cities. The buildings in the cities could be created by anyone8The applet for Loois was built by Louis Lapat and Pablo Funes.62

who plays the game, so participants in di�erent places could contribute to acooperative project. Children will be able to learn from their peers by observingstructures built by others. A web page will show all the buildings in the city andtheir locations in relation to each other. Visitors to the web page will be able toprint schematics of selected buildings. In this way, children on opposite sides ofthe world can reconstruct the same city, physically, in their own classrooms.

Figure 3.12: The game of Loois.63

3.3.6 TronIn earlier work [Funes et al., 1997; Funes et al., 1998], we built a Java versionof the real-time video game Tron9 and released it on the Internet10 (see �gure3.13). Human visitors play against an evolving population of intelligent agents,controlled by genetic programs [Koza, 1992].Tron became popular in the 1980's, when Disney released a �lm featuringfuturistic motorcycles that run at constant speeds, making right angle turns andleaving solid wall trails behind them | until one crashes into a wall and dies. Weabstract the motorcycles and represent them only by their trails. Two players {one human and one agent { start near the middle of the screen, heading in thesame direction. Players may move past the edges of the screen and re-appearon the opposite side in a wrap-around, or toroidal, game arena. The size of thearena is 256 � 256 pixels. The game runs in simulated real-time (i.e., play isregulated by synchronized time steps).Although Tron is not particularly educational, we placed a version of it inCEL because we wanted to demonstrate the ability of the CEL system to host areal-time, asynchronous activity. In the CEL version of Tron, participants playindirectly against each other by both competing against the same software agent.9Tron was implemented in collaboration with Pablo Funes.10http://www.demo.cs.brandeis.edu/tron 64

Figure 3.13: The game of Tron.
65

3.4 SummaryTable 3.1 contains the current CEL game set, highlighting the range of function-ality amongst the games and the overall exibility of the CEL system.Table 3.1: Functionality of games in CEL.interaction mode domainKeyit real-time competitive keyboardingPickey real-time competitive keyboardingMonkey real-time collaborative spelling, vocabularySpellebrityBee turn-taking competitive spellingAutomath real-time competitive mathMathtree real-time collaborative mathLoois turn-taking collaborative constructionTron real-time competitive spatial reasoningEach of the games described is implemented in Java and restricted to asmall footprint applet, in order to provide easy access to participants with com-puters that have limited memory and slow network bandwidth. The pilot studydescribed in chapter 6 demonstrates this accessibility of the system.Keyit was the �rst game implemented. All the other games were built byundergraduate programmers by extending this model. Discussion of this exten-sible model is contained in chapter 4. Instructions for extending the model tocreate new games can be found in [Sklar, 2000].66

Chapter 4System ArchitectureThe CEL system employs a modular client-server architecture, as shown in �gure4.1. One central server maintains a dynamic database indicating who is loggedinto the system and which games they are playing. This server also acts as amessage passer, sending and receiving commands that go between clients.
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

browser

player

browser

player

browser

player

browser

player

browser

player

server

agent
agent

matchmaker

matchmaker

matchmaker

database
manager

monitor

messenger

database

= the Internet

= server

= clientFigure 4.1: System Architecture.67

There are six di�erent types of clients in CEL: messenger, monitor, databasemanager, matchmaker, agent and player. The player client is designed to meettwo fundamental needs: (1) to be practicable to anyone with Internet access anda web browser capable of running Java, and (2) to be usable by participantswith limited network speed and low computer memory, as is the case for manyschool children. As such, we use small footprint Java applets for games andimplement the playgrounds using CGI-bin programs that generate HTML andrefresh periodically in order to update playgroup content.The system is designed to be easily accessed by participants and easily ex-tended by contributors (those adding their own games to CEL). Participants ac-cess CEL through the player client component, which runs inside their browsers.Section 4.7 highlights the characteristics of the player client that were built tomeet the needs of school children. Contributors extend the matchmaker andagent components and the game portion of the player client component to im-plement their own activities in the system. Sections 4.5, 4.6 and 4.7, explain thedetails of each of these components, respectively.This chapter describes each of the seven modules (one server and six typesof client). Detailed software documentation can be found in [Sklar, 2000].
68

4.1 ServerThe CEL server is a control component, having two primary functions: (1) toact as a central message processing facility, handling communication between alltypes of clients, and (2) to maintain a list of all the players who are currentlylogged into CEL and the status of each player. The server is written in Java,version 1.0.2. We use Java version 1.0.2 because it can run inside Netscapeversion 3, which is (currently) more widely used than later versions of Netscape| supporting CEL's requirement for accessibility.1A note about terminology and formatting in this document: words that areJava keywords are highlighted in this font; words that are CEL keywords (e.g.,CEL classes, variables and commands) are highlighted in this font.The server interfaces with each of the six types of CEL clients (messenger,monitor, database manager, matchmaker, agent and player). The terminologycan be somewhat confusing because while CEL players may be thought of asgeneral \clients", they are not the only type of client. And while matchmakersmay also be referred to as \game servers", they are really clients as well. Thedistinction comes from network communication phraseology: the server opensa ServerSocket and each type of client opens a Socket in order to send andreceive messages to and from the server (see �gure 4.2).Commands are sent between the server and clients using the CEL command1Of course, we could use a later version of Java for our server and only restrict applet codeto 1.0.2, but we decided it was simpler from a con�guration management standpoint to use thesame version for everything. 69

server
application

ServerSocket
class

Socket
class

Internet

client

or applet
applicationFigure 4.2: Sockets.language (described in section 4.8). For example, messages are used to: loga client into and out of the system, register a player entering a playground orremove an exiting player, send a match invitation from one player to another,and pass game moves between players.Figure 4.3 illustrates the Server and its relationship to each client applicationor applet. The components of the Server are shown above the solid grey line inthe �gure. The clients (shown below the solid grey line) are described in latersections of this chapter.The Server extends the Java Thread class. It opens a ServerSocket on aspeci�ed port and listens for connections. When a new client makes a connection,the Server instantiates a ServerClient Thread to handle bi-directional communi-cation with that client. The Server maintains a list of all active clients, i.e., aVector of ServerClients.As long as the socket connection with any ServerClient is alive, the serverassumes that the client is running. When a client exits normally, it sends a LO-GOUT command to the Server and closes the socket connection. Sometimes, the70

Server will initiate the closing of a client, either because the Server is shuttingdown, or because it has received a command to kill a particular client, or be-cause the socket connection has died, which typically happens when a client exitsabnormally.The ServerCleanup class monitors the status of every client connection, run-ning periodically to check if any activity has occurred on each client's socketconnection within a �xed time period. If no activity has occurred, then theServer sends a PING command to the client. The expected response is a PONGcommand, from the client back to the Server. If this is not received within a �xedtime period, then the Server assumes that the client has exited abnormally andso the cleanup thread closes that client.This process is necessary because we cannot ensure that clients (particularlyplayers) will exit CEL cleanly. Players are instantiated in participants' browsersand if a user clicks away to another web site or closes his browser without loggingout of CEL, then we have no way of knowing that the player has exited. So, inorder to maintain the integrity of the active client list in the Server, we use theServerCleanup thread. For example, this prevents the system from creating gamematches that involve players who have left the system.
71

ServerCleanup
extends Thread

ServerMatchmaker
extends ServerClient

Matchmaker
extends Thread

MatchmakerClient
extends ClientClient

matchmaker

ServerAgentClient
extends ServerClient

SecretAgentClient
extends ClientClient

SecretAgent
extends Thread

secretAgent

ServerClient
extends Thread

Messenger
extends Applet

ClientClient
extends Thread

messenger

extends ServerClient
ServerDBManager

C client
C function

dbmanager
C application

ServerMonitor
extends ServerClient

MonitorClient
extends ClientClient

extends Frame
Monitor

ServerPlayer
extends ServerClient

C client
C function

playground
C cgi-bin

PlaygroundGameClient
extends ClientClient

PlaygroundGame
extends Applet

ServerPlayerClient
extends ServerClient

Server
extends Thread

server

server side

client side

dbmanagermonitor player

Figure4.3:Serverarchitecture,withoverviewofclients.
72

4.2 MessengerThe simplest client in CEL is the Messenger client. It is a Java application thatprovides a command-line interface for sending commands to the Server. It wasbuilt primarily as a development aid. The Messenger takes a message string inits command line and sends the message directly to the Server. The syntax ofthe message is the same as the CEL command language (see section 4.8).4.3 MonitorThe Monitor is an expansion of the Messenger. It is also a Java applicationthat provides a command-line interface for sending commands to the Server, butthe Monitor also receives live feedback from the Server, reporting current statusinformation on all active clients. The Monitor has a graphical front-end, whichis pictured in �gure 4.4. It can also run in a non-graphical mode, which isespecially useful when testing CEL at a remote site where a graphics terminal isnot available.The Monitor can run on any networked computer, so it is a useful tool forcontributors who are extending CEL.
73

Figure 4.4: The Monitor.4.4 Database ManagerThe dbmanager is a C program that interfaces between the Server and the CELdatabases. These include the student model component of the system as well assession logs.The dbmanager runs as long as the Server is running. Whenever a playerbegins or ends a match, a message is sent from the Server to the dbmanager.The dbmanager parses the message and stores the relevant data in the appropri-ate CEL database table. Refer to chapter 5 for detailed information about theparticulars of the CEL databases. 74

4.5 MatchmakerFor each game in CEL, there is one Matchmaker. This is a Java applicationthat keeps track of all the users who are currently connected to its game. TheMatchmaker is responsible for maintaining playgroups for each player, fetchinggame content at the start of a match, instantiating agents to play the game whenplaygroups are too small and verifying moves during game play.The components of the Matchmaker are shown in �gure 4.5. Some of thecomponents are highlighted in grey, to indicate that there may be multiple in-stantiations of these classes. A new MatchmakerGame class is instantiated everytime a match begins. This is essentially a data structure that stores informa-tion pertinent to individual matches. When a match ends, its correspondingMatchmakerGame is removed.
MatchmakerCleanup

Matchmaker

SecretAgentMatchmakerClient MatchmakerGame MatchmakerThread

SecretAgentClientFigure 4.5: The Matchmaker.The MatchmakerThread class can be used for one of two purposes: to fetchdata for game content when a new match begins or to save data when a match isover. This thread is instantiated as either a fetcher or a saver. Both types invokeCGI-bin programs to interface, respectively, with the domain knowledge or the75

student model component of the CEL databases.The algorithm used to fetch game content can vary, in order to maintainsystem exibility. For example, formative evaluation of a system might involvecomparing di�erent methods for selecting content for the same game, which canbe done simply by employing di�erent CGI-bin programs to fetch the game data.The SecretAgent runs as a child of the Matchmaker. Once instantiated, aSecretAgent executes independently of its Matchmaker parent, although it dieswhen its parent dies. Secret agents can also be instantiated as programs and runautonomously, outside of a Matchmaker. This exibility allows implementationof secret agents that have the ability to play multiple games. Detailed discussionof secret agents is found in section 4.6 and in chapter 7.In order to implement their own activities, contributors extend the Match-maker,MatchmakerThread and SecretAgent classes. For example, the Keyit match-maker is enabled through the KeyitMatchmaker, KeyitMatchmakerThread and Key-itSecretAgent classes. Matchmaker applications can execute on contributors' lo-cal machines as well as on our site. Instructions for extending classes to create amatchmaker can be found in [Sklar, 2000].4.6 Secret AgentAll the games in CEL are multi-player games. If not enough people are loggedinto a game playground, then it is useful to have software agents that can act asplaymates. Otherwise, participants would be forced to wait until another human76

logs in before being able to play any games. We refer to the software agents inCEL as Secret Agents, because the agents may be indistinguishable from humanplaymates.Figure 4.6 illustrates standard architecture for a software agent [Russell &Norvig, 1995]. In CEL, the sensors and e�ectors are provided virtually by theSecretAgentClient class. Through the Server, the SecretAgentClient receives infor-mation about the state of the world and sends its actions to be e�ected.
effector(s)

sensors

controller

perception intelligence actionFigure 4.6: Typical software agent architecture.The SecretAgent may perform three types of actions: system actions, play-ground actions and game actions. System actions refer to logging in and out ofCEL. Playground actions refer to entering and exiting playgrounds and initiatingchallenges. Game actions refer to moves in a game.The controller for a secret agent decides which action to take, given the inputreceived from the Server. The exibility of the CEL system makes it possible todesign many types of controllers for secret agents. For the prototype version ofCEL, we have de�ned two types of controllers. One is a simple reactive controllerthat does not initiate any challenges on the playground, and when playing a game,77

all its moves are direct responses to its playmates moves, based on a rule thatallows the playmate to win almost every match, by a small margin. The secondtype of controller is a neural network controller that is trained to emulate thebehavior of humans who have visited CEL. Chapter 7 discusses the agents inmore detail.The SecretAgent class extends a Java Thread. It has one child: SecretAgent-Client. Secret agents can be instantiated as part of a Matchmaker (see section4.5). They can also be run as independent programs. This allows more exibil-ity, particularly by permitting complex agents that exhibit system actions likelogging in and out of CEL at particular times and being able to play di�erentgames.Contributors need to extend the SecretAgent class in order to implement anagent that can participate in a new activity. Refer to [Sklar, 2000] for instructionson how to extend this class.4.7 PlayerThe CEL player client implements the user interface component of the system.It runs inside a web browser and has three elements: the menu, the playgroundand the game (see �gure 4.7).The menu and playground portions of the player client are implemented sep-arately from the game portion. The following subsection details the developmentof the player module and adjustments made during formative assessment. The78

game

playground

menu

playground.cgi

PlaygroundGameFigure 4.7: Overview of the player.section concludes with a description of the �nal design.4.7.1 Formative assessmentWe performed formative assessment of the player client using the setup at a lo-cal primary school. The initial implementation of the player client was writtenentirely in Java. The playground was an applet, which opened a socket con-nection to the CEL server when it was launched and kept that connection openthroughout a player's entire session with CEL.As illustrated in �gure 4.8, the entire browser window was taken up withone playground applet. The background was an image, designed to look likethe black-top in a school playground | white lines demarking hopscotch and abasketball court on a black background. Users' IDsigns were inscribed in circles,whose color changed based on the state of each player. Players who were playinggames were shown in green circles. Players who were sitting in the playground79

were drawn in white circles. A user's own player was inscribed in a blue circle.
Figure 4.8: The CEL Playground, initial version.The IDsigns were animated, moving around the playground in a uid anddynamic manner. Each user controlled her own IDsign by clicking on it withher mouse. She could drag her IDsign and \bump" into that of a playmate; thisaction constituted an invitation to play a match. Playmates' IDsigns moved inand out of the playground as users entered and exited the virtual space.This design worked quite well in the laboratory, and children who tried thisinterface during one-to-one testing in our lab liked the style. Unfortunately, itproved too slow and cumbersome to be useful in a school setting. The amount ofmemory required for a large playground applet was too great for the computers atour test site, a local primary school. Opening a socket to the server and keepingit open continuously did not prove to be reliable. The idea of moving IDsignsaround with a mouse, while appealing to the children, did not perform well in80

practice, primarily due to limited memory.We were fortunate to be able to work at a test site that is better equippedthan most schools and may have faster access than many children do from home.But we wanted to make CEL accessible to school children across the U.S. andaround the world, so the system had to perform to at least a median commondenominator. If the performance was poor at our test site, we knew that it wouldnot fare well in a typical school setting.So, at �rst, we modi�ed the design slightly, as shown in �gure 4.9. Here thesize of the applet was smaller (i.e., the amount of memory it used) because theimage background was removed and the informational portion of the screen wasdone in HTML. Additionally, frames were introduced, so the left-hand portionof the screen, which was only HTML loaded up quickly and warned students tobe patient while the right-hand frame (which contained the applet) loaded.We were disappointed to �nd that these alterations did not resolve the prob-lems at our test site. The issues with memory were compounded by socket connec-tion breakdowns. When the applet initialized, it opened a connection to the CELserver and attempted to keep that connection open during a user's entire sessionwith CEL. However, we found that these connections kept getting interrupted.We tried implementing a recovery process whereby interrupted connections wouldreconnect to the server. But this resulted in more memory problems, becausethe memory allocated for lost connections was not recovered well in the browserand so as more connections were made, less and less memory became availableon the students' computers and eventually they would hang.81

