
1 / 29

The Landscape of Structural Graph Parameters

Michael Lampis
KTH Royal Institute of Technology

November 18th, 2011



Introduction

Introduction
❖ FPT theory in 30
seconds

❖ Vertex Cover
❖ Search tree
algorithm

❖ So what?
❖ Parameterized
Zoo

❖ Methodology

❖ What parameter to
choose?

Graph Widths and
Meta-Theorems

Vertex Cover and
Max-Leaf

Conclusions

2 / 29



FPT theory in 30 seconds

Introduction
❖ FPT theory in 30
seconds

❖ Vertex Cover
❖ Search tree
algorithm

❖ So what?
❖ Parameterized
Zoo

❖ Methodology

❖ What parameter to
choose?

Graph Widths and
Meta-Theorems

Vertex Cover and
Max-Leaf

Conclusions

3 / 29

● Most problems are NP-hard → need exp time in the
worst case
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✦ Typically for graph problems, when the graph is a
tree

● What about the almost easy cases?

✦ We consider the concept of “distance from triviality”
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● Most problems are NP-hard → need exp time in the
worst case

● They may be easily solvable in some special cases

✦ Typically for graph problems, when the graph is a
tree

● What about the almost easy cases?

✦ We consider the concept of “distance from triviality”

● Examples:

✦ Satisfying 7
8m of the clauses of a 3-CNF formula

✦ Satisfying 7
8m+k of the clauses of a 3-CNF formula
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● Most problems are NP-hard → need exp time in the
worst case

● They may be easily solvable in some special cases

✦ Typically for graph problems, when the graph is a
tree

● What about the almost easy cases?

✦ We consider the concept of “distance from triviality”

● Examples:

✦ Euclidean TSP on a convex set of points

✦ Euclidean TSP when all but k of the points lie on
the convex hull
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● Most problems are NP-hard → need exp time in the
worst case

● They may be easily solvable in some special cases

✦ Typically for graph problems, when the graph is a
tree

● What about the almost easy cases?

✦ We consider the concept of “distance from triviality”

● Examples:

✦ Vertex Cover on bipartite graphs

✦ Vertex Cover on graphs with small bipartization
number
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● Vertex Cover is NP-hard in general.

● It is easy (in P) on bipartite graphs.

✦ Maximum matching, König’s theorem

● What about almost bipartite graphs?

✦ Is there an efficient algorithm for Vertex Cover on
graphs where the number of vertices/edges one
needs to delete to make the input graph bipartite is
small?

● Assume for now that some small bipartizing set is given.
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● Suppose we have an almost bi-
partite graph. We cannot use
König’s theorem to find its mini-
mum vertex cover.

● However, we can try to get rid of
the offending vertices/edges.
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● Pick an offending edge. Either
its first endpoint must be in the
optimal vertex cover . . .

● So, we should remove it. . .
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● We have produced two in-
stances, one equivalent to the
original.

● Both are closer to being bipar-
tite.
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● Continuing like this, we produce
2k instances, where k is original
distance from bipartite-ness.

● These are all bipartite. → Use
poly-time algorithm to find the
best.
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● This is known as a bounded-
depth search tree algorithm.
It’s essentially a brute-force ap-
proach, confined to k.

● Total running time: 2knc.
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● This is too easy! Hence, boring. . .

● This is just a cooked-up example. . .

● This isn’t really new. . .
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● This is too easy! Hence, boring. . .

✦ This doesn’t work for all problems! 3-coloring is
NP-hard for k = 3 [Cai 2002]

● This is just a cooked-up example. . .

● This isn’t really new. . .
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● This is too easy! Hence, boring. . .

● This is just a cooked-up example. . .

✦ True. But we can work this way with countless other
problems/graph families. Some cases are bound to
be interesting.

● This isn’t really new. . .
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● This is too easy! Hence, boring. . .

● This is just a cooked-up example. . .

● This isn’t really new. . .

