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The equation of state of hard hyperspheres in four and five dimensions is calculated from the value
of the pair correlation function at contact, as determined by Monte Carlo simulations. These results
are compared to equations of state obtained by molecular dynamics and theoretical approaches. In
all cases the agreement is excellent. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1874793�

The equation of state of simple fluids has been an active
object of research for many years. Investigators have ap-
proached its study by using a variety of methods. On the
theoretical side, various representations of fluid behavior
have been proposed. One such important theoretical method
is the virial expansion of the equation of state:1

ZV = 1 + B2� + B3�2 + B4�3 + B5�4 + ¯BV+1�V. �1�

Here, the compressibility factor ZV is defined as

ZV = P�/� , �2�

where � is 1 /kBT �kB is Boltzmann’s constant and T is the
absolute temperature�, P is the pressure, and � is the reduced
number density. In the case of hard hyperspheres ZV is inde-
pendent of the temperature since the virial coefficients
�BV , V=2,3 ,…� are independent of temperature. A number
of the B’s �B2, B3, and B4� are known exactly2,3 for D dimen-
sional hyperspheres because the necessary multidimensional
integrals can be evaluated analytically. Other values �B5, B6,
B7, B8, B9, and B10� are known3–8 from extensive numerical
calculations.

The equation of state, Z as a function of �, in D dimen-
sions �see the Appendix� is related to the contact value of the
pair correlation function G��� by

Z = 1 + �B2G��� , �3�

where � is the diameter of the D dimensional hypersphere
and B2 is the second virial coefficient. It has the value2 of

B2 =
�D/2�D

2��1 + D/2�
, �4�

where � is the Gamma function.
In a previous publication9 we have reported on our SWC

�SmallWeb computing� Java framework Monte Carlo �MC�
computer simulations. In that work we obtained G��� for
hard hyperspheres where D ranged from one to five. The
contact value of the pair correlation function, G�R�, was de-
termined by fitting a least-squares line10 to the first five data
points for which the separation R is larger than 1.00. The

equation of this line was then evaluated at the point R
=1.00 to find the contact value. The error bar on the contact
value was determined by the error bars on the fitted coeffi-
cients of the straight line. These MC numerical results for
G��� were compared to the theoretical equation of Song,
Mason, and Stratt11 which predicted G��� at any arbitrary
dimension and density,

G��� =
1 − ��

�1 − ��D , �5�

where � is the packing fraction

� =
B2�

2D−1 �6�

and

� = D − 2D−1B3

B2
2 . �7�

Here B3 is the third virial coefficient.
They derived this equation, using mean field theory,

based on the Carnahan–Starling equation of state12 and as-
sumed the probability that a second particle will be found
within a small region about a reference particle is the product
of independent probabilities for each dimension. Excellent
agreement between their theory and the MC data was found
in all dimensions studied.

Since the equation of state results are well known in one,
two, and three dimensions, here we only report our new find-
ings for four and five dimensions. The G��� results are used
to determine the equation of state via Eq. �3�. These MC
values are compared to the molecular dynamics �MD� data of
Luban and Michels13 and Lue.14 Moreover, the most accurate
new values of B8, B9, and B10

5,6 are used to obtain theoretical
predictions of the virial equation of state in four and five
dimensions, as was recently done by Bishop, Masters, and
Vlasov7 using only lower order BV values �up to B8 in four
dimensions and B7 in five dimensions�.

In all of this work, the hard hypersphere diameter is set
to one and therefore, all quantities are reported in reduced
units. The ZV expansion, Eq. �1�, includes the �V+1�th virial
coefficient. Using all the known values for BV, Z9 has beena�Electronic mail: marvin.bishop@manhattan.edu
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computed in both four and five dimensions. Using the nota-
tion that �n ,m� indicates an approximant that has a polyno-
mial of degree n for its numerator and a polynomial of de-
gree m for its denominator, both the �4,5� and �5,4� Padé

approximates in four and five dimensions were determined
from the virial expansions. The Padé approximates are one
way of more accurately representing the virial power series.