Figure 4.9: The CEL Playground, intermediate version.As a result, we redesigned the player to use HTML and cue the browser torefresh the playground page periodically, asking the server for playgroup updates.This means that the player does not need to maintain a single long-term socketconnection to the server. Conceptually, the playground is still an ongoing processthat maintains a connection to the server so that the player can receive updatesconcerning who his current playmates are, as others enter and exit the site.In reality, the playground sends a refresh command to the browser telling it toupdate the playground every 5 seconds, thereby simulating a real-time connectionto the server. Using this type of polling mechanism makes the system moreaccessible, because it accommodates clients with slow network connections and82

low memory computers.The product of the redesign is a program called playground.cgi. At �rst,this was a shell script which invoked a Java application that connected to theServer, received an updated list of playmates and output HTML to draw theplayground in the user's browser. After a few trials, we found that this methodwas also unacceptable. Every time the script was called, it started a Java virtualmachine on our host computer in order to execute the Java application. This isbad because each Java virtual machine takes a while to start up, uses a lot ofsystem resources while it runs and takes a while to close down and release theresources it was using | typically longer than the 5-second refresh period of eachplayground. When more than about 5 people were logged into CEL, our hostmachine was swamped. One player could have several playground.cgi's runningon our host because their browser would send a refresh command and start up anew one before the previous one(s) had completely exited the system.4.7.2 Final designThe �nal playground.cgi is written in C and implements the menu and playgroundportion of the player client. This version runs in less than one second, and itworks beautifully in practice. Although we gave up the fun gained from movingone's IDsign around in an animated environment, we are still able to emulatethe dynamic nature of the environment and have ended up with a much morereliable and accessible product.The game is a small-footprint Java applet, started when the playground.cgi83

outputs HTML containing an APPLET command. The applet is built on a classcalled PlaygroundGame. When a PlaygroundGame applet initializes, it creates achild called PlaygroundGameClient that opens a socket to the Server and keepsthat connection open as long as the game is in progress. When the game isover, the socket is closed and the applet invokes playground.cgi again, to fetchan updated playgroup from the Server and return to the state of waiting for amatch. Again, accessibility is important, so the size of the applets are kept to aminimum, in order to lessen the memory requirements of clients' computers.The user interfaces for individual games are enabled by extending the Play-groundGame class. All of the games described in chapter 3 are built around thismodel. Contributors extend the PlaygroundGame class to implement the userinterface for their own activities.4.8 CEL Message LanguageAll communication between the Server and its clients is facilitated by the CELMessage Language. There are �ve classes of messages that are sent:I { commands between the server and any type of clientII { commands between the server and messenger and monitor clientsIII { commands between the server and dbmanager clientIV { commands between the server and matchmaker clientsV { commands between the server and player and agent clientsTables 4.1 through 4.5 list each set of commands, respectively, and describe theiractions. 84

The message language was designed to support the extensibility requirementsof the system. The separation between command classes protect the system; con-tributors who create matchmakers, players and agents cannot send destructivecommands to the Server. For example, a matchmaker cannot e�ect a KILL com-mand because it will not be recognized as a valid matchmaker command in theserver.The commands in classes III, IV and V were designed for exibility, keepingshort and simple the amount and type of communication that ows between theserver and dbmanager, matchmakers, players and agents. The command set cansupport a variety of activities, as outlined in chapter 3.Table 4.1: Class I: commands between server and any type of client.command from server to client: from client to server:LOGIN client logs into CELLOGOUT client logs out of CELPING server checks socketconnectionPONG client veri�es socketconnectionGETTIMEOUT server reports timeout client receives valuevalue for client of timeoutSETTIMEOUT server sets value oftimeoutSEND server sends a message client sends a messageto a client to another client,via serverERROR client reports thatan error has occurredSHUTDOWN client shuts down server shuts down(messenger andmonitor clients only)85

Table 4.2: Class II: commands between server and messenger/monitor clients.command from server to client: from client to server:LOG server writes a messageto the log �leFLUSH server ushes the log �leGETLOGINT server reports value of client receives value oflog interval used log interval usedduring cleanup during cleanupSETLOGINT server sets value oflog interval usedduring cleanupGETCLNUPINT server reports value of client receives value ofcleanup interval cleanup intervalSETCLNUPINT server sets value ofcleanup intervalCLEAN server forces a cleanupto occurWHO server reports list of client receives list ofactive clients active clientsKILL server kills speci�ed clientTable 4.3: Class III: Commands between server and dbmanager clients.command from server to client: from client to server:ENTER server sends name of playerentering a playground andtime of entryEXIT server sends name of playerexiting a playground andtime of exitRESULTS server sends results ofa match 86

Table 4.4: Class IV: Commands between server and matchmaker clients.command from server to client: from client to server:GAME server sends request formatchmaker to fetchgame dataDATA matchmaker sends gamedata to serverRESULTS server sends results ofa match
87

Table 4.5: Class V: Commands between server and player/agent clients.command from server to player: from player to server:ENTER player enters a playgroundEXIT player exits a playgroundSTATE server gets current state player receives current(list of active playmates) state, with which toupdate playgroundASK player requests matchwith speci�ed playmateGAME match with requested player has started gameplaymate is accepted and applet and requests gameserver has requested game data (agent) from serverdata (agent) frommatchmakerDATA server sends game data(after data has arrivedfrom matchmaker)MOVE server passes move player sends its movealong to opponent to serverRESULTS player sends results toserver (and server passesthem along to matchmaker)REJECT server rejects matchwith requested playmateABORT client aborts match, server forfeits match forreturns to lonely state client and returns client tolonely stateERROR client exits server removes client88

4.9 Player StatesBoth the Server and the Player keep track of a player's state. At any time, eachplayer is in one of �ve states:1. ENTERING | a new player is entering a playground2. LONELY | a player is in the playground and is freeto initiate a match or be invited by anotherplayer to engage in a match3. PREGAME | a player has initiated a match or has beeninvited to play and is waiting for game datato arrive from the server4. GAME | a player is playing a match5. EXITING | a player is exiting a playgroundFigure 4.10 summarizes the state transitions for players inside the Server, showingthe normal ow between the �ve states.All changes to the state are initiated by the Player. This is important.Sometimes the Server and a player can become out of synch. It is most criticalfor the actions in the player to seem logical to the human who is operating theplayer. So, all state changes are initiated by the player, and all discrepancies areresolved in favor of the player.There are several ways in which the player and the Server can become in-consistent. Since the player is enabled inside a browser, a user could click ona navigation button to change the page and visit CEL pages out of sequence.For example, in the middle of a game, the user could use the \back" button89

LONELY PREGAME

receive LOGIN
receive ENTER,
send STATE

send STATE
receive STATE,

receive ASK,
send GAME

receive GAME,
send GAME

ENTERING

GAME
receive EXIT

EXITING

receive MOVE,
send MOVE

receive ASK,
send REJECT, STATE

receive RESULTS,
send STATE

receive GAME,
send DATA

Figure 4.10: Player state diagram.in the browser to visit a playground that is several pages prior in the historylist. In this case, the Server thinks that the user is in a GAME state, but uponreceiving a STATE command from the player client, the Server should respondintelligently. The player is always considered right | so the Server registers theplayer as having aborted the match that the server was tracking, and then adjustsaccordingly.If response time is slow, users (especially children!) grow impatient. Some-times they click on a CEL button multiple times or on the browser's reloadbutton, while waiting for a response from the Server, which may result in an90

unexpected sequence of commands being sent to the Server. The mechanism de-scribed here is prepared to handle these types of discrepancies, which works tosupport the accessibility of the system, as CEL can operate robustly, respondingreasonably to a variety of user behaviors.

91

92

Chapter 5Data in CELThis chapter describes the data components of the CEL system, which includedomain knowledge as well as data collected by the system as it runs. The domainknowledge is de�ned to be the information that the students are acquiring; inCEL, this is the content of games. We focus on three categories of on-line datacollection in CEL (system products, session logs and survey results), demonstrat-ing that CEL gathers the types of data required to support the kinds of activitiescommon to the ILS �eld (see chapter 2).
93

5.1 Domain knowledgeTwo types of domain knowledge databases have been de�ned for use by the CELprototype activities:1. a words database, and2. an arithmetic database.Keyit, Pickey and Monkey access the words database. Automath uses the arith-metic database.The manner in which this data is stored and accessed is completely depen-dent on the learning activities that use the data. As indicated in chapter 2, thepurpose of de�ning a domain database is to be able to identify elements withinthat database, in order to track a student's progress and (in CEL) to de�ne gamecontent. Some activities are designed to facilitate acquisition of a straightforwarddatabase of facts, e.g., multiplication tables, states and capitals, foreign languagevocabulary. Database de�nition is easy in these cases because the domain canbe broken down into individual elements and a one-to-one correspondence canbe found between domain elements and elements of game content. For example,\5� 6" can be de�ned as one element in a multiplication table database and thissame equation can also be one (or part of a) problem to solve in a mathematicsgame. In the student model, the number of times a student has been asked tosolve \5� 6" can be tracked along with the number of times she has gotten theright answer, and then a simple numeric calculation can provide an indicationof how well she has acquired that multiplication fact (e.g., percentage of correct94

responses).Other domains are much harder to de�ne. In the construction game Loois(section 3.3.5), it is di�cult to enumerate the concepts that students should beacquiring. Here, the elements of game content are numbers and sizes of buildingblocks. But the intent is for students to acquire abstract skills such as elementarylaws of physics, an understanding of torque, intuition about gravity, insights intostructural integrity and experience translating ideas from simulation to reality.Keeping track of skill acquisition here is much more complicated and is a researchtopic addressed by many working in intelligent tutoring systems. In future workwith CEL, we plan to collaborate with others working in these areas to developstronger methods for tracking student progress in complex domains.The domain knowledge data sets that are used in the prototype version ofCEL are described in the remainder of this section. The methodology de�nedshould be taken as a suggestion for other possible domains and learning activities,but is not a requirement of the system.
95

5.1.1 Words databaseThe content of word games in CEL is selected from a database of approximately35,000 words. Every word is characterized by a set of seven features:1. word length,2. Scrabble1 score3. keyboarding level,4. number of vowels,5. number of consonants,6. number of 2-character consonant clusters and7. number of 3-character consonant clusters.The de�nition of Scrabble score is shown in table 5.1. For each word in thedictionary, the word's score is computed by adding together the scores for eachcharacter in the word. For example, the score for \millennium" is 3+1+1+1+1 + 1 + 1+ 1 + 1 + 3 = 13.The de�nition of keyboarding level is shown in table 5.2. There are severalstandards which de�ne an order for introducing keys to students learning typing[Rowe et al., 1967; Duncan et al., 1990; Typodrome, 1997]; the latter was chosenarbitrarily. Each word in the dictionary is assigned a group number equal to thehighest keyboarding level of any of the letters in that word.1Scrabble is a word game that was invented in the U.S. by Alfred M. Butts in 1948[Hasbro, 1999]. It is a board game in which players take turns making interconnecting words byplacing letter tiles on a grid in crossword puzzle fashion. Each letter is assigned a �xed value,calculated according to its frequency of usage in everyday American English. Players receive ascore for each word they place, calculated by summing the values for each letter in the word.In the 1950's and 60's, Scrabble gained popularity and spread to Canada, Great Britain andAustralia. Today, the game is known all over the world.96

Table 5.1: Scrabble scores.character score character scoreA 1 N 1B 3 O 1C 3 P 3D 2 Q 10E 1 R 1F 4 S 1G 2 T 1H 4 U 1I 1 V 4J 8 W 4K 5 X 8L 1 Y 4M 3 Z 10Table 5.2: Keyboarding levels.level keys introduced1 a s d f j k l2 e u3 r i4 g o5 t h6 w y7 q p8 c v9 b m10 x n11 z
97

Figure 5.1 shows an example of the feature vector de�nition for the word\blue". The reason for de�ning features for words is to provide a basis forselecting words as the content for word games. Some algorithms for selectinggame content require that the domain be divided into a multi-dimensional featurespace, so that data elements can be ordered in some fashion. For example, thisallows the domain space to be partitioned into \easy" and \hard" segments.Not all features will be relevant for all applications. For example, keyboard-ing level will not be relevant for spelling games. Experimentation may highlightwhich features are relevant for which applications (see chapter 8).
= number of consonants

= keyboarding level

= length of word

= scrabble score

= number of vowels

= number of 2-letter consonant clusters

= number of 3-letter consonant clusters

4 8 6 2 2 1 0blueword =

Figure 5.1: Sample word with feature vector.
98

5.1.2 Arithmetic databaseFor math games, the same level of traceability provided for word games is desir-able | so that a student's progress with a certain problem (or type of problem)can be tracked. De�ning an element of knowledge in the arithmetic domain ismore complicated than the method used for the words database. Is a formulathe same as an element, e.g., \4 + 15"? Or is the answer to a problem the sameas an element, e.g., \19"? The answer taken by itself seems too vague, but ifit is a formula, then should \4 + 15" be the same element as \15 + 4"? Whathappens with complex problems, like \4 + 15� (8 � 7)2"? Is this one element ora combination of several?Automath is the only currently operational math game, so the de�nitionsused for this game will be presented here. An element is de�ned as follows forAutomath:<sign x><x><op><sign y><y>where:<sign x>;<sign y> = positive (= 0) or negative (= 1)<x>;<y> = 0 : : :1000<op> = addition (= 0),subtraction (= 1),multiplication (= 2),division (= 3),power (= 4)To get a numeric identi�er out of this, a binary string is constructed, by concate-nating the numeric values for each of the �ve �elds shown above.99

Here is an example. The equation \2� 5" is represented as follows:<y> <sign y> <x> <sign x> <op>5 + 2 + �000000101 0 0000000100 0 001Concatenating the values in the third row results in the binary number:00000001010000000010000012which equals16387310,and hence 163873 is the identi�er for \2� 5".This scheme does not allow for more complex formulae. For example, inthe game of Mathtree (an arithmetic game that is currently being built), it ispossible to have equations such as \4 + 15� (8 � 7)2". It is desirable to use thesame domain element de�nition for all math games (as with all word games), sothat a user's performance can be described with respect to the knowledge baseand the task (i.e., a word and how to spell it) rather than the speci�c game. Asmore activities in mathematics domains are implemented, it may be necessary toalter our de�nition.
100

5.2 Data productsThere are three categories of data collected in CEL: system products, sessionlogs and survey results. The system products consist of student models andresults of games. Some of the data is stored in a Postgres SQL database. Somedata is stored in text and binary �les. For the dynamic tasks that occur duringsystem operation, access to the data must be quick, so standard disk �les (textand binary) are employed. For post-operations analysis, it is more importantthat data be easily queried, so Postgres database tables are also employed. Thissection describes each type of data collected in CEL.5.2.1 Student modelThe student model has three components: demographics, behavior and perfor-mance data. Each is detailed in the following pages.DemographicsUser demongraphic data is stored in two tables in the Postgres database: usersand demographics. Data is inserted into these tables when users log into CEL forthe �rst time.The users table contains the following information:101

username { a text value provided by users when logging into CELfor the �rst time.password { a text value provided by users when logging into CELfor the �rst time. The password is encryptedusing the C function crypt().userid { a numeric value assigned by selecting the maximumuserid from the table and adding 1 to it.consent { a boolean value which is true when the user hasclicked okay on a shrink-wrap consent form page,giving us permission to collect data on users' activities.The demographics table contains the following information:userid { a numeric value that is the same as in the userstable and can be used to cross-reference the two tables.gender { a character value that speci�es the user's gender(either \m" (male) or \f" (female)).age { an integer value specifying the age of the user.location { a text value that contains the country or state (if thecountry is U.S.) where the user is connecting from.address { a text value containing the user's Internet (IP) address.language { a text �eld that speci�es the user's native language.BehaviorBehavior data is stored in the behavior table in the Postgres database. This tableis written to by the dbmanager. Every time a user enters or exits a playground,initiates, �nishes or forfeits a match, an entry is inserted into this table. Thusthe data in this table can be accessed in order to study users' behavior. Forexample, it is useful for training secret agents to emulate the playground behaviorof humans. 102