✦ Novelty here is the pursuit of upper/lower bounds
with respect to n and k.
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● First objective: prove that a problem is FPT (f(k) · nc)

✦ Positive toolbox (algorithmic techniques)

✦ Negative toolbox (W-hardness reductions)

■ Parameter-preserving reductions from known
hard problems (Independent set, Dominating
set . . . )

✦ Second objective: get the best f(k)
(22

k

> 2k
2
> kk > 3k > 2k)

■ Positive toolbox (algorithmic techniques)
■ Negative toolbox (reductions from ETH)

◆ The assumption that 3-SAT cannot be
solved in 2o(n).
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● We would like to define the parameter so that:

✦ As many instances as possible have small k.

✦ We can design an algorithm that works well for
small k (FPT).

● These are conflicting goals! Picking a good parameter is
hard work!

● One approach: “natural” parameterizations: k is the
value of the objective function.
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● We would like to define the parameter so that:

✦ As many instances as possible have small k.

✦ We can design an algorithm that works well for
small k (FPT).

● These are conflicting goals! Picking a good parameter is
hard work!

● One approach: “natural” parameterizations: k is the
value of the objective function.

● Here: Structural parameterizations: k is some measure
of the complexity of the input graph/instance.

● Example: How about Vertex Cover in graphs with FVS
of size k?
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● Time to think a little harder about our choice of
parameters.

● We will now investigate the algorithmic and
graph-theoretic properties of various measures that
quantify graph complexity.

✦ . . . an area known as the theory of graph “widths”.
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● The most popular structural parameters for graphs are
the various graph “widths”.

● Their king is treewidth.

✦ Treewidth quantifies how “close” a graph is to being
a tree.

✦ Treewidth strikes a good balance between our two
goals.

● A surprisingly robust notion, rediscovered independently
several times

✦ Arnborg and Proskurowski (partial k-trees),
Robertson and Seymour (tree decompositions),
Kirousis and Papadimitriou (node searching), . . .
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● The most popular structural parameters for graphs are
the various graph “widths”.

● Their king is treewidth.

✦ Treewidth quantifies how “close” a graph is to being
a tree.

✦ Treewidth strikes a good balance between our two
goals.

● What other “widths” are there? What are their
properties? What are the relationships between them
and with other graph invariants?



A complexity map

Introduction

Graph Widths and
Meta-Theorems

❖ Graph widths

❖ A complexity map

❖ Algorithmic
Meta-Theorems
❖ First Order Logic
on graphs

❖ (Monadic) Second
Order Logic

❖ The model
checking problem

❖ Courcelle’s
theorem

Vertex Cover and
Max-Leaf

Conclusions

13 / 29

Recall two reasonable parameters. What is the trade-off
between generality and algorithms?
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vc = Vertex Cover, ml = Max-Leaf, fvs = Feedback Vertex Set,
pw = Pathwidth, tw = Treewidth, cw = Cliquewidth, ltw = Local

Treewidth, ∆ = Max Degree
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Algorithmic implications: positive (FPT) results propagate
downward, negative (hardness) results propagate upward
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This map gives us a basic idea of how general each width is.
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● Algorithmic Theorems

✦ Vertex Cover, Dominating Set, 3-Coloring are
solvable in linear time on graphs of constant
treewidth.
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● Algorithmic Meta-Theorems

✦ All MSO-expressible problems are solvable in linear
time on graphs of constant treewidth.

● Main uses: quick complexity classification tools,
mapping the limits of applicability for specific techniques.

● Also: evaluating the algorithmic potency of a parameter.

● To prove such theorems we should be able to group
families of problems together. Method here:
expressibility in certain logics.
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● We express graph properties using logic

● Basic vocabulary

✦ Vertex variables: x, y, z, . . .
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● We express graph properties using logic

● Basic vocabulary

✦ Vertex variables: x, y, z, . . .

✦ Edge predicate E(x, y), Equality x = y

✦ Boolean connectives ∨,∧,¬

✦ Quantifiers ∀, ∃

Example: Dominating Set of size 2

∃x1∃x2∀yE(x1, y) ∨E(x2, y) ∨ x1 = y ∨ x2 = y
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● We express graph properties using logic

● Basic vocabulary

✦ Vertex variables: x, y, z, . . .