In four dimensions we find that

Z�4,5� =
1 + 2.0618� + 1.5498�2 + 0.1215�3 − 0.3273�4

1 − 0.4056� − 0.5320�2 + 0.4036�3 − 0.0813�4 − 0.0007�5 , �8�

Z�5,4� =
1 + 2.0539� + 1.5338�2 + 0.1099�3 − 0.3276�4 + 0.0029�5

1 − 0.4135� − 0.5285�2 + 0.4078�3 − 0.0846�4 , �9�

whereas in five dimensions that

Z�4,5� =
1 + 5.6285� + 11.4725�2 + 10.5480�3 + 3.6629�4

1 + 2.9966� + 0.7176�2 − 1.3205�3 + 0.3080�4 − 0.0039�5 , �10�

Z�5,4� =
1 + 5.6390� + 11.5374�2 + 10.6878�3 + 3.7971�4 + 0.0486�5

1 + 3.0071� + 0.7549�2 − 1.3089�3 + 0.2903�4 . �11�

Figure 1 presents Z vs � for four dimensional hyper-
spheres. All the MC simulation data is in excellent agree-
ment with the MD data and the theoretical �4,5� and �5,4�
Padé approximates. Similar excellent agreement among the
MC, MD, and Padé approximates is revealed in Fig. 2 for
five dimensional hyperspheres. Preliminary comparisons us-
ing virial coefficients only up to order B6 had discrepancies
in the equation of state at higher densities. The current fine
agreement is the result of the availability of the higher order
virial coefficients.
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APPENDIX: EQUATION OF STATE OF HARD
HYPERSPHERES IN ARBITRARY DIMENSION

The relationship between the equation of state and the
pair correlation function at contact, G���, follows from the D
dimensional form of the pressure equation:1

Z = 1 − ���/2D� � G�R�R��U�R�/�R�dR . �A1�

The first term in this Eq. �1� is the ideal gas contribution.
The second term is caused by particle interactions. The pair
potential of D dimensional hyperspheres with diameter �
separated by the D dimensional distance R is given by

U�R� = ��, R 	 �

0, R 
 �
. �A2�

In Eq. �A1�, �U�R� /�R is the derivative of the pair po-
tential and dR is the D dimensional differential volume ele-
ment. Now consider the general Meyer f function,1

FIG. 1. Equation of state in four dimensions: MC ���, MD �Ref. 13� ���,
MD �Ref. 14� ���, Z�4,5� Padé �—�, Z�5,4� Padé �¯�.

FIG. 2. Equation of state in five dimensions: MC ���, MD �Ref. 13� ���,
MD �Ref. 14� ���, Z�4,5� Padé �—�, Z�5,4� Padé �¯�.
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f�R� = exp�− �U�R�� . �A3�

From the chain rule, one finds that

� f�R�/�R = �� f�R�/�U�R����U�R�/�R�

= − � exp�− �U�R����U�R�/�R� �A4�

but in the special case of hard hyperspheres:

f�R� = �0, R 	 �

1, R 
 �
. �A5�

This is the Heavyside step function and its derivative is
the delta function.15 One may then replace �f�R� /�R by
��R−�� and rearrange terms to obtain

�U�R�/�R = − exp��U�R����R − ��/� . �A6�

The differential volume element dR is given by the surface
area, SD times dR. The surface area of a D dimensional
hypersphere is16

SD =
�D/2DRD−1

��1 + D/2�
. �A7�

Substituting for �U�R� /�R in Eq. �A1� one obtains

Z = 1 +
��/2��D/2G����D

��1 + D/2� .
�A8�

But the second virial coefficient B2 is known2 to be

B2 =
�D/2�D

2��1 + D/2� .
�A9�

Hence, the equation of state in all dimensions is given by

Z = 1 + �B2G��� . �A10�
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