The behavior table contains the following information:userid { a numeric value that is the same as in the userstable and can be used to cross-reference the two tables.action { a text value that is one of the following:ENTER (when a player enters a playground)EXIT (when a player exits a playground)ASK (when a player initiates a match)RESULTS (when a player �nishes a match)FORFEIT (when a player cancels a match)game { a text value indicating the name of the game in whichthe action has occurred (e.g., \Pickey").timestamp { a numeric value specifying the time when the action occurred.5.2.2 PerformanceFor each user, performance data is maintained both in a rates �le and in thePostgres database. The rates �les are updated and accessed by the Matchmakerapplications. The database tables are updated by the dbmanager and accessedfor post-operations analysis.Rates �lesThe rates �les are stored in binary form. One �le is stored per user. Somerates �les may be shared by multiple games, as is the case for Keyit and Pickey.Monkey has a separate rates �le, as does Automath. The content of each �le is:<nr><r0><r1> : : : <rnr�1><ng><g0><g1> : : : <gng�1><avg>where: 103

nr = integer, number of ri recordsri = a structure, of type RATEng = integer, number of gi valuesgi = integer, list of indices of domain elements in the last\generation" | i.e., the last problem set this user was givenavg = double, a game-dependent player performance averageThis format is the same for all rates �les. The de�nition of the RATE structurevaries from one activity to another (see �gures 5.2 and 5.3).typedef struct fint elemid;int count;double sum;g RATE;Figure 5.2: RATE de�nition for Keyit, Pickey and Automath.ng = 10 and avg = the average score (sum=count) for all ri records.For each domain element: the number of times the user has encountered thatelement (count) and the total of all scores for all encounters (sum); thus anaverage rate for that element = sum=count.typedef struct fint elemid;int count;int sum;int found;g RATE;Figure 5.3: RATE de�nition for Monkey.ng = 1 and avg = the average (sum/count) for all ri records.For each domain element: the total number of times this word was the monkey'sword (count) and the total number of words found when this word was the mon-key's word (sum); thus an average number of words found when this word wasthe monkey's word = sum=count and the number of times the user has found thisword (found) inside the monkey's word (see section 3.3.3).104

Rates tablesThe rates tables are stored in the Postgres database. There are three inter-relatedtables, generally one set per activity, though games can share rates tables2. Thetables have the name of the game which they belong to appended to the tablename:1. rate game (e.g., rate Keyit),2. rate x game (e.g., rate x Keyit), and3. gen x game (e.g., gen x Keyit).The userid �eld is common to all three tables and is used to join them. It is theprimary key for all the tables.The rate game table is the master table. It contains one entry for each user(userid), which is akin to one rates �le per user. The rate game table contains thefollowing information:userid { a numeric value that is the same as in the userstable and can be used to cross-reference the two tables.average { a real value akin to the avg �eld in the rates �les.n rate { an integer value akin to the nr �eld in the rates �les.n gen { an integer value akin to the ng �eld in the rates �les.The rate x game table contains one entry for each domain element that a userhas been exposed to. It is akin to the ri array in the rates �les. For every recordin the rate game table, there are rate game.n rate entries in the rate x game table,all with the same userid.2Pickey shares Keyit's tables. 105

For example, the rate Keyit table contains the following information:userid { a numeric value that is the same as in the userstable and can be used to cross-reference the two tables.elemid { an index pointing to a word in the words database.count { an integer value indicating the number of times thisuser has been exposed to this word (elemid).sum { a real value containing the sum of the user's scores withthis word for all count times seeing this word.The gen x game table contains one entry for each domain element in thelast problem set the user attempted. It is akin to the gi array in the rates �les.For every record in the rate game table, there are rate game.n gen entries in thegen x game table, all with the same userid.The gen x game table contains the following information:userid { a numeric value that is the same as in the userstable and can be used to cross-reference the two tables.elemid { an index pointing to an element in the domain database.5.2.3 Match ResultsFor each match played, results data is maintained in both a journal �le and in thePostgres database. The journal �le is updated by the Matchmaker applicationsand is accessed by the programs that report to users a record of their activitieswith each game. The database tables are updated by the dbmanager and areaccessed for post-operations analysis. 106

The journal �les are stored in text form. One �le is stored per game. Theformat of the journal �les is as follows:<timestamp><client><userid><match><result>where:<timestamp> = number of seconds since midnight on 01-Jan-1970<client> = the IP address of the player client<userid> = the player's userid number<match> = four-�eld entity that uniquely identi�es every match<result> = result of the match, which varies for each gameThe four-�eld <match> is de�ned as:<timestamp><game><userid1><userid2>where:<timestamp> = number of milliseconds since midnight on 01-Jan-1970<game> = name of game, e.g., Keyit<userid1> = userid number of player 1<userid2> = userid number of player 2When a player �nishes a match, a record is written to the journal �le forthat player, with that player's userid number as the third �eld in the record.This means that for matches where both players �nish normally, there will betwo records in the journal �le for that match: one with player 1's userid in thethird column and one with player 2's userid in the third column.Note that the <match> �eld always lists the players in the same order, nomatter whose results are contained in the record. Player 1 is de�ned to be theplayer who initiated the match. Player 2 is the player who accepted. If the matchis between a human and a software agent, then the agent is always player 2.107

5.2.4 Survey ResultsWhenever a user exits a playground, she has the option of completing a quickon-line survey and answering two questions:1. how hard was the match?2. how much did you enjoy the match?Both questions are answered on a scale of 1-10. For the �rst question, 1 isde�ned to be \easy" and 10 is de�ned to be \hard". For the second question, 1is de�ned to be \boring" and 10 is de�ned to be \exciting!".Answers to this survey are stored in the Postgres database in the opiniontable. Records are inserted into the table by a CGI-bin program which displaysan HTML form with the two questions on it and processes users' responses. Thetable is accessed for post-operations analysis.The opinion table contains the following information:userid { a numeric value that is the same as in the userstable and can be used to cross-reference the two tables.timestamp { a date value containing the time the survey was completed.game { a text value that speci�es the name of the game played.funness { an integer value between 1 and 10.hardness { an integer value between 1 and 10.
108

5.2.5 System LogsThe system log �le written in CEL maintains a chronological record of everythingthat happens while the system runs. This includes diagnostic information, whichis kept for a month and then ushed.The content of each log �le is a record in the following format:<timestamp><message>The <timestamp> format is �xed (time in milliseconds since midnight, 01-Jan-1970). The <message> format varies. [Sklar, 2000] contains detailed informationon the content of the system logs. Most messages are formatted as follows:client[<client>] : received message <message>client[<client>] : sent message <message>These tags indicate which client was involved in the communication.Some examples are shown below (the timestamps were removed):client[174]: received message %%pongclient[Pickey]: received message %%pongclient[null]: received message %%login 3 4 929645102client[3]: received message %%ask Keyit 4client[3]: sending message %%game 929645104412 Keyit 3 4client[Keyit]: sending message %%game 929645104412 Keyit 3 4client[Keyit]: received message %%agent 929645104412 Keyit %%3 4 007 -31 10......11766 -1 embeds 9169 -1 curiousest 10667 -1 disinterestedness 22151 -1...client[3]: received message %%move 929645104412 Keyit 3 4 3 11766 107.0 embedsclient[Keyit]: sending message %%move 929645104412 Keyit 3 4 3 11766 107.0 embedsclient[Keyit]: received message %%move 929645104412 Keyit 3 4 3 11766 107.0client[3]: sending message %%move 929645104412 Keyit 3 4 3 11766 107.0client[4]: sending message %%move 929645104412 Keyit 3 4 3 11766 107.0client[3]: received message %%move 929645104412 Keyit 3 4 3 9169 225.0 curiousest109

5.3 SummaryThe data products collected in CEL may be accessed for many purposes:� Student models may be accessed to select game content tailored to theneeds of individual users. This is a dynamic task that occurs while thesystem is running and must contain current information that is consultedbefore every game a user plays.� Student models may be used to de�ne playgroup content. This is alsoa dynamic task that occurs while the system is running. Playgroups areupdated after every game �nishes and each time a new player enters orexits a playground.� Match results are reported to users when requested. Playground pagesshow lists of all the matches a player has engaged in and the results. Theselists update when a playground page is �rst loaded or dynamically if a userrequests an update.� User behavior and performance data may be used to train secret agents.See chapter 7 for an example.� All types of data may be accessed for analysis, external to system operation.� System logs are used to debug problems with the system.The next chapter contains examples of the types of analysis that are typicallyperformed in interactive learning systems, using the data products described110

here. We used many software tools (shell scripts, C programs, Matlab) in orderto analyse the data. Future work involves building a high-level set of analysistools that teachers can use to produce the same types of tables and graphs shownhere.

111

112

Chapter 6Pilot TestingDuring the �rst half of 1999, we conducted pilot testing with CEL. Forty-fourfourth and �fth grade students from a local public primary school participated.Table 6 shows the breakdown of students, according to grade level and gender.All participants had signed parental permission. Any names of participants men-tioned in this thesis are �ctitious, in order to protect the privacy of the children.Table 6.1: Breakdown of students.grade gender number of students4 male 104 female 125 male 95 female 13The pilot testing took place in a computer lab in the primary school, where15 iMac computers are connected to the Internet via a high-speed link. Allchildren in this school make regular use of this lab for various activities, both113

on- and o�-line; thus the setting was familiar and comfortable. The childrenvisited the computer lab for about an hour once a week and \did CEL" (underthe author's supervision). In most sessions, due to scheduling constraints, onlychildren from the same grade were in the lab at the same time.All the children did not have equal amounts of time to spend in the computerlab. Generally, the classroom teachers decided who would be allowed to go to thelab, typically based on other activities that were going on inside the classroomand whether each child had other classwork that needed to be completed �rst.With the fourth grade class, we usually took one group of students to the lab andthey stayed for the entire session. With the �fth grade class, an initial group ofchildren would come to the lab and then others would arrive and switch placeswith their classmates.For all children, initial sessions required guidance either from the authoror from another child who was already familiar with CEL. However, within 5minutes or less, every child was able to get around in the community with ease.On-line help was available, although it was limited. Yet, this level of instructionwas su�cient for computer-literate adults to �gure out what to do without furtheraid. We found that the children, in general, did not bother to read help screensanyway or even the simple instructional messages that appear on the playgroundor game pages. The kids were far more likely to call out to someone else in theroom and ask for assistance.The children were able to choose between the games of Keyit and Pickey forthe entire test period. The games Automath and Monkey were available for the114

�nal few sessions. All these games are described in chapter 3.The purpose of the pilot testing was to perform formative assessment of CEL,to ensure that the system was accessible from a real school setting, that the playerclient was usable by children and that the children enjoyed their experiences withthe system. During the initial testing period, the user interface was adjusted asdescribed in section 4.7.The remainder of the period was spent validating CEL's data capture andstorage mechanism. The goal was to demonstrate that CEL can collect the typesof data common to the ILS �eld and that this data can support the types ofanalyses generally performed by researchers in this �eld.Data was collected during pilot testing for 19 days1. Figure 6.1 plots theamount of time that data was collected each day. Typically, we were given anhour with each class, which included time to set up the lab, organize the childrenand take them to the lab, followed by start-up time for them to log in and beginplaying games.
1Note that on days 3, 4 and 6, various system problems occurred and we had to curtail datacollection. Twice, the school's Internet server went down. Once the Brandeis network wentdown. 115

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

80

90

100

to
ta

l t
im

e
(m

in
u

te
s)

Figure 6.1: Data collection time, per day.Next, we illustrate our claim that the data collected in CEL can supportthe types of analyses generally performed by researchers in the ILS �eld, asdescribed in chapter 2. Analysis that supports four of these categories is sharedin this section: activity, interaction, learning and interest. The �fth category ofanalysis, coverage, is the subject of chapter 8.We have selected four students to serve as examples throughout, based ontheir representative amount of activity with CEL and performance statistics.Figure 6.2 illustrates the number of words completed versus average typing speedfor each student in the group for the games of Keyit and Pickey. The samplestudents are highlighted. Note that we have chosen one fourth grade boy (id =119), one fourth grade girl (id = 98), one �fth grade boy (id = 88) and one �fthgrade girl (id = 89). 116

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

sp
ee

d
(le

tte
rs

/s
ec

)

number of words completed

119
98

88

89

gr4 girls
gr4 boys
gr5 girls
gr5 boys Figure 6.2: Number of words completed versus typing speed, per student.

117

6.1 ActivityOne common analysis concerns examination of participants' activities when usingan interactive learning system. Researchers and teachers want to know whatusers are doing with their time on-line. In CEL, students engage in three mainactivities: (1) playing games (\game time"), (2) sitting in playgrounds waiting forsomething to do (\lonely time"), and (3) doing other things, like editing IDsigns(\other time"). This data is available in the user behavior tables (see chapter 5).An example is shown in table 6.2, which contains the amount of time spent ineach of these activities for one of the children involved in the pilot testing (id =89). Table 6.2: Activity statistics.elapsed lonely gamestart end time time time otherday time time (sec) (sec) (sec) (sec)3 11:12AM 11:32AM 1233 424 (34.39%) 134 (10.87%) 675 (54.74%)5 10:58AM 11:31AM 1996 890 (44.59%) 552 (27.66%) 554 (27.76%)8 11:13AM 11:36AM 1346 406 (30.16%) 649 (48.22%) 291 (21.62%)10 11:47AM 12:01PM 884 294 (33.26%) 383 (43.33%) 207 (23.42%)12 11:21AM 11:58AM 2164 464 (21.44%) 656 (30.31%) 1044 (48.24%)17 10:35AM 11:55AM 4841 1418 (29.29%) 1731 (35.76%) 1692 (34.95%)19 11:33AM 11:57AM 1434 269 (18.76%) 425 (29.64%) 740 (51.60%)Figure 6.3 shows this type of data graphically, for the four students in oursample group. The horizontal axis contains the days that the students par-ticipated. One day's activity is represented by a group of three vertical bars,indicating the amount of time that this student spent in \lonely", \game" oranother state. 118

2 13 15 16 17 18
0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
im

e

day number

id=119

lonely
game
other

4 9 13 15 18
0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
im

e

day number

id=98

lonely
game
other

(a) id = 119 (b) id = 98
3 5 10 12 14 17 19

0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
im

e

day number

id=88

lonely
game
other

3 5 8 10 12 17 19
0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
im

e

day number

id=89

lonely
game
other

(c) id = 88 (d) id = 89Figure 6.3: Activity charts for sample students.A summary of the activities for all the students is illustrated in �gure 6.4.One might be interested in looking at the amount of time spent playing gamesversus the amount of time sitting in the playground.Examination of this type of data across all students may help researchersand system builders determine which elements of a system are more attractiveto students than others. For example, on 5 of 19 days, more than half the overalltime was spent playing games. On 13 of 19 days, more than a third of the time119

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
im

e

day number

lonely
game
other

Figure 6.4: Summary activity chart.was spent playing games.Analysis of this data on an individual basis may help teachers �nd out moreabout their students' needs. For example, student 98 (see �gure 6.3(b)) spentmore time playing games than sitting in the playground or doing other things.However student 89 (�gure 6.3(d)) spent more time doing other things | pri-marily editing her IDsign. Since this student was also the fastest typer, thesetypes of analyses can indicate to a teacher that perhaps this student needs to bechallenged more. 120

6.2 InteractionIn multi-player games, researchers and teachers are interested to �nd out whoparticipants are interacting with. As well, if software agents are involved, systembuilders want to know if students are interacting with the agents and be able tocompare human-human with human-agent encounters.During pilot testing, the students interacted with both human playmatesand software agents. To test the various modes, we varied the interactions oneach day, as summarized below:IN { Internal interaction.All participants that were logged into CEL were present in the computerlab.EX { External interaction.Several participants were humans not present in the computer lab { somewere other children logged in on classroom computers elsewhere in the samebuilding, and others were graduate students logged in at various locationsoutside the primary school.SA { Secret agent interaction.Some \participants" were simple \secret" software agents that were codedto enter a playground, accept challenges and play games, letting their hu-man opponents win at least 50% of the time.Table 6.3 shows which participants were involved during each test day. On somedays, more than one type of interaction occurred.
121

Table 6.3: Summary of interactions.number of number of gradeday participant(s) games played kids level(s)1 EX 75 11 4,52 SA 70 7 43 SA 11 5 54 SA 37 7 45 EX+SA 149 14 56 EX+SA 12 6 47 IN 67 9 48 EX+SA 111 12 59 SA 128 10 410 SA 120 9 511 EX 60 8 412 EX+SA 88 9 513 EX 117 9 414 EX 85 7 515 IN 52 12 416 SA 54 9 417 EX 227 25 4,518 IN 61 12 419 EX 48 9 5Analysis of interaction conditions varies, depending on the goals of individualexperiments. Some of the types of studies that might be performed includethe change in activity rate under di�erent interaction conditions, the amountof interaction between di�erent types of participants and the speci�cs of whointeracts with whom. The next set of �gures illustrate these analyses for thedata collected during pilot testing. Note that these graphs do not take intoaccount the number of participants available in each category, nor was a controlstudy performed, so the reader is cautioned not to draw any speci�c conclusionsconcerning the success or failure of the di�erent interaction conditions.122

Figure 6.5 shows the rate of game play under the various conditions, i.e., thenumber of games played per minute, averaged across all the students participatingthat day.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

0.5

1

1.5

2

2.5

3

3.5

4

g
am

es
/m

in
u

te

IN
EX
SA
EX+SA

Figure 6.5: Number of games played per minute.
123

Figure 6.6 contains a breakdown of the games played by the kids amongstthemselves (IN), with the secret agents (SA) and with others who were not in theroom (EX).
IN EX SA EX+SA

0

10

20

30

40

50

60

70

80

90

100

(%
 g

am
es

 p
la

ye
d)

IN
EX
SAFigure 6.6: Interactions between types of participants.