✦ Edge predicate E(x, y), Equality x = y

✦ Boolean connectives ∨,∧,¬

✦ Quantifiers ∀, ∃

Example: Vertex Cover of size 2

∃x1∃x2∀y∀zE(y, z) → (y = x1 ∨ y = x2 ∨ z = x1 ∨ z = x2)
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● We express graph properties using logic

● Basic vocabulary

✦ Vertex variables: x, y, z, . . .

✦ Edge predicate E(x, y), Equality x = y

✦ Boolean connectives ∨,∧,¬

✦ Quantifiers ∀, ∃

Example: Clique of size 3

∃x1∃x2∃x3E(x1, x2) ∧E(x2, x3) ∧ E(x1, x3)
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● We express graph properties using logic

● Basic vocabulary

✦ Vertex variables: x, y, z, . . .

✦ Edge predicate E(x, y), Equality x = y

✦ Boolean connectives ∨,∧,¬

✦ Quantifiers ∀, ∃

Example: Many standard (parameterized) problems can be
expressed in FO logic. But some easy problems are
inexpressible (e.g. connectivity).
Rule of thumb: FO = local properties
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● MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

✦ MSO1 logic: we can quantify over sets of vertices
only

✦ MSO2 logic: we can quantify over sets of edges
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● MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

✦ MSO1 logic: we can quantify over sets of vertices
only

✦ MSO2 logic: we can quantify over sets of edges

Example: 2-coloring

∃V1∃V2

(∀x∀yE(x, y) → (x ∈ V1 ↔ y ∈ V2))

(∀z(z ∈ V1 ∨ z ∈ V2))
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● MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

✦ MSO1 logic: we can quantify over sets of vertices
only

✦ MSO2 logic: we can quantify over sets of edges

● MSO2 6= MSO1. Examples: Hamiltonicity, Edge
dominating set
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● MSO logic: we add set variables S1, S2, . . . and a ∈
predicate. We are now allowed to quantify over sets.

✦ MSO1 logic: we can quantify over sets of vertices
only

✦ MSO2 logic: we can quantify over sets of edges

● Optimization variants of MSO exist, questions of the
form find min S s.t. φ(S) holds.
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Problem: p-Model Checking
Input: Graph G of width k and formula φ

Parameter: |φ|+ k

Question: G |= φ?

● The unparameterized problem is PSPACE-hard, even for
FO logic on trivial graphs.
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Problem: p-Model Checking
Input: Graph G of width k and formula φ

Parameter: |φ|+ k

Question: G |= φ?

● If |φ| is a constant, problem is in XP for FO logic,
NP-hard for MSO1.

✦ For FO logic, try all possibilities for each variable.

✦ For MSO logic, 3-coloring is expressible with a
constant-size formula.
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Problem: p-Model Checking
Input: Graph G of width k and formula φ

Parameter: |φ|+ k

Question: G |= φ?

● Parameterized just by |φ|, this problem is W-hard even
for FO logic

✦ The property “the graph has a clique of size t” can
be encoded in an FO formula of size O(t)
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Problem: p-Model Checking
Input: Graph G of width k and formula φ

Parameter: |φ|+ k

Question: G |= φ?

● We are interested in finding tractable, i.e. FPT, cases for
the doubly parameterized case.
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● Every graph property expressible in MSO2 logic is
solvable in linear time on graphs of bounded treewidth.

✦ Automata-theoretic proof, show that MSO graph
properties have finite index.

✦ Most celebrated result in this area. One of the
reasons everyone loves treewidth.
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● Every graph property expressible in MSO2 logic is
solvable in linear time on graphs of bounded treewidth.

● More formally: There exists an algorithm which, given
an MSO2 formula φ and a graph G with n vertices and
treewidth k decides if G |= φ in time f(k, |φ|) · n.
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● Every graph property expressible in MSO2 logic is
solvable in linear time on graphs of bounded treewidth.

● More formally: There exists an algorithm which, given
an MSO2 formula φ and a graph G with n vertices and
treewidth k decides if G |= φ in time f(k, |φ|) · n.

● Can we do better?

✦ Faster?

✦ More graphs?

✦ Wider logic?
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● Every graph property expressible in MSO2 logic is
solvable in linear time on graphs of bounded treewidth.

● More formally: There exists an algorithm which, given
an MSO2 formula φ and a graph G with n vertices and
treewidth k decides if G |= φ in time f(k, |φ|) · n.

● Can we do better?

✦ Faster?

■ Better than linear time is impossible! But f is a
tower of exponentials with height proportional to
|φ|. Huge room for improvement?

✦ More graphs?

✦ Wider logic?
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● Every graph property expressible in MSO2 logic is
solvable in linear time on graphs of bounded treewidth.

● More formally: There exists an algorithm which, given
an MSO2 formula φ and a graph G with n vertices and
treewidth k decides if G |= φ in time f(k, |φ|) · n.

● Can we do better?

✦ Faster?

✦ More graphs?

■ This has been extended to cliquewidth for
MSO1 logic [Courcelle, Makowsky, Rotics
2000]. It is impossible for MSO2 [Fomin,
Golovach, Lokshtanov, Saurabh 2009].

✦ Wider logic?
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● Every graph property expressible in MSO2 logic is
solvable in linear time on graphs of bounded treewidth.

● More formally: There exists an algorithm which, given
an MSO2 formula φ and a graph G with n vertices and
treewidth k decides if G |= φ in time f(k, |φ|) · n.

● Can we do better?

✦ Faster?

✦ More graphs?

✦ Wider logic?

■ ?
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● FO logic is FPT for all,
MSO1 for the blue area,
MSO2 for the green area.

● FO logic is non-
elementary for trees,
triply exponential for
binary trees. [Frick and
Grohe 2004]
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● FO logic is FPT for all,
MSO1 for the blue area,
MSO2 for the green area.

● FO logic is non-
elementary for trees,
triply exponential for
binary trees. [Frick and
Grohe 2004]

Our focus is on improving on the bottom.
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● FO logic for graphs of bounded vertex cover is singly
exponential

● FO logic for graphs of bounded max-leaf number is
singly exponential

● MSO logic for graphs of bounded vertex cover is doubly
exponential

● Tight lower bounds (under the ETH) for vertex cover

([L. ESA 2010])
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● Model checking FO logic on graphs of bounded vertex
cover is singly exponential.
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● Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

● Intuition:

✦ Model checking FO logic on general graphs is in
XP: each time we see a quantifier, we try all
possible vertices.

✦ The existence of a vertex cover of size k partitions
the remainder of the graph into at most 2k sets of
vertices, depending on their neighbors in the vertex
cover.

✦ Crucial point: Trying all possible vertices in a set is
wasteful. One representative suffices.
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● Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

● Definition: u, v have the same type iff
N(u) \ {v} = N(v) \ {u}.

● Lemma: If φ(x) is a FO formula with a free variable and
u, v have the same type then G |= φ(u) iff G |= φ(v).
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● Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

● Algorithm: For each of the q quantified vertex variables
in the formula try the following

✦ Each of the vertices of the vertex cover (k choices)

✦ Each of the previously selected vertices (q choices)

✦ An arbitrary representative from each type (2k

choices)

● Total time: O∗(k + q + 2k)q = O∗(2kq+q log q)
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● Model checking FO logic on graphs of bounded vertex
cover is singly exponential.

● Algorithm: For each of the q quantified vertex variables
in the formula try the following

✦ Each of the vertices of the vertex cover (k choices)

✦ Each of the previously selected vertices (q choices)

✦ An arbitrary representative from each type (2k

choices)

● Total time: O∗(k + q + 2k)q = O∗(2kq+q log q)

● Recall: Courcelle’s theorem gives a tower of
exponentials here
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● The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.
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● The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.