124

Figures 6.7 and 6.8 illustrate the interactions between the various factions ofplayers. In both graphs, the vertical axis shows the players who initiated matchesand the horizontal axis lists the players who accepted. A point indicates that atleast one encounter occurred between that given pair of players.In �gure 6.7, the children are grouped according to grade level and gender;the same order is used on both axes. It is clear to see that the two classrooms ofchildren were infrequently in CEL at the same time (which was due to schedulingconstraints, as stated earlier), thereby verifying our methodology.
boys/gr4

girls/gr4

boys/gr5

girls/gr5

boys/gr4 girls/gr4 boys/gr5 girls/gr5 agents othersFigure 6.7: Who plays whom, grouped by age and gender.125

Figure 6.8 contains the same data, but organized di�erently. The four \kids"sections of �gure 6.7 are intermingled, and the children are ordered by typingspeed as recorded during Keyit and Pickey games. The fastest typers are nearerto the origin.
fastest
typers

slowest
typers

fastest
typers

slowest
typers

agents othersFigure 6.8: Who plays whom, ordered by typing speed.This type of analysis can prove extremely useful in an open Internet system.Students of di�erent ages, genders and locations may interface with each other,and plots like these can help researchers identify clusters of interaction. Theseplots may also help highlight the acceptance rates of software agents amongstdi�erent segments of the human population.126

6.3 LearningNaturally, everyone wants to know if participants' performance improves whenusing an interactive learning system. CEL can track changes in performance.As an example, we look at the change in the children's typing speed as mea-sured at the beginning and the end of pilot testing. Figure 6.9 plots the changein typing speed for two of the students in the sample group. The horizontal axisrepresents time, in terms of the number of words typed. The vertical axis repre-sents typing speed, in letters per second. We have normalized both axes for allthe students, in order to make comparisons easily. In the horizontal dimension,this allows us to take into account the number of games each student played inCEL.
0 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

words typed

le
tte

rs
/s

ec

id=119

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

words typed

le
tte

rs
/s

ec

id=89

(a) id = 119 (b) id = 89Figure 6.9: Tracking learning in sample students.Figure 6.10 summarizes the change in typing speed for all the students.A plot like this, read in conjunction with pre- and post-test results, can give127

researchers and teachers alike a good indication of the learning that has occurredwhile students use a particular system.
−1

−0.5

0

0.5

1

1.5

2

2.5

individual users

in
cr

ea
se

 in
 le

tte
rs

/s
ec

Figure 6.10: Change in typing speed.Of course, this data taken alone is not very meaningful. Control studiesneed to be performed in order to prove that learning has been a direct result ofusing a system. For example, chapter 8 discusses use of an alternative engine forproviding content to games of Keyit and Pickey. Future work in that chapterhighlights the need for a controlled experiment, where students are divided intothree groups and three di�erent game content selection methods are compared,one per group. Having plots like �gure 6.10 can help highlight any di�erence instudents' learning rates between the three groups.128

6.4 InterestDetermining participants' interest levels in an interactive learning system is quiteimportant to researchers and system builders. In CEL, participants can indicatetheir interest by completing an on-line survey, which is presented upon leaving agame playground (see �gure 6.11). Users are asked to rate their matches on twoscales: enjoyment and di�culty.

Figure 6.11: Exit poll.129

As an example, we plotted the data collected during pilot testing in �gures6.12 and 6.13. Although answering these questions is optional, 90% (40 out of44) of the students completed the on-line survey.
boring 2 3 4 5 6 7 8 exciting!

0

5

10

15

20

25

30

35

40

45

50

nu
m

be
r o

f r
es

po
ns

es

Figure 6.12: \How much did you enjoy the match?"
easy 2 3 4 5 6 7 8 hard

0

5

10

15

20

25

30

nu
m

be
r o

f r
es

po
ns

es

Figure 6.13: \How hard was the match?"130

6.5 O�-line surveyAt the end of the pilot study, we asked each of the children to complete a short,anonymous paper-and-pencil survey in order to get some feedback from the chil-dren about their experiences with CEL. The survey contained six questions, andthe wording was geared toward fourth and �fth graders. Forty of the surveyswere returned (90%), from 22 of the fourth grade children and from 18 of the�fth grade children. The survey is shown in �gure 6.14.CEL Survey Spring 1999You have been a participant in CEL (Community of Evolving Learners)this year. CEL is a research project that is supposed to help learnersof all ages come together on the Internet. We would like you to tell uswhat you think of CEL. Your answers will help us improve the systemfor next year.Please answer the following questions honestly and do not write yourname on this survey. Thank you!(1.) What grade are you in?(2.) Which games did you play in CEL?(3.) Name 3 things that you like about CEL.(4.) Name 3 things that you don't like about CEL.(5.) Name 3 things that could be changed to make CEL better.(6.) Is there anything else you would like to tell us?Figure 6.14: Post-study survey.131

The survey results for questions 3 through 5 are tallied in tables 6.4 through6.6, respectively. The tables should be read as follows: if 21 students said theyliked creating IDsigns, this means that 21 of the children chose to include thisfeature in their list of things they liked (it does not mean that the remaining 19children did not like creating IDsigns).Table 6.4: Name 3 things that you like about CEL.creating their IDsign 21 childrenlearning (to type faster) 21contacting others 15anonymity 8Table 6.5: Name 3 things that you don't like about CEL.nothing! 15 childrenwhen it breaks 8matches were too hard 7not enough games 6players can cancel matches 3not exciting enough 2anonymity 2non-anonymity 2matches were too easy 1score reporting is confusing 1The children suggested a few interesting improvements, such as allowingusers to select from a set of ready-made IDsigns, in case they do not want to maketheir own. We found it ironic that, despite our sensitivity to open competition inan educational setting, several children's suggestions involved making the site feelmore competitive: e.g., adding skill levels, ranking pages and prizes. Although132

Table 6.6: Name 3 things that could be changed to make CEL better.add more games 16 childrennothing 9�x it so it would never break 6make matches harder 5make matches easier 5make it run faster 3make better games 3add computer opponents 3create skill levels 3add a ranking page 3prevent players from canceling matches 2allow practice sessions 2be able to pick a ready-made IDsign 1get prizes 1get free stu� on the site 1make 3, 4, 6-player games 1add more color choices in the IDsigner 1add a chat capability 1the consensus for question 4 was that the matches were too hard, for question5, an equal number of children commented that the matches were too easy andthat the matches were too hard.For question 6 (\Is there anything else you would like to tell us?"), 29 of thechildren wrote either \no" or did not respond. A few suggested improvements,which we tallied along with the responses to question 5. Seven children wrotestatements emphasizing how much they liked the system (\It was really fun.").
133

Here are some highlights from the survey2:� A fourth grade child wrote: \I would like to play these games next year."� A �fth grade student wrote: \It was WAY cool."� A fourth grader wrote that s/he would like it if s/he \could bye [sic] freestu� there."� A fourth grade child wrote that s/he liked the fact that s/he \could be whoyou want to be with the pichture [sic]" (i.e., the IDsign).� A fourth grader wrote: \It helped me to improve my consintration [sic]."� Two students commented that it is easy to use and to understand.� Several children wrote that they liked that they could play their friends(these comments were included in the \contacting others" �gure in table6.4).In summary, we found that the children quite enjoyed using CEL. Indeed,the most common response to question 4 (\Name 3 things that you don't likeabout CEL") was the statement that there was nothing they didn't like aboutCEL.2Note that this school practices \Write to Read". With this method, early writers aretaught �rst to express themselves and second to focus on mechanics like spelling, punctuationand grammar. 134

6.6 SummaryPilot testing is a useful method for system builders to evaluate the mechanics oftheir system and for researchers to con�rm that the types of data they would liketo collect are being gathered and can support the claims they would like to makewith their research. Once pilot testing is completed successfully, experimentalresearch can begin in earnest.With CEL, the early phase of pilot testing was spent doing formative assess-ment of the system. Many adjustments to the user interface were made duringthis period (see section 4.7.1). Subsequently, data was collected, and the plotsshown in this chapter demonstrate that the types of analyses generally performedby the ILS �eld (as laid out at the end of chapter 2) can be supported by thisdata.

135

136

Chapter 7Agents as learning partnersCEL is a multi-user environment, and the activities inside the system are multi-player games. If not enough people are logged into a playground, then we letsoftware agents act as arti�cial learning partners, maintaining an active presencein the system at all times and thereby sustaining the community. The softwareagents in CEL are designed with a exible architecture so that di�erent controlmechanisms can easily be used to implement agents exhibiting a variety of be-haviors. We refer to the agents as secret agents because there is no explicit meansfor participants to distinguish the arti�cial players from other humans.This chapter begins with a functional description of CEL agents and outlinesthe types of behaviors that the agents need to embody. Two behavior modulesare discussed, one for playground behavior and one for game behavior. To demon-strate the exibility of the CEL agent architecture, we have built two di�erentcontrol mechanisms for game behavior. During pilot testing (described in chap-137

ter 6), we used agents that exhibit simple rule-based behaviors. Subsequently,we took data collected during the pilot study to train more sophisticated agentscontrolled by neural networks. We describe the control modules for both typesof agents and present training results.7.1 Functional descriptionInside CEL, secret agents may exhibit three categories of behaviors:1. system behavior,2. playground behavior, and3. game behavior.System behavior refers to high-level actions like logging into and out of CEL atparticular times of day and selecting di�erent playgrounds. Currently, we havenot implemented a mechanism for this level of behavior, so we leave this forfuture work and here only discuss playground and game behaviors. Playgroundbehavior refers to entering and exiting playgrounds and initiating challenges.Game behavior refers to the play within a speci�c game.A top-level controller for the secret agent decides which behavior to follow,as indicated in �gure 7.1. A di�erent module handles each type of behavior. Themodule that operates at any given time is determined based on the current stateof the agent, de�ned on the basis of the input received from the CEL server.138

module
gameplayground

module

STATE GAME

receive command from Server

Figure 7.1: Basic control architecture.Figure 7.1 is highly simpli�ed because there are more than two commandsthat can be received (i.e., other than STATE and GAME). The complete setof commands is listed in table 7.1, along with the requisite responses from theagent. The precise handling of game commands varies, depending on which gameis being played. The general and playground commands are handled the sameway, no matter which game playground an agent is residing in.
139

Table 7.1: Commands sent to agent from CEL server.command received responsefrom server from agentgeneral commands SHUTDOWN exitLOGOUT send LOGOUT command to serverand exitPONG no responsePING send PONG command to serverSETTIMEOUT change timeout valueGETTIMEOUT send timeout value to server, in theform of a GETTIMEOUT commandERROR exitplayground commands STATE update internal state; wait; and thensend STATE or ASK command to serverREJECT update internal state; wait; and thensend STATE or ASK command to servergame commands GAME this means agent has been invitedto play a match, or agent's invitationto another player has been accepted |now agent must wait for game data toarrive from server, in the form of anDATA command;state GAME STATEDATA this command contains game data;response is game dependentMOVE this command contains opponent's move;response is game dependentBADMOVE this means agent's move was invalid;response is game dependentRESULTS this means opponent has �nished match;response is game dependentABORT abort match; wait; then send STATEcommand to server;state PLAYGROUND STATE140

7.2 Playground behaviorThere are three basic choices for things to do in a playground:1. invite a playmate to engage in a match2. wait to be invited by another player3. leave the playgroundWe note that human players may also perform unexpected actions, such asclicking on the \back" button of their browser, selecting a previous page fromtheir browser's history list or closing their browser without formally exiting fromCEL. We do not model these types of spurious behaviors in the software agentsand only stick to so-called \normal" expected actions.The client software used by human players updates its playground state every5 seconds if the human does not initiate an action herself. (The mechanism foraccomplishing this is detailed in chapter 4.) Thus, if the human player sits ather computer while in playground mode and does not click on another player toinitiate a match, then every 5 seconds her browser sends a STATE command tothe CEL server and in return, she receives an update message. This message iseither a STATE command, indicating the present state of her playground (i.e., alist of the playmates who are currently logged into her playground), or a GAMEcommand, if another player has invited her to engage in a match1. If the human1If a system error occurs, then an ERROR command may be received, or if the system isshutting down, a SHUTDOWN command may be received.141

player clicks on another player to initiate a match, then an ASK command is sentfrom her browser to the CEL server. Figure 7.2 illustrates the client's actions.
client

CEL server

playground state

GAME game stateASK

STATE STATEFigure 7.2: Playground behavior.The software agent follows a similar operating procedure. The control archi-tecture decides between the three options (listed at the beginning of this section),and if the choice is to wait to be invited by another player, then the agent waits5 seconds and sends a STATE command to the CEL server. Otherwise, the agentsends an ASK command to the server, specifying a playmate to invite for a match.Creating an agent that acts in a playground is relatively straightforward. Allwe really need to model is the likelihood of a player inviting a playmate to engagein a match (i.e., when a client sends an ASK command to the CEL server). Wecould use human data to determine these probabilities. For example, we talliedthe probability of players generating ASK, STATE and EXIT commands for eachof the forty-four participants in the pilot study, as shown in �gure 7.3. We coulduse these probabilities as the basis for controlling forty-four di�erent playgroundagents. 142

0

20

40

60

80

100

individual players

pr
ob

ab
ili

ty
 (

%
)

exit
ask
state

Figure 7.3: Command probability.7.3 Game behaviorGame behavior is of course dependent on the particular game being played.Additionally, di�erent humans will exhibit varying levels of ability as well asvarious characteristics of play.Figure 7.4 illustrates the command sequences exhibited while in a gamestate, by either human or secret agent players. While playing a game, a sequenceof MOVE commands ows between the player, the CEL server and the player'sopponent or partner (depending if the game is competitive or collaborative).Note that this drawing (�gure 7.4) is somewhat simpli�ed, as the game'smatchmaker is also involved. EachMOVE command received by the CEL server ispassed along to the matchmaker, where the move is evaluated. If the move is legal,143

CEL serverCEL server

client

game
applet

RESULTS STATE

MOVE

MOVE

game state

playground stateFigure 7.4: Game behavior.then the matchmaker sends the same MOVE command back to the originatingplayer and also to the player's mate. If the move is illegal, then the matchmakergenerates a BADMOVE command and sends that only to the originating player.When the game is over, the RESULTS command is also forwarded by the CELserver to the matchmaker, to mark the completion of the match.The content and timing ofMOVE commands is speci�c to each game, accord-ing to the rules of play. We use Keyit as an example. The game play for Keyitis as follows: the system provides ten words to each player, one at a time, totype as fast as she can, with 100% accuracy. Players participate asynchronously,completing each word at their own pace.During pilot testing, we implemented a very simple Keyit agent that waitsuntil the human has typed each word; then the agent pauses for a variable amountof time and returns its score2 for the same word. The agent's score is calculatedbased on the human's performance and is chosen to be slightly faster or slowerthan the human's. This is done to create the motivational illusion that the2Score is the time it takes to type the word, in hundredths of a second.144

human's opponent is of comparable ability to the human and so that the humanwill win matches with these agents approximately half the time.While these simple Keyit agents performed adequately during the pilotstudy, it is obvious that their restricted capabilities limit their usefulness ase�ective learning partners. Because the architecture for CEL agents is exible,we can easily substitute a more sophisticated control mechanism. The remain-der of this chapter discusses just such a control mechanism which is designed toemulate the behavior of humans.7.4 Training agents to emulate humansAn earlier project provided us with background for extending the simple Keyitagents to exhibit more sophisticated, human-like behaviors. In this section, we�rst describe the earlier project and then detail our methodology and resultsfrom extending that work to Keyit.In a follow-on project to the Tron Internet experiment (mentioned in sec-tion 3.3.6), we trained agents to play Tron, with the goal of approximating thebehavior of the human population in the population of trained agents [Sklaret al., 1999]. These agents were controlled by feed-forward neural networks andwere trained using supervised learning [Pomerleau, 1993; Wyeth, 1998].We trained the Tron-playing agents using two methods. First, we trainedagents to emulate the performance of individual humans, based on a one-to-one correspondence between human trainers and network trainees. Second, we145

trained agents to emulate the performance of a small population of humans,grouped together according to a similar performance statistic. This scenario wasbased on a many-to-one correspondence between human trainers and networktrainees. The training procedure involved replaying Tron games, allowing thetrainees to observe and predict moves. Based on the accuracy of the trainees'predictions, the network weights were adjusted using the backpropagation algo-rithm [Rumelhart et al., 1986].We evaluated our training e�orts in two ways. First, we compared theperformance of the networks to their trainers', looking for correlations. We foundthat it was very di�cult to train a network to emulate the precise behavior of anindividual human. However, the performance of the population of trainees wascomparable to the performance of the human population. We speculated thatsome of the artifacts of the Tron domain likely contributed to the discrepanciesbetween the arti�cial trainees and their human counterparts.Second, we examined the e�ectiveness of our method as a general meanstoward training software agents. It is important for arti�cially trained agents toexperience a wide variety of behaviors, otherwise they will not be robust and willonly perform well in situations similar to those experienced during training. Theconclusion drawn is that a population of humans can act as e�ective trainersfor a graded population of agents, because there is naturally a wide variationin behaviors both across an entire population of humans and within a singlestochastic human player.As well, the training procedure proved to be a valid technique for capturing146

regularities within a large database of game moves. Indeed, we found that someof the trainees performed better than their trainers. In the game of Tron, if amatch lasts for n moves, a player can make n-1 good moves and then lose thegame with one bad move. When such games are observed by trainees, they learnmore \good" play from the n-1 moves than they do \bad" play from the one falsemove. In this way, the training method serves to �lter out infrequent mistakesof the human trainers.Now we carry these techniques into the CEL domain. We used the datacollected during the pilot study as the basis for training agents to play Keyit. Thecontrol architecture, training methods and results are detailed in the followingpages.7.4.1 ArchitectureIn Keyit, the basic task can be described as follows: given a word, characterizedby its corresponding set of seven feature values (described in chapter 5), outputthe length of time to type the word. In addition to the 7 feature values, we alsoconsider the amount of time that has elapsed since the previous word was typed.The agents are controlled by feed-forward neural networks. The networkarchitecture is shown in �gure 7.5. There are 8 input nodes, corresponding toeach of the seven feature values (normalized) plus the elapsed time (mentionedabove). The elapsed time is partially normalized to a value between 0 and (closeto) 1. There are 3 hidden nodes and one output node, which indicates the timeto type the input word, in hundredths of a second.147

number of consonants

number of vowels

scrabble score

keyboarding level

word length

elapsed time
since last entry

clusters
number of 2-consonant

number of 3-consonant
clusters

time

input hidden layer outputFigure 7.5: Neural network architecture.7.4.2 TrainingAs with the Tron experiment, we trained players in two ways, �rst using a one-to-one correspondence between human trainer and network trainee, and secondemploying a many-to-one correspondence between groups of human trainers andnetwork trainees. For the second method, we grouped human trainers accordingto their overall average typing speed.For each human involved in the pilot study, we scanned the CEL log �les,picking out all games of Keyit3, and gathered the moves from each game into a�le, one per person. A \move" includes the timestamp (the time in seconds thatthe move occurred), the word being typed and the amount of time (in hundredthsof a second) that the player took to type the word. Then we calculated the time3Data from Pickey games was also used, because the two games are so similar.148

elapsed between moves (based on consecutive timestamps) and, along with theseven feature values for each word, created two �les (one for training and one fortesting), placing alternate moves in each �le.We used all the data collected during the pilot study. The humans werelearning throughout this period, so the networks were trained to approximatethe average performance of each human across the entire time period. Figure 7.6contains data for all the players involved in the pilot study, plotted in ascendingorder according to typing speed (in letters/second). The plot also indicates thegroupings of players, used for the many-to-one training scenarios. The playersare clustered according to typing speed, in increments of 0.5 letters/sec. Thefour players from our standard sample are highlighted.
0

0.5

1

1.5

2

2.5

3

3.5

4

individual players

sp
ee

d
(le

tte
rs

/s
ec

)

119

98

88

89

gr4 girls
gr4 boys
gr5 girls
gr5 boys

Figure 7.6: Average typing speeds of players.149

We trained the networks using supervised learning, as in the Tron follow-onexperiment, adjusting the networks during training using backpropagation. Theresults presented here were obtained with a learning rate of 0:00001. All thenetworks were trained for 10,000 epochs, but progress generally leveled o� after2500 epochs.Throughout the training sequence, we kept track of the prediction error forthe network | the di�erence between the typing time predicted by the networkand the actual typing time of the training set. We saved one \best" networkfor each training sequence, corresponding to the set of weights which resulted inthe smallest prediction error. After the training sequences were completed, weevaluated the best networks for each e�ort by comparing its prediction with thehuman's data, for both the training set and the (reserved) test set of data.7.4.3 ResultsWe look at the results of the training e�orts in several ways. First, we look at thetraining period and show how the network improved its predictive ability duringtraining. Figure 7.7 shows the performance of the networks trained for the foursample students (88, 89, 98 and 119). The plots in the top row illustrate theprediction error for the networks. The solid curve plots the error based on thetest data set; the dashed curve plots the error based on the training data set.The plots in the bottom row show how the error in typing speed improves overtime, when the networks are confronted with the test data set (solid curve) andthe training data set (dashed curve). 150

The networks learn quite quickly, sometimes within 500 epochs. It is inter-esting to note that in some cases, as with students 98 and 119, the di�erencein prediction error between the training and test data sets is relatively marked;however the di�erence in typing speeds is negligible.id = 119 id = 98 id = 88 id = 89
0 5 10 15 20 25

−2

0

2

4

6

8
id=119

epochs (x100)

er
ro

r

training
test

0 5 10 15 20 25
−2

0

2

4

6

8
id=98

epochs (x100)

er
ro

r

training
test

0 5 10 15 20 25
−2

0

2

4

6

8
id=88

epochs (x100)

er
ro

r

training
test

0 5 10 15 20 25
−2

0

2

4

6

8
id=89

epochs (x100)

er
ro

r

training
test

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5
id=119

epochs (x100)

di
ffe

re
nc

e
in

 s
pe

ed
 (

le
tte

rs
/s

ec
)

training
test

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5
id=98

epochs (x100)

di
ffe

re
nc

e
in

 s
pe

ed
 (

le
tte

rs
/s

ec
)

training
test

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5
id=88

epochs (x100)

di
ffe

re
nc

e
in

 s
pe

ed
 (

le
tte

rs
/s

ec
)

training
test

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5
id=89

epochs (x100)

di
ffe

re
nc

e
in

 s
pe

ed
 (

le
tte

rs
/s

ec
)

training
testFigure 7.7: Improvement during training.Another way in which we examine the training e�ort is by studying thecorrelation between the trainers and the best trainees. Figures 7.8 plots thetyping speed for the trainees (horizontal axes) versus their trainers (vertical axes),for both the test and training data sets, for the one-to-one and many-to-onetraining e�orts.The correlation coe�cients are listed in table 7.2, illustrating the average re-lationship between trainers and trainees across both populations. The correlationis much higher for the many-to-one trainees than the one-to-one trainees.The �nal way in which we study the results takes a population-based ap-151

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

trainees (networks), letters/sec

tr
ai

ne
rs

 (
hu

m
an

s)
, l

et
te

rs
/s

ec

training set
test set

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

trainees (networks), letters/sec

tr
ai

ne
rs

 (
hu

m
an

s,
 g

ro
up

ed
),

 le
tte

rs
/s

ec

training set
test set(a) one-to-one (b) many-to-oneFigure 7.8: Correlation between trainers and best trainees.Table 7.2: Correlation coe�cients.population-basedtraining set test set (test set)one-to-one 0.636388 0.420413 0.800293many-to-one 0.990960 0.996515 0.996515proach. One objective with this project is to generate a population of agents,demonstrating a range of abilities. Figure 7.9 compares the average speeds of thehuman population with those of the agent populations, for both training schemes.The average speeds for the agent population were based on data collected dur-ing the testing runs only. Table 7.2 shows the correlation coe�cients. In theone-to-one case, this population-based correlation is higher than the individualcorrelation; in the many-to-one case, the comparison is equivalent.152

The comparison is made by �rst sorting both populations according to speedand then calculating the correlation coe�cients. In the one-to-one case, sortingthe trainees re-orders the comparisons that are made when computing the cor-relation coe�cient, and so the correlation is higher. In the many-to-one case,the population-based correlation between trainers and trainees is precisely thesame as in the individual case, because the training went so well that sorting thetrainees does not change their order and so the two comparisons are equivalent.
0

0.5

1

1.5

2

2.5

3

3.5

4

individual players

le
tte

rs
/s

ec

humans
agents

0

0.5

1

1.5

2

2.5

3

3.5

4

individual players

le
tte

rs
/s

ec

humans
agents

(a) one-to-one (b) many-to-oneFigure 7.9: Correlation between populations of trainers and best trainees.
153

7.5 DiscussionIn extending the simple Keyit agents to use a neural network controller, we werepleased to �nd that our training e�orts in the CEL domain corroborated theearlier results of the Tron follow-on experiment. We summarize our observations.First, it is di�cult to emulate exactly the behavior of individual humans. Second,it is better to approximate the behavior of a population of humans. Finally, it isbest to train on a group of humans who exhibit similar features.Future work will involve building agents that adapt their performance on-line. One method for accomplishing this would be to train an agent using datafrom the �rst few games, deploy the agent and then continue to train it further,by incorporating moves from subsequent games of its human trainer.Future work will also involve adding complexity to the playground behaviormodule, in two ways. First, rather than using a rule-based controller where thefrequency of issuing ASK commands is based on a �xed probability, a networkcontroller will be implemented. This controller will be trained on the humandata collected in CEL and will look at sequences of actions committed by theplayers being modeled. Second, a longer term project concerns making intelligentchoices for which playmates to invite to engage in matches by incorporatingstudent models to guide selection rather than choosing playmates randomly, asis implemented currently. 154

Chapter 8Domain coverageBoth computer games and educational software provide an interactive mediumwith which humans can explore a domain. In the case of computer games, thedomain might be outer space or the wild west or a fantasy land; with educationalsoftware, the domain might be arithmetic or geography or spelling. In eithercase, the purpose of an instructive interactive learning system is to guide a userthrough the domain in a methodical way, exposing him to as much of the domainas possible, without losing the user's interest.This is typically done by characterizing each user according to his experiencewith the system and then moving him around the domain by providing a series ofpre-de�ned challenges of increasing di�culty and/or complexity. With computergames, this methodology is often explicit; players must complete one \level"before being allowed to go on to the next. Although this format has provento be highly motivating for both children and adults alike, the method does155

not always provide an atmosphere dedicated to learning. Additionally, thereare concerns about the appropriateness of such a formula for use in educationalsettings [Soloway, 1991].The current trend in educational software moves away from pre-programmedand/or pre-leveled instructive environments, like traditional frame-based tutor-ing systems or leveled games, and towards constructivist environments wherestudents are able to explore ideas for themselves without having to stick to �xedcurricula [Papert, 1993]. In a classroom setting, this notion has been describedas learner-centered learning:A teacher is no longer a dispenser of knowledge addressed to studentsas passive receptors. Instead, where small teams of students exploreand work together and help one another, a \teacher" becomes a col-league and participating learner. Teachers set directions and intro-duce opportunities. Teachers act as guides. [Forrester, 1992], p.11.The same ideas can apply to educational software, where a software system actsas a teacher. The system should be adaptive and participate in the learning,guiding students through educational domains and adjusting as they advance.The work described in this chapter brings adaptive behavior to educationalgames as a mechanism for supporting a learner-centered on-line environment[Sklar & Pollack, 2000a]. An evolutionary approach, guided by user performance,is used to select the content of matches for two simple keyboarding games, Keyitand Pickey (described in chapter 3). The purpose is to demonstrate the exibilityof CEL in being able to support experimental methodologies such as the adaptiveapproach used here. 156

8.1 The domainIn both Keyit and Pickey, players are presented with ten words to type. Thesewords are selected from a database containing approximately 35,000 words. Everyword in the database is characterized by a vector of seven feature values (theseare detailed in chapter 5, section 5.1.1). Each word can be thought of as apoint in this 7-dimensional feature space. Words with similar feature values areconsidered to be close to each other in this space; words with disparate featurevalues are considered far away. Figure 8.1 illustrates this for the word BLUE,which has close neighbors MEAT and BOIL. The words HIDE, DARK and RED arefurther away, respectively.
4 8 2 2 006

3 24 1 2 00

4 8 2 2 006

4 4 2 2 008

4 1 3 102 9

4 86 2 2 10

feature values

MEAT

RED

BOIL

HIDE

DARK

BLUE

Figure 8.1: Distance between words in feature space.157

8.2 Selection algorithmAn evolutionary approach is used to guide selection of words from the 7-dimensionalfeature space, geared to the changing needs of each individual user. The basicsteps of a general evolutionary algorithm are outlined in table 8.1 [Holland, 1975].The elements could be, for example, software agents exhibiting speci�c gamestrategies or various solutions to a hard search problem.Table 8.1: Basic evolutionary algorithm.1. Initialize a population of randomly chosen elements.2. Let each element perform in the task domain.3. Evaluate each element's performance and, based on theevaluation, select some elements to be replaced.4. Produce a new population of elements, using reproductiontechniques like mutation and/or crossover to replace theelements selected in step 3.5. Iterate, starting from step 2.Our approach modi�es this algorithm for the task of selecting words for Keyitand Pickey matches. In our context, the elements (referred to in table 8.1) arewords, and the population size is �xed at 10. The modi�ed algorithm is shown intable 8.2. Note that the algorithm shown here is in a simpli�ed form, consideringthe needs of only one player; as described later in this chapter, the algorithmis further modi�ed to accommodate the needs of two players. The algorithm isinvoked by the matchmaker (see section 4.5 in chapter 4), when a player clicks158

on the \start" button in a game applet. The selection and reproduction phasesare illustrated in �gure 8.2.Table 8.2: Evolutionary word selection algorithm.1. For a new user, initialize a population, G0, of 10 randomlychosen words.2. For an old user, read the user's performance data, which includesscores for all words previously encountered, the population of10 words from the user's last game (Gt), and an average scorefor all words the user has seen.3. Evaluate the user's performance with the words in Gt, and,based on the evaluation, select entries that are \known" andentries that \need practice."4. Produce a new population of words, replacing all entries inGt to get Gt+1, using large mutations to replace \known" entries,and small mutations to replace entries that \need practice".5. Supply Gt+1 to the user's applet for the current game.6. Iterate, starting from step 2, when the next game occurs.The selection process (step 3 in table 8.2) involves comparing the scoreachieved for each word in Gt with the user's average score over all words en-countered in games of Keyit and Pickey. The idea is to partition Gt into twogroups: those that the user knows how to type, and those that the user needsmore practice with. \Score" is typing speed, calculated in hundredths of a sec-ond. Words whose score is lower than the average are deemed \known" (faster isbetter); words whose score is higher than average are labeled \needs practice".The reproduction phase (step 4 in table 8.2) entails replacing all the words159

words

words

words

words

"needs
practise"