● Again, small max-leaf number implies a special structure

✦ Small degree and small pathwidth

✦ [Kleitman and West 1991] A graph of max-leaf
number k is a sub-division of a graph of at most
O(k) vertices.
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● The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.

● Definition: a topo-edge is a vertex-maximal induced path

● The vast majority of vertices have degree 2 and belong
in topo-edges
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● The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.

● Definition: a topo-edge is a vertex-maximal induced path

● The vast majority of vertices have degree 2 and belong
in topo-edges

● Lemma: If a topo-edge has length at least 2q it can be
shortened without affecting the truth value of any FO
sentence with at most q quantifiers.
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● The max-leaf number of graph ml(G) is the maximum
number of leaves of any sub-tree of G.

● Definition: a topo-edge is a vertex-maximal induced path

● The vast majority of vertices have degree 2 and belong
in topo-edges

● Lemma: If a topo-edge has length at least 2q it can be
shortened without affecting the truth value of any FO
sentence with at most q quantifiers.

● The graph can be reduced to size O(k22q) so the trivial
FO algorithm runs in 2O(q2+q log k)
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● Again, using partition of vertices into types.

● To decide ∃Sφ(S) we could try out all sets of vertices for
S (2n choices)

● But, the only thing that matters is how many vertices we
pick from each type, not which.

● . . .n2k choices. Still too many. . .
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● Again, using partition of vertices into types.

● Main idea: if there are more than 2q vertices of a certain
type, we can discard one.

● We end up with 2k · 2q vertices. Deciding if an MSO
sentence holds takes exponential time:

✦ Total running time: 22
O(k+q)



Vertex Cover - MSO

Introduction

Graph Widths and
Meta-Theorems

Vertex Cover and
Max-Leaf

❖ Graph classes

❖ Some newer
meta-theorems

❖ Vertex cover - FO
❖ Max-Leaf Number
- FO
❖ Vertex Cover -
MSO

❖ Generalizing

❖ Neighborhood
Diversity

Conclusions

24 / 29

● Again, using partition of vertices into types.

● Main idea: if there are more than 2q vertices of a certain
type, we can discard one.

● We end up with 2k · 2q vertices. Deciding if an MSO
sentence holds takes exponential time:

✦ Total running time: 22
O(k+q)

● Lower bound argument shows that this cannot be
improved to 22

o(k+q)
, assuming the ETH.
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● The only property of graphs of small vertex cover that
we use is that they can be partitioned into few
equivalence types.
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● The only property of graphs of small vertex cover that
we use is that they can be partitioned into few
equivalence types.

● Even if each type is not an independent set, its vertices
are still equivalent.
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● The only property of graphs of small vertex cover that
we use is that they can be partitioned into few
equivalence types.

● Even if two types are connected, their vertices are still
equivalent.
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● The only property of graphs of small vertex cover that
we use is that they can be partitioned into few
equivalence types.

● Definition: The neighborhood diversity of a graph G is
the number of type equivalence classes of its vertices.

● Each class may induce a clique or an independent set.

● Two classes are either disconnected or fully connected.

● nd(G) can be computed in polynomial time.
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● All the meta-theorems for vertex cover naturally
generalize to neighborhood diversity, with exponentially
better running time.
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● nd is strictly more general than vertex cover, and
incomparable to treewidth (think complete bipartite
graphs).
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● It is a special case of clique-width. Several problems
hard for clique-width are solvable for nd.
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● Is this a realistic parameter?

● Recently ([Ganian 2011]) a similar (but incomparable)
generalization of vertex cover was suggested. Can
these two be merged?
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● Structural parameterizations are a potentially large and
still young research area.

● Need to explore more the properties of various widths.
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● Structural parameterizations are a potentially large and
still young research area.

● Need to explore more the properties of various widths.

● Need to think harder about the way we define problem
families.

✦ What else is there besides FO and MSO logic?

✦ Modal logic? [Pilipczuk 2011]

● Concrete open problem:

✦ MSO logic for max-leaf.

✦ Interesting connections with (unary) regular
language complexity.
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Thank you!

Questions?
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