"known"

reproductionselection

explore

score >= avg

parents children

scor
e <

avg

exploitsmall mutation

large mutationFigure 8.2: Selection and reproduction.in Gt with appropriate children, to get Gt+1. \Needs practice" words are replacedwith others nearby in the 7-dimensional space, thereby exploiting regions withsimilar feature values to provide more opportunities to master the similar wordswhile avoiding repetition, where the same words might be o�ered again and againuntil they have been learned satisfactorily. This is equivalent to making a smallmutation to a word's feature vector. \Known" words are replaced by randomlyjumping to some new area in the feature space, thereby exploring regions furtheraway. This is equivalent to making a large mutation to a word's feature vector.The general idea is illustrated in �gure 8.3.The actual implementation of this algorithm is complicated by two factors.First, when a game occurs between two human players, the set of ten wordsselected by the system must be appropriate for both players. Second, not allpoints in the 7-dimensional feature space are valid. If the reproduction phase useda standard operator like mutation or crossover and modi�ed one or more values in160

feature values of parent4 86 2 2 10

3 24 1 2 00

4 8 2 2 006

near: exploit similar regions

far: explore new regions

feature values of child

feature values of child

BLUE

RED

MEATFigure 8.3: Exploitation and exploration in feature space.a parent's feature vector, the resulting vector would not necessarily correspondto a word in the dictionary. In fact, some combinations of feature values areinvalid, e.g., word length must equal the number of vowels plus the numberof consonants. To address these complications, two procedures are introduced:merging and reproduction through sampling.8.2.1 MergingThe merging procedure is implemented so that the contents of Gt+1 is appropriatefor both players engaged in the match. The basic process involves combining theuser performance data for both players and creating a third, composite playerthat is essentially an average of the two players' performance statistics. In table8.2, steps 1 and 2 are modi�ed to read performance data for both players andthen merge the data, so that steps 3 and 4 will be performed using this compositedata set. Finally, step 5 sends the new population of words to both users' applets.The data entities used by the merge process are detailed in chapter 5, section161

5.2.2, and the notation used here is the same, with the following additions:P1 = performance data for player 1P2 = performance data for player 2Pc = performance data for composite playerR = abbreviated notation for: <nr><r0><r1> : : : <rnr�1>G = abbreviated notation for: <ng><g0><g1> : : : <gng�1>G000 = composite game data that is sent to both players' appletsG000 is analogous to Gt+1 in step 5 of table 8.2. At the end of the merge process,it is guaranteed that G000 contains at least 10 and at most 20 words. At the endof the reproduction process, G000 will contain exactly 10 words. The algorithm isshown in table 8.3. Table 8.3: Merging algorithm.1. Read user performance data for player 1: P1 fR0;G0; avg0g2. Read user performance data for player 2: P2 fR00;G00; avg00g3. Merge user performance data for player 2 with rates for player 1,creating one composite player:Pc merge(P1;P2) = fR000;G000; avg000gThe source code for the merge function is shown in table 8.4.4. If there are less than 10 elements in G000,then �ll G000 with randomly chosen words until jG000j = 10.
162

Table 8.4: Pseudo code for merge().function merge () f/* merge rates */R000 R0;for i 1 to n00rif r00i :elemid is found in fr0000 : : : r000n000r g then(where r000j :elemid = r00i :elemid)r000j :count r000j :count + r00i :count;r000j :sum r000j :sum+ r00i :sum;elsen000r n000r + 1;r000n000r �1 r00i ;/* merge game data */G000 G0;for i 1 to n00gif g00i :elemid is found in fg0000 : : :g000n000g g then(where g000j :elemid = g00i :elemid)g000j :count g000j :count + g00i :count;g000j :sum g000j :sum+ g00i :sum;elsen000g n000g + 1;g000n000g �1 g00i ;/* merge averages */avg000 (avg0+ avg00)=2;g /* end of function merge() */163

8.2.2 Reproduction through samplingThe reproduction procedure must be able to take a parent and produce a childwhose feature values are either near to or far from those of its parent, cor-responding to exploitation (small mutation) and exploration (large mutation),respectively (as illustrated in �gure 8.3). In theory, a traditional reproductionmethod like mutation1 could be used for both tasks. To �nd a nearby entry infeature space, one of the parent's feature values could be selected at random andthen incremented or decremented, to result in a new vector with only one valuedi�erent from the parent vector. To �nd an entry far away in feature space,more of the parent's feature values could be altered, resulting in a new vectorwith values disparate from its parent.As mentioned earlier, the problem with using this procedure in this domainis that the new vector would not necessarily be valid or correspond to a word inthe dictionary. Some applications of evolutionary algorithms handle this kind ofsituation by applying a correction to the reproduction operator, ensuring thatthe result is valid. For example, a mathematical function (i.e., modulo) mightbe used to force the mutation of an individual feature value to fall within aspeci�ed numeric range. The situation here is complicated by the fact that evenif individual feature values are valid, when taken in combination, the entire vector1For simplicity, the discussion here is limited to mutation. Crossover or other gene alteringmethods could also be used, but the problems encountered with using mutation in the presentdomain and real-time environment (as detailed in this section) would also occur with these othermethods. 164

may be invalid. A simple method for overcoming this problem would be to try aseries of mutations iteratively, stopping when a valid vector was found.However, with this particular domain, the 7-dimensional feature space isquite sparse. If bounds are considered on each feature value (for example, wordlength must be between 2 and 25 characters, and keyboarding level must bebetween 0 and 11), then there are over 90 million possible combinations of featurevalues. Yet the dictionary used here only accounts for 6074 of those combinations,less than 0:0065%. This means that the likelihood of a mutation producing aninvalid set of feature values is prohibitively high. An iterative procedure likethe simplistic one mentioned above could take a long time to run. Because thisevolutionary algorithm operates in a real-time environment, where the customersare (impatient) children, minimizing run-time is vital. A target maximum of 1second was chosen for the algorithm to run in its entirety.One approach to the sparse feature space problem would be conceptually tomutate from one entry in the domain to another, rather than from one vector toanother. As indicated by �gure 8.1, all words in the domain can be representedas points in 7-dimensional space, thus it is possible to sort the entire dictionaryaccording to the entries' feature values. This would mean computing a 35000�350002 matrix containing the distance in feature space from each entry to everyother entry. Then when making mutations, the algorithm need only look upentries in this matrix | small mutations would look for close neighbors and large2The size of the database is approximately 35000 entries. Since the distance between anytwo entries is symmetrical, the size of the matrix really need only be (35000 � 35000)=2.165

mutations would look further away. However, again, practical considerationsrender this solution infeasible because too much memory is required to store thismatrix3.An alternative to storing the entire table in memory would be to load therelevant portion from disk during run-time; however testing proved that selectiveloads took longer than the 1 second time requirement. Another option wouldbe to compute the relevant portion of the table during run-time; again, testingshowed that this method exceeded the maximum time requirement.The �nal solution was to adopt a new reproduction process called reproduc-tion through sampling. The strategy is to begin by randomly selecting a relativelysmall sample population from the dictionary and then to replace the parents inG000 with children chosen from this sample. An overview is shown in �gure 8.4and the details are in table 8.5.
3\Too much" simply means more than is available on the CEL server.166

10

1000

35,000

word

exploit explore

large distance

sm
all distance

m
ean distance

one row in dist matrix

words dictionarysamples

Figure 8.4: Sampling illustration.
167

Table 8.5: Reproduction algorithm.1. Select a random sample of 1000 words from the 35,000 word dictionary:for i 1 to 1000x random(1,35000);Si dictionaryx;2. Compute the distance between all entries in S and G000:for j 1 to 1000for i 1 to n000gdisti;j d(P7k=1[(g000i;k � sj;k)=(maxk�mink)]2) � ke;3. Sort each row in the distance matrix:for i 1 to n000gsort(disti);4. Compute the mean for each row in the distance matrix:for i 1 to n000gmeandisti mean(disti);5. For each row in the distance matrix, save the index of the value closestto the mean:for i 1 to n000gxmeandisti index of entry in disti whose value is closestto meandisti6. Generate a child for each parent in G000:for i 1 to n000gif g000i has a scoreif (g000i :score < avg) thenj pickDist(i; FAR); /* explore */elsej pickDist(i;NEAR); /* exploit */elsej pickRandom(); /* new word */g000i = sj; 168

An example is shown in table 8.6, illustrating the relationship between oneparent and one child word list. This data was taken from the data set of one ofthe students involved in the pilot study.Table 8.6: Distance between words in successive generations.parent child dist1 four [4,3, 7,2,2,0,0] four [4,3, 7,2,2,0,0] 02 who [3,5, 9,1,2,1,0] aim [3,8, 5,2,1,0,0] 13 race [4,7, 6,2,2,0,0] peas [4,6, 6,2,2,0,0] 14 vies [4,7, 7,2,2,0,0] dates [5,4, 6,2,3,0,0] 25 away [4,5,10,2,2,0,0] fives [5,7,11,2,3,0,0] 26 singed [6,9, 8,2,4,1,0] calorie [7,7, 9,4,3,0,0] 27 forked [6,3,14,2,4,1,0] debated [7,8,11,3,4,0,0] 38 enumerates [10,9,12,5,5,0,0] ragged [6,3, 9,2,4,1,0] 29 manipulated [11,9,16,5,6,0,0] perused [7,6,10,3,4,0,0] 110 fosters [7,4,10,2,5,2,0] numerics [8,9,12,3,5,1,0] 3
8.3 ResultsData collected in the pilot study described in chapter 6, from the games of Keyitand Pickey, were used for the analysis here. The domain coverage for each userwas examined, to determine if the evolutionary approach to word selection ledplayers into more of the domain space than a pre-leveled application might. Ad-ditionally, the relationship between typing speed and various word features wasanalyzed, to determine which features, if any, emerged as more highly correlated(to typing speed) than others. 169

8.3.1 Domain coverageThe seven feature values that de�ne the domain are: word length, Scrabblescore, keyboarding level, number of vowels, number of consonants, number of 2-character consonant clusters, number of 3-character consonant clusters. (Theseare described in detail in chapter 5.) Scrabble score and keyboarding level areused for analysis here, since the remainder are a function of word length (as isScrabble score) and so can be considered redundant in this analysis.The chart in �gure 8.5 is a sample domain coverage chart, plotting Scrabblescore versus keyboarding level. A point exists in the domain space for each circleon the plot. For each point that a user has been exposed to, the circle is �lled(�). Thus the open circles (�) represent portions of the domain space that theuser has not seen. This sample chart illustrates the coverage that a user might
5 10 15 20 25 30 35

0

2

4

6

8

10

Scrabble score

ke
yb

oa
rd

in
g

le
ve

l

pre−leveled coverage

Figure 8.5: Sample domain coverage chart.170

experience in a pre-leveled environment, where (e.g.) she must complete all prob-lems in keyboarding levels 0 and 1 before seeing any problems from level 2.Figure 8.6 contains domain coverage charts for the four sample studentsfrom the pilot study (see chapter 6). All the students have been exposed to alarge portion of the domain. Students 88 and 89, who are faster typers thanthe other two, have seen more of the domain. The slowest typer, 119, has moreconcentrated domain coverage.
5 10 15 20 25 30 35

0

2

4

6

8

10

Scrabble score

ke
yb

oa
rd

in
g

le
ve

l

id=119

5 10 15 20 25 30 35

0

2

4

6

8

10

Scrabble score

ke
yb

oa
rd

in
g

le
ve

l

id=98

(a) id = 119 (b) id = 98
5 10 15 20 25 30 35

0

2

4

6

8

10

Scrabble score

ke
yb

oa
rd

in
g

le
ve

l

id=88

5 10 15 20 25 30 35

0

2

4

6

8

10

Scrabble score

ke
yb

oa
rd

in
g

le
ve

l

id=89

(c) id = 88 (d) id = 89Figure 8.6: Domain coverage charts for sample users.171

8.3.2 Feature correlationThe relationships between word length, Scrabble score, keyboarding level andtyping speed are examined here, in order to ascertain if any one of these threefeatures appears to correlate more closely with typing speed than any of theothers. There should be a direct correlation between word length and typingspeed. It has been demonstrated that an artifact of typing long words existssuch that the speed per letter is slower than for shorter words [Larochelle, 1982].Thus, even when the time it takes to type a word is normalized for the length ofthe word, so that speed is measured in letters per second, longer words still takemore time to type than shorter words.Figure 8.7 shows plots for two of the sample students. On each graph, thereis a point for each word typed by the corresponding student. The straight lineis a linear least-squares �t of all the points. The artifact (i.e., longer words takelonger to type) is readily apparent in the �gure.
5 10 15 20 25

0

1

2

3

4

5

word length

le
tte

rs
/s

ec

id=119

5 10 15 20 25
0

1

2

3

4

5

word length

le
tte

rs
/s

ec

id=89

(a) id = 119 (b) id = 89Figure 8.7: Word length vs typing speed.172

Figure 8.8(a) contains the �tted lines for all of the students involved in thepilot study. The lines for the four students shown in �gure 8.7 are highlighted.The same behavior pattern, where per letter typing speed is reduced (slower) forlonger words, is consistent with every user. Figures 8.8(b) and 8.8(c)4 show therelationships between Scrabble score and keyboarding level with typing speed,respectively.
0 5 10 15 20 25

0

1

2

3

4

5

88

89

98

119

le
tte

rs
/s

ec

word length
0 10 20 30 40

0

1

2

3

4

5

88

89

98

119

le
tte

rs
/s

ec

Scrabble score(a) word length (b) Scrabble score
0 2 4 6 8 10

0

1

2

3

4

5

88

89

98

119

le
tte

rs
/s

ec

keyboarding level
0 20 40 60 80

0

1

2

3

4

5

89

88

98

119

le
tte

rs
/s

ec

accumulative keyboarding level(c) keyboarding level (d) accumulative keyboarding levelFigure 8.8: Feature correlation with typing speed.4The accumulative keyboarding level shown in �gure 8.8(d) is explained ahead.173

The preceding plots (8.8(a) through 8.8(c)) appear to indicate that typingspeed correlates more directly with word length and Scrabble score than withkeyboarding level. Figure 8.9(a) shows the correlation coe�cients, for each user,between typing speed and each of these features. Each point on the chart corre-sponds to one of these statistics per user (i.e., there are three points per user).Faint lines connect the points for each feature, to make it easier for the readerto group the points. Horizontal lines are drawn to indicate the mean correlationcoe�cient for each feature, across all users. A correlation coe�cient closer to -1indicates a higher negative correlation between two variables | e.g., that longerword length is indicative of slower typing speed, per letter.Scrabble score is a function of word length, since each letter in the wordcontributes to the score individually. Conversely, keyboarding level is computedindependently of word length. So it is not surprising that word length and Scrab-ble score exhibit similar statistical characteristics. Indeed, the higher correlationfor word length dependent statistics and typing speed con�rm the statementmade in the previous section: that long words take more time to type, on a perletter basis, than short words.For comparison, a modi�ed keyboarding level was computed in which key-boarding level is also de�ned as a function of the length of the word (as is Scrabblescore and obviously word length). Instead of calculating keyboarding level to bechosen as the highest level of any letter in a word, the levels of all the letters inthe word were totalled (the same way that Scrabble score is computed). This ac-cumulative keyboarding level was computed for all the data, after the pilot study174

was �nished. The purpose was to determine if keyboarding level really correlatedso poorly to typing speed as was indicated in �gure 8.9(a), or if the method ofcomputing keyboarding level (where word length was not a factor) skewed thecorrelation results away from keyboarding level. After all, since the data wascollected during keyboarding games, it would seem logical that keyboarding levelshould be highly correlated to typing speed.The correlation results, with the accumulative keyboarding levels, are shownin �gures 8.8(d) and 8.9(b). It was found that the correlation coe�cient foraccumulative keyboarding level is �0:256054, a better correlation than that withthe original keyboarding level (�0:163075). However, word length and Scrabblescore still correlate signi�cantly higher than keyboarding level.

175

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

individual students

co
rr

el
at

io
n

co
ef

fic
ie

nt

word length
Scrabble score
keyboarding level(a) typing speed vs word length, Scrabble score andkeyboarding level

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

individual students

co
rr

el
at

io
n

co
ef

fic
ie

nt

word length
Scrabble score
keyboarding level(b) typing speed vs word length, Scrabble score andaccumulative keyboarding levelmean std. deviation medianword length -0.353444 0.130214 -0.371364Scrabble score -0.345417 0.127598 -0.326716keyboarding level -0.163075 0.116377 -0.153707accumulative key- -0.256054 0.119275 -0.240934boarding levelFigure 8.9: Correlation coe�cients.176

8.4 DiscussionThe primary advantages of using an evolutionary approach for guiding problemselection in an educational game include:� Students guide themselves through the domain, based on their own perfor-mance with the system, which means that students whose learning patternsare non-standard may bene�t.� Students may reach areas of the domain that they may not see otherwise,where a standard pre-leveled system may prevent them from leaving anarea without successfully completing all the problems in that area. Thiscould be seen as providing an uncertain goal, one of Malone's pointers forhelping to motivate learners in an educational game.� Costs and e�ort to implement the game are reduced, because the domainneed not be analyzed at such a �ne grain level as engineered systems require.The fact that word length and Scrabble score correlate to typing speed muchmore directly than keyboarding level (both original and accumulative) is a resultwhich bears further study. The indication is that future words should be chosenmore on a basis of word length and Scrabble score than keyboarding level.It has been suggested that frequency of word usage in the English languageshould also be a feature in the domain space for word games5. Although thisis partially encoded in the frequency of letter count that is part of Scrabble5Suggested by Andrew Howard. 177

score, use of a precise statistic may be bene�cial. While touch typing coursescommonly require learners to type non-linguistic sequences of characters, peoplewill generally say that they can type words they know faster than words theydon't know. Future work will involve adding this dimension to the feature spaceand studying the resulting correlations.The results shown in this chapter indicate that the use of an evolutionaryapproach is a viable alternative to pre-leveled methods. In future work, controlstudies must be performed in order to validate this statement. For example, somestudents' games would be supplied with words chosen by the method describedhere, others would be chosen at random and others would be chosen accordingto a standard pre-leveled curriculum.The exible design of the CEL system permits studies like this one to beenabled easily. The modular \plug and play" architecture allows researchers tosubstitute di�erent game content selection engines without needing to build anentire system. The bene�t of using an evolutionary approach like this insideCEL is that patterns of usage may emerge that could not otherwise be revealedin a highly-engineered system or a system that did not have access to the largenumber of users that an Internet system o�ers.
178

Chapter 9ConclusionThis thesis has described the CEL system which was built to enable an Internetlearning community that can support the types of activities, experiments anddata collection common to the ILS �eld. The work presented addresses threespeci�c needs that have previously not been met satisfactorily by other interac-tive learning systems: accessibility, exibility and extensibility. This concludingchapter begins by defending these three claims. Then we discuss CEL in relationto current Internet community issues and close with an outline of future work.9.1 AccessibilityWe have demonstrated that CEL is accessible to Internet users, �rst by testingon a variety of platforms and then through a pilot study conducted at a publicprimary school. The client software used by participants runs inside a standardInternet browser and is compliant with Netscape 3.0 (or higher), which is more179

widely available than later versions. No additional software is required on theclient site, which means that schools do not have to shoulder the burden ofkeeping up with special downloads and upgrades in order to provide studentswith access to CEL.The CEL client is designed to operate on computers with limited memoryand low network bandwidth. Java applets that are part of the client are keptsmall, which serves not only to prevent participants from running out of memoryon their computers but also minimizes the amount of time it takes for applets toload. Socket connections which facilitate communication between clients' com-puters and the CEL server are kept open for short time periods, preventing thetype of failures that occur when longterm connections are required.9.2 FlexibilityWe have demonstrated CEL as a exible platform that can house a variety ofinteractive learning activities. CEL can support multi-player collaborative orcompetitive, real-time or turn-taking activities. All activities currently built forCEL are two-player educational games. We have described examples of each ofthese in chapter 3. Keyit and Pickey are competitive, asynchronous, two-playertyping games. Automath is a competitive, asynchronous, two-player arithmeticgame. Monkey is a collaborative, asynchronous, two-player word game. Loois is acollaborative, turn-taking, two-player construction game. Tron is a competitive,real-time two-player spatial reasoning game. The �rst three games are based on180

a traditional drill-and-practice format. The fourth and �fth games are based onconstructionism. All are designed to support learner-centered learning.9.3 ExtensibilityWe have demonstrated that CEL puts forth an easily extensible model. In build-ing the system, we �rst created and tested the game of Keyit. All subsequentgames were implemented by extending the four base Java classes created forKeyit: PlaygroundGame, Matchmaker, MatchmakerThread and SecretAgent. Thisthesis contains brief descriptions of each these classes. Full software documenta-tion can be found in [Sklar, 2000], which in future will be available on our website, along with the Java class �les, so that others can download the classes andcontribute their own activities to the CEL community. The extensible nature ofCEL saves teachers and researchers from needing to build an entire multi-usersystem from scratch.9.4 Issues in Internet communitiesThroughout this thesis, we have touted accessibility as a desirable feature because(1) researchers can reach a potentially very large number of subjects, (2) teacherscan share activities, and (3) students can interact and learn from each otherwithout needing to be in the same physical location. However, there are otheraspects of accessibility that are less favorable, namely safety and privacy. Thissection discusses these concerns as they relate to CEL. First we review the issues181

of Internet safety and privacy. Then we explain how the environment works toprotect its users, by providing an alternate method for identity (through IDsigns)and facilitating only indirect communication between participants.9.4.1 Safety and privacy in CELUnrestricted communication on the Internet is a worry for parents, who areconcerned about whom their children are communicating with and what kind ofinformation their children are revealing about themselves | both actively andpassively. In June 1998, the Federal Trade Commission (FTC) reported that amajority of sites failed to tell visitors how they used the personal information thatthey were collecting. Typically, sites did not ask for children to obtain permissionbefore providing information. \The commission now recommends that Congressdevelop legislation placing parents in control of the online collection and use ofpersonal information from their children." [CNN, 1998]Over the last two years, since that report was issued, many sites have addedshrink-wrapped consent forms (similar to the form employed in CEL), as wellas on-line explanations of how the information collected from participants isbeing used. Most of these sites, including ours, ask children under age 18 toobtain permission from a parent or guardian before joining an on-line community.However, there is no fool-proof way to ensure that children are actually gettingthis permission. Some sites ask for new users to enter a credit card number, underthe assumption that children would not have access to such information withoutparental involvement | but this assumption is weak. Creating and providing a182

�ctitious identity is extremely easy to do and attractive to many. Beth Givens,who runs Privacy Rights Clearing House in California, says: \A lot of peoplegive false information, and quite proudly. It becomes a game." [CNN, 1998]Even though everyone in a community may be using an alias and a �ctitiousidentity, an anonymous exchange of inappropriate ideas or language may still oc-cur. On sites that allow open chat, there is no protection to prevent users fromexchanging personal information such as addresses, phone numbers, etc. Someeducational sites geared towards children employ an adult user to monitor allcommunication, censoring inappropriate material and ensuring that the studentsstay \on task". But this approach is not practical in a real-time Internet system,where participation occurs on a 24-hour basis. Providing a safe environment inwhich young students can interact is of primary concern. In CEL, all communi-cation is accomplished through the moves of the games participants are playing;no direct chat is implemented, and thus all users are safe.Privacy is another issue of concern. Many sites collect data by observingmouse clicks and do not ask for explicit permission from their users. Amazon1gathers statistics on the products that their customers order and then uses thisdata to present recommendations. Their handling of the privacy issue is typical.On their home page, they provide a link to a separate page that contains theirprivacy policy, stating:1http://www.amazon.com 183

By using our Web site, you consent to the collection and use of thisinformation by Amazon.com. If we decide to change our privacypolicy, we will post those changes on this page so that you are alwaysaware of what information we collect, how we use it, and under whatcircumstances we disclose it. [Amazon, 2000]Further, they state that they reserve the right to sell this information to \trust-worthy third parties", but you may send them email requesting that data col-lected under your account is never sold.In CEL, our login screen contains a warning, which appears every time auser logs in, not just the �rst time, and it appears in full at the bottom of thescreen, without requiring users to click to another, out-of-sequence page, in orderto see the text:By logging in, I consent to being involved in this experiment usingthe pseudonymous name that I have entered above. I understand thatdata is collected on every game I play, and I hereby give the DEMOLab at Brandeis University permission to analyze and publish thisdata for scienti�c purposes.For our pilot study, we provided parents with information about CEL andour experiments. In turn, the parents gave us written permission to use theirchildren's input.The work presented in this thesis speci�cally advocates the use of the In-ternet as a virtual laboratory in which to collect data from thousands of users.There is an inherent conict between privacy and need for input in any studyinvolving humans. Proper treatment of information gathered on the Internet iswarranted, and this data should be handled according to standard practices, suchas those in place at any psychology laboratory or hospital.184

9.4.2 Identity in CELAs a means toward protecting user privacy and providing anonymity, CEL im-plements an alternative method for identifying users. The most common form ofuser identi�cation in virtual communities is a username that individuals createfor themselves when logging onto a site for the �rst time. A few on-line com-munities provide graphical icons with which users identify themselves to others.Generally (if not exclusively, aside from CEL), these graphics have already beencreated and users select pictures from a list and then designate the pictures torepresent themselves. On some sites, the system assigns the picture without anyinput from the user. At least one protective children's site lets children choosetext user names from a list and then designate the names to represent themselves.In CEL, users are identi�ed by IDsigns (see chapter 3). In the pilot studyoutlined in chapter 6, we found that the children were extremely creative withtheir IDsigns and that this element of the system was very popular. A widevariety of IDsigns were created, some of which are shown in �gure 9.1.
185

Figure 9.1: Sample IDsigns.186

As we suspected would happen, the children quickly discovered that theycould make short words inside their IDsigns. Upon this occurrence, they werecautioned not to use their real names. We found it quite amusing when one boycreated an IDsign that had one of his classmates' �rst names in it, which ledmany children to believe they were playing games with the classmate.We found it interesting to observe that there were no discernible di�erencesbetween age or gender groups in the types of designs created. Boys and girls ofall ages (those in the sample, and even adult participants) were equally likely tocreate patterns, faces or �gures. Indeed, the heart design shown in �gure 9.1 |a stereotypical \girl drawing" | was created by a boy.In future work, we may conduct a study on identity in CEL. We can followthe trends of single users, examining how (and if) they change their IDsigns overa period of time and across a number of sessions with CEL. We can look fortrends in the population of CEL users, for example, design features that mightalign with demographics, such as age, gender or location.9.4.3 Communication in CELAnother feature of CEL that works to protect users is our indirect method offacilitating communication between participants. This is in contrast to mostInternet communities where direct communication happens openly in chat rooms.Instead, CEL participants interact with each other and/or with software agents,through a limited language | i.e., the moves of the games they play. Thisrestricted mode of communication serves two purposes. First, it protects the187

privacy of young participants, as discussed in the preceding paragraphs. Second,the software agents that were described in chapter 7 interact successfully in CELbecause the hurdle of natural language processing that normally accompanies thetask of building an agent to act as a human is avoided. In the CEL system, thecomputer becomes a mediator, both actively in the form of agents as arti�cialplaymates, and passively in the form of the server passing interactions from onehuman player to another.In future work, we plan to explore the concept of non-conversational collabo-rative learning. This idea diverges from typical computer supported collaborativelearning (CSCL) systems, where open conversation is permitted and advocated.However, the CEL environment may facilitate learning partnerships that mightnot occur in a conversational setting, perhaps between two children who do notspeak the same language.9.5 Future workAside from the projects mentioned earlier in this chapter, current and futurework with the CEL system falls into three areas:1. enlarging the game set,2. improving site visualization, and3. matching playmates appropriately.Much of the future with CEL relies on enlarging the game set and involvingresearchers who work in the areas of education, psychology and cognitive sci-188

ence. Currently, we are building an arithmetic game that is more complex thanAutomath, a spelling bee and a geography quiz.9.5.1 VisualizationIn CEL, visualizing who is logged into the community is done through the IDsignsand the playground. This mechanism aligns with the requirements for web sitevisualization laid out in [Minar & Donath, 1999]: individuals are represented andthe display is animated. Unlike Minar and Donath's work, the visual display inCEL is updated in pseudo real-time, because users need to know who is loggedin to which game at any given time.Currently, there is no spatial structure on the site | i.e., relating one game toanother. Future work will examine de�ning each game as a room and giving eachuser an omniscient vantage point. On the games menu page (�gure 3.3), userswill be able to see who is logged into any game and thus select which playgroundto enter based on who is already there or how many other players are present.This type of viewpoint is given on games sites like Yahoo2 and Yahooligans3.9.5.2 Player clusteringThe most signi�cant next project that we have planned for CEL is to implementa matching algorithm that builds playgroups based on appropriate membership| not just according to who is logged on at any given moment, which is the2http://games.yahoo.com3http://www.yahooligans.com 189

method used now. The idea is to form playgroups for each student such that theplaymates therein can provide appropriate challenges to motivate learning.Playmates will be assigned based on users' student models and participantswill only be able to \see" playmates who are \appropriate". This notion ofrestricting players' views to a subset of playmates distinguishes CEL from othergame playing web sites. Typically, users can see everyone else who is currentlylogged in; this is the method used at the Yahoo games site, for example.Of course, given the unpredictability of human behavior, it will be impossibleto surmise precisely what a potential playmate's behavior will be, but an educatedguess can be made. A record of predictions and outcomes will be maintained inorder to obtain a measure of the reliability of the predictive mechanism, as itapplies to each user. Taking this prediction reliability rating and each user's per-formance pro�le as input, users will be clustered and playgroups will be formed.These groupings are highly dynamic, as users enter and exit the system and asgames are played and the performance pro�le and prediction ratings change.A playgroup can be represented conceptually as an undirected graph, whereeach player is a vertex in the graph. Edges are drawn between players who areconsidered to be appropriate playmates. Edges are updated as players enter andexit games, as games are played and as users progress.An example is shown in �gure 9.2. A player only sees those players that arein his playgroup. In the example shown, this means that even though players1 and 2 are both connected to the same game at the same time, they do notsee each other's IDsigns in their playgrounds because the system does not deem190

4

5

6

7

2

3

1

Figure 9.2: Sample playgroup graph.Player 1's playgroup contains mates 4 and 7; player 2's playgroup containsmates 6 and 7; player 3's playgroup contains mate 6; player 4's playgroup con-tains mates 1 and 6; player 5 has no playmates; player 6's playgroup containsmates 2, 3, 4 and 7; player 7's playgroup contains mates 1, 2 and 6.them to be appropriate playmates. Connections are bi-directional, so (e.g.) ifplayer 1 sees player 7, then player 7 also sees player 1. However, links are nottransitive: players 1 and 7 see each other, players 7 and 2 see each other, butplayers 1 and 2 do not.Two algorithms will be explored for de�ning playgroups, (which is equivalentto determining the edges of the graph in �gure 9.2). Each uses a di�erent ap-proach, one absolute and one relative. In the �rst approach, all players are rankedaccording to an absolute scale and only vertices of players whose ranks are withina certain epsilon (�) of each other are connected. This algorithm maintains anauxiliary index on the list of players, sorted by rank. Edges are drawn on thegraph by sliding a window of width 2 � � down the indexed list of players andconnecting all players that are inside the window. The second method computes191

a relative distance between every pair of players in the graph and only connectsvertices of players whose distances are within a certain epsilon of each other.There are two reasons to favor use of the second method. First, relativematching may produce more accurate outcomes in terms of shared experiencesthat are bene�cial to both players. Second, in some domains, it may be di�cultto de�ne an absolute ranking.In addition to these methodologies, known clustering algorithms will be ap-plied: Cobweb [Fisher, 1987], Unimem [Lebowitz, 1987], c4.5 [Quinlan, 1993],MML [Wallace, 1990], LSI [Deerwester et al., 1990] and other statistical meth-ods. A comparison of the performance of these algorithms, measured in terms ofrun-time and e�ectiveness of output, will determine the method that works bestfor CEL.This work will also be expanded to include software agents. If the abovecalculations are performed and it is deemed that no appropriate human partnersare currently logged into CEL, then the system can select an appropriate humanpartner from those who are not logged into the system and instantiate an appro-priate software agent, trained on that human's performance data (as describedin chapter 7).
192

9.6 FinallyComments from the teachers who participated in our pilot study were quitepositive. They felt that their students had become stronger typers, and theyare enthusiastic about expanding CEL to cover new domains. \CEL is easilycon�gured for the material and skills I want to reinforce," one teacher said.The computer gaming environment seems naturally competitive, and wewere concerned that the competitive aspects of the environment might be per-ceived negatively by educators, however, one stated: \It's the best way I'veseen students compete academically without causing a lot of problems." Anadditional remark was a feature we had not considered: \Their experience innon-threatening test-taking was increased."CEL has been shown to have the exibility to host a variety of di�erent typesof interactive activities. Since CEL resides on the Internet, researchers can useCEL to collect data from a very large population of subjects with varying ages,genders, abilities and locations. This experimental setting contrasts with thatof most interactive learning system studies, which typically involve use of oneparticular activity, implemented in a controlled setting and accessed by a limitednumber of homogeneous subjects. The extensible design of CEL positions thesystem well for future contributions from others interested in experimenting withthis unique type of safe, fun and interactive environment for children.193

194

Bibliography[Amazon, 2000] Amazon (2000).http://www.amazon.com/exec/obidos/subst/misc/policy/privacy.html/002-0198712-6193016.[Amory et al., 1998] Amory, A., Naicker, K., Vincent, J., & Adams, C. (1998).Computer Games as a Learning Resource. In Proceedings of the World Con-ference on Educational Multimedia, Hypermedia & Telecommunications (Ed-Media98).[Anderson, 1982] Anderson, J. R. (1982). Acquisition of Cognitive Skill. Psy-chology Review, 89.[Anderson, 1993] Anderson, J. R. (1993). Rules of the Mind. Lawrence ErlbaumAssociates, Hillsdale, NJ.[Anderson et al., 1995] Anderson, J. R., Corbett, A. T., Koedinger, K., & Pel-letier, R. (1995). Cognitive tutors: Lessons learned. The Journal of LearningSciences, 4:167{207.[Beck, 1997] Beck, J. (1997). Modeling the Student with Reinforcement Learn-ing. In Proceedings of the Machine Learning for User Modeling Workshop,Sixth International Conference on User Modeling.[Bell et al., 1995] Bell, P., Davis, E. A., & Linn, M. C. (1995). The KnowledgeIntegration Environment: Theory and Design. In Proceedings of ComputerSupported Collaborative Learning (CSCL'95).[Brody, 1993] Brody, H. (1993). Video Games That Teach? Technology Review,November/December.[Brown & Burton, 1978] Brown, J. S. & Burton, R. B. (1978). Diagnostic Modelsfor Procedural Bugs in Basic Mathematical Skills. Cognitive Science, 2(2).[Bruckman, 1997] Bruckman, A. (1997). MOOSE Crossing: Construction, Com-munity, and Learning in a Networked Virtual Community for Kids. PhD thesis,MIT. 195

[Bruckman & DeBonte, 1997] Bruckman, A. & DeBonte, A. (1997). MOOSEGoes to School: A Comparison of Three Classrooms Using a CSCL Environ-ment. In Proceedings of CSCL'97.[Brusilovsky et al., 1996] Brusilovsky, P., Schwarz, E., & Weber, G. (1996).ELM-ART: An Intelligent Tutoring System on World Wide Web. In Frasson,C., Gauthier, G., & Lesgold, A., editors, Intelligent Tutoring Systems (LectureNotes in Computer Science, Vol. 1086), pages 261{269. Springer Verlag.[Cherry, 1978] Cherry, C. (1978). On Human Communication. MIT Press, Cam-bridge, 3rd edition edition.[Clancey, 1986] Clancey, W. J. (1986). Intelligent Tutoring Systems: A TutorialSurvey. Technical Report STAN-CS-87-1174, Stanford University.[CNN, 1998] CNN (4 June 1998).[Conati & VanLehn, 1996] Conati, C. & VanLehn, K. (1996). POLA: a studentmodeling framework for Probabilistic On-Line Assessment of problem solvingperformance. In Proceedings of the Fifth International Conference on UserModeling (UM-96).[Dede et al., 1996] Dede, C., Salzman, M., & Loftin, B. (1996). ScienceSpace:virtual realities for learning complex and abstract scienti�c concepts. In Pro-ceedings of IEEE Virtual Reality Annual International Symposium.[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Lan-dauer, T. K., & Harshman, R. (1990). Indexing by Latent Semantic Analysis.Journal of the American Society for InformationScience, 41(6):391{407.[Duncan et al., 1990] Duncan, C. H., VanHuss, S. H., Warner, S. E., & O'Neil,S. L. (1990). College keyboarding/typewriting : complete course. South-WesternPublishing Co., Cincinnati, OH.[Fanderclai, 1995] Fanderclai, T. (1995). MUDs in Education: New Environ-ments, New Pedagogies. Computer-Mediated Communication Magazine, 2(1).[Fisher, 1987] Fisher, D. (1987). Knowledge Acquisition via Incremental Con-ceptual Clustering. Machine Learning, 2:139{172.[Forrester, 1992] Forrester, J. (1992). System Dynamics and Learner-Centered-Learning in Kindergarten through 12th Grade Education. Technical ReportD-4337, MIT.[Funes & Pollack, 1998a] Funes, P. & Pollack, J. B. (1998a). ComponentialStructural Simulator. Department of Computer Science Technical Report CS-98-198, Brandeis University. 196

[Funes & Pollack, 1998b] Funes, P. & Pollack, J. B. (1998b). Evolutionary BodyBuilding: Adaptive physical designs for robots. Arti�cial Life, 4:337{357.[Funes et al., 1997] Funes, P., Sklar, E., Juill�e, H., & Pollack, J. B. (1997). TheInternet as a Virtual Ecology: Coevolutionary Arms Races Between Humanand Arti�cial Populations. Department of Computer Science Technical ReportCS-97-197, Brandeis University.[Funes et al., 1998] Funes, P., Sklar, E., Juill�e, H., & Pollack, J. B. (1998).Animal-Animat Coevolution: Using the Animal Population as Fitness Func-tion. In From Animals to Animats 5: Proceedings of the Fifth InternationalConference on Simulation of Adaptive Behavior.[Gonzalez, 2000] Gonzalez, A. (April 26, 2000). Digital divide closes | butschools aren't ready. USA Today.[Gordin et al., 1996] Gordin, D. N., Gomez, L. M., Pea, R. D., & Fishman, B. J.(1996). Using the World Wide Web to Build Learning Communities in K-12.The Journal of Computer-Mediated Communication, 2(3).[Gordon & Hall, 1998] Gordon, A. & Hall, L. (1998). Collaboration with Agentsin a Virtual World. In Workshop on Current Trends and Applications of Ar-ti�cial Intelligence in Education: 4th World Congress on Expert Systems.[Gruber & Voneche, 1977] Gruber, H. E. & Voneche, J. J., editors (1977). TheEssential Piaget. BasicBooks.[Hasbro, 1999] Hasbro (1999). Scrabble 101.[Healy, 1999] Healy, J. M. (1999). Failure to Connect: How Computers A�ectOur Children's Minds | and What We Can Do About It. Touchstone Books.[Holland, 1975] Holland, J. H. (1975). Adaption in Natural and Arti�cial Sys-tems. University of Michigan Press.[Hughes, 1995] Hughes, B. (1995). Educational MUDs: Issues and Challenges.[Johnson & Johnson, 1989] Johnson, D. W. & Johnson, R. (1989). CooperativeLearning, Values, and Culturally Plural Classrooms. In Cooperation and com-petition: Theory and research. Interaction Book Company.[Kinshuk & Patel, 1997] Kinshuk & Patel, A. (1997). A Conceptual Frameworkfor Internet based Intelligent Tutoring Systems. Knowledge Transfer, II.[Klawe & Phillips, 1995] Klawe, M. & Phillips, E. (1995). A Classroom Study:Electronic Games Engage Children as Researchers. In Proceedings of ComputerSupported Collaborative Work (CSCL'95).197

[Klawe et al., 1996] Klawe, M., Westrom, M., Davidson, K., & Super, D. (1996).Phoenix Quest: lessons in developing an educational computer game for girls... and boys. In Proceedings of ICMTM96.[Koedinger & Anderson, 1993] Koedinger, K. & Anderson, J. (1993). E�ectiveuse of intelligent software in high school math classrooms. In Proceedings ofthe World Conference on Arti�cial Intelligence in Education.[Kohn, 1986] Kohn, A. (1986). No Contest: The case against competition.Houghton-Mi�in.[Kolodner, 1983] Kolodner, J. L. (1983). Maintaining organization in a dynamiclong-term memory. Cognitive Science, 7.[Koza, 1992] Koza, J. (1992). Genetic Programming: On the Programming ofComputers by Means of Natural Selection. MIT Press, Cambridge, MA.[Larochelle, 1982] Larochelle, S. (1982). A Comparison of Skilled and Novice Per-formance in Discontinuous Typing. In Cooper, W., editor, Cognitive Aspectsof Skilled Typewriting, pages 67{94, New York. Springer-Verlag.[Lebowitz, 1987] Lebowitz, M. (1987). Experiments with Incremental ConceptFormation: UNIMEM. Machine Learning, 2:103{138.[Littman & Soloway, 1988] Littman, D. & Soloway, E. (1988). Evaluating ITSs:the cognitive science perspective. In Polson, M. C. & Richardson, J. J., editors,Foundations of Intelligent Tutoring Systems. Lawrence Erlbaum Associates,Hillsdale, NJ.[Mark & Greer, 1993] Mark, M. A. & Greer, J. E. (1993). Evaluation Method-ologies for Intelligent Tutoring Systems. Journal of Arti�cial Intelligence andEducation, 4:129{153.[McCalla & Greer, 1994] McCalla, G. I. & Greer, J. E. (1994). Granularity-Based Reasoning and Belief Revision in Student Models. In Student Mod-els: The Key to Individualized Educational Systems, pages 39{62, New York.Springer Verlag.[McGrenere, 1996] McGrenere, J. L. (1996). Design: Educational ElectronicMulti-Player Games; A Literature Review. Department of Computer ScienceTechnical Report 96-12, University of British Columbia.[Minar & Donath, 1999] Minar, N. & Donath, J. (1999). Visualizing the Crowdsat a Web Site. In Proceedings of CHI'99.[Papert, 1980] Papert, S. (1980). Mindstorms: Children, Computers, and Pow-erful Ideas. BasicBooks. 198

[Papert, 1991] Papert, S. (1991). Situating Constructionism. Constructionism.[Papert, 1993] Papert, S. (1993). The Children's Machine. BasicBooks.[Pea, 1993] Pea, R. (1993). The collaborative visualization project. Communi-cations of the ACM, 36(5):60{63.[Pomerleau, 1993] Pomerleau, D. (1993). Neural Network Perception for MobileRobot Guidance. Kluwer Academic.[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.Morgan Kaufman, San Mateo.[Reeves, 1999] Reeves, T. (1999). A Research Agenda for Interactive Learning inthe New Millenium. In Proceedings of the World Conference on EducationalMultimedia, Hypermedia & Telecommunications (EdMedia99).[Resnick, 1997] Resnick, M. (1997). Turtles, termites, and tra�c jams: explo-rations in massively parallel microworlds. MIT Press.[Rowe et al., 1967] Rowe, J. L., Lloyd, A. C., & Winger, F. E. (1967). Greggtyping, 191 series. Gregg Division, McGraw-Hill, New York.[Rumelhart et al., 1986] Rumelhart, D., Hinton, G., & Williams, R. (1986).Learning representations by back-propagating errors. Nature, 323.[Russell & Norvig, 1995] Russell, S. J. & Norvig, P. (1995). Arti�cial intelligence: a modern approach. Prentice Hall, Englewood Cli�s, N.J.[Schank & Cleary, 1995] Schank, R. & Cleary, C. (1995). Engines for Education.Lawrence Erlbaum Associates, Hillsdale, NJ.[Schank, 1981] Schank, R. C. (1981). Failure-driven memory. Cognition andBrain Theory, 4(1).[Shiri-A. et al., 1998] Shiri-A., M. E., A��meur, E., & Frasson, C. (1998). Case-Based Student Modelling: unaccessible solution mode. In Conference interna-tionale sur les nouvelles technologies de la communication et de la formation(NTICF'98).[Sklar, 2000] Sklar, E. (2000). The Design of the CEL System. Department ofComputer Science Technical Report, in progress, Brandeis University.[Sklar et al., 1999] Sklar, E., Blair, A. D., Funes, P., & Pollack, J. B. (1999).Training Intelligent Agents Using Human Internet Data. In Proceedings ofIntelligent Agent Technology (IAT-99).199

[Sklar et al., 1998] Sklar, E., D.Blair, A., & Pollack, J. B. (1998). Co-Evolutionary Learning: Machines and Humans Schooling Together. In Work-shop on Current Trends and Applications of Arti�cial Intelligence in Educa-tion: 4th World Congress on Expert Systems.[Sklar & Pollack, 1998] Sklar, E. & Pollack, J. B. (1998). Toward a Communityof Evolving Learners. In Proceedings of the Third International Conference onthe Learning Sciences (ICLS-98).[Sklar & Pollack, 1999] Sklar, E. & Pollack, J. B. (1999). Demonstrating a Com-munity of Evolving Learners. In Interactive Presentation at Computer Sup-ported Collaborative Learning (CSCL-99).[Sklar & Pollack, 2000a] Sklar, E. & Pollack, J. B. (2000a). An evolutionary ap-proach to guiding students in an educational game. In Proceedings of the SixthInternational Conference on Simulation of Adaptive Behavior (SAB-2000).[Sklar & Pollack, 2000b] Sklar, E. & Pollack, J. B. (2000b). A Framework forEnabling an Internet Learning Community. Journal of International Forumof Educational Technology & Society, Special Issue on On-line CollaborativeLearning Environments, to appear.[Slavin, 1992] Slavin, R. E. (1992). When and why does cooperative learningincrease achievement? Theoretical and empirical perspectives. In Hertz-Lazarowitz, R. & Miller, N., editors, Interaction in cooperative groups: Thetheoretical anatomy of group learning, pages 145{173. Cambridge UniversityPress.[Slavin, 1995] Slavin, R. E. (1995). Cooperative Learning: Theory, Research, andPractice. Allyn & Bacon.[Snyder, 1994] Snyder, T. (March 1994). Blinded By Science. The ExecutiveEducator.[Soloway, 1991] Soloway, E. (1991). How the Nintendo Generation Learns. Com-munications of the ACM, 34(9).[Soloway et al., 1981] Soloway, E. M., Woolf, B., Rubin, E., & Barth, P. (1981).Meno-II: An intelligent tutoring system for novice programmers. In Proceed-ings of the Seventh International Joint Conference on Arti�cial Intelligence(IJCAI).[Stanchev, 1993] Stanchev, I. (1993). From decision support systems to computersupported collaborative work. Elsevier Science Publishers.[Stern et al., 1997] Stern, M., Woolf, B., & Kurose, J. F. (1997). Intelligence onthe Web? In Proceedings of the 8th World Conference of the AIED Society(AIED'97). 200

[Suthers & Jones, 1997] Suthers, D. & Jones, D. (1997). An Architecture forIntelligent Collaborative Educational Systems. In Proceedings of the 8th WorldConference of the AIED Society (AIED'97).[Turing, 1963] Turing, A. (1963). Computing Machinery and Intelligence. Com-puters and Thought.[Typodrome, 1997] Typodrome (10 January 1997).[VanLehn, 1983] VanLehn, K. (1983). Human procedural skill acquisition: The-ory, model, and psychological validation. In Proceedings of the National Con-ference on AI.[VanLehn et al., 1998] VanLehn, K., Niu, Z., Slier, S., & Gertner, A. (1998).Student modeling from conventional test data: A Bayesian approach with-out priors. In Proceedings of the 4th Intelligent Tutoring Systems Conference(ITS'98), pages 434{443.[Wallace, 1990] Wallace, C. S. (1990). Classi�cation by Minimum-Message-Length Inference. In Proceedings of the International Conference on Com-puting and Information.[Walters & Hughes, 1994] Walters, J. & Hughes, B. (1994). Camp MariMUSE:Linking Elementary and College Students in Virtual Space. In Proceedings ofthe National Educational Computing Conference.[Wyeth, 1998] Wyeth, G. (1998). Training a Vision Guided Robot. MachineLearning, 31.
201

