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Abstract

In this paper, we present a high-level intermediate language, called delay-Prolog, for
implementing CLP(FD), the constraint language over finite-domains. Delay-Prolog
has a much stronger description power than indexical, the intermediate language
widely used in current finite-domain constraint compilers. It is powerful enough for
describing all kinds of constraint propagation procedures, which by now have been
mostly written in low level languages. And, most importantly, delay-Prolog opens
new ways to compiling constraints. Besides the indexical algorithm that compiles
constraints into indexicals, we implemented two new algorithms: the wait algorithm
that compiles a constraint as whole into a propagation procedure without splitting
it into small pieces, and the incremental simplification algorithm that incremen-
tally simplifies constraints into smaller ones. The results are noteworthy: The wait
algorithm generates the fastest code, while the widely used indexical algorithm gen-
erates code that is about 3 times slower than that generated by the wait algorithm.
The wait algorithm is adopted in the latest version of B-Prolog. The experimental
results show that B-Prolog is comparable in performance with the fastest CLP(FD)
systems, although it is an emulated system.

1 Introduction

CLP(FD) [7)?, the constraint logic programming language over finite domains, has
been proved effective for solving a large number of real-life optimization problems.
The key operation employed in CLP(FD) is called constraint propagation, which
uses constraints actively to prune search spaces as follows: whenever a variable
changes, i.e., the variable has been instantiated or its domain has been updated,
the domains of all the remaining variables are filtered to contain only those values
that are consistent with this variable. Like compiling unification is important for
improving the performance of Prolog, compiling constraint propagation is a key to
improving the performance of CLP(FD).

In early CLP(FD) systems, such as in the CHIP system [5], constraints are inter-
preted rather than compiled: constraints are first transformed into canonical-form
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terms and are then executed by an interpreter that performs, among other things,
constraint propagation. The propagation procedure adopted is general enough for
handling all types of constraints. Learning from the experience of compiling Pro-
log programs into the Warren Abstract Machine (WAM), several researchers have
extended the WAM for compiling CLP(FD). In the CHIP compiler [1], constraints
are compiled into low level instructions such that different specialized propagation
procedures can be used for different types of constraints. This compiler is called a
CISC and a black-box compiler because it is based on a complex abstract machine
and the constraint solver is not open to the users.

Recently, an intermediate language, called indezical, has been widely used for
compiling finite-domain constraints [8, 2]. An indexical is a primitive constraint in
the form of X in r, where X is a domain variable and r specifies the range for X. For
each indexical, a propagation procedure specific to it is adopted. In contrast to the
CHIP compiler, these compilers are called RISC and glass-box compilers because
the underlying abstract machines are much simpler than that adopted in the CHIP
compiler and the intermediate language is open to the users. However, indexical is
very limited in description power because the delay mechanism is embedded in the
language. It can be used to compile arithmetic as well as Boolean constraints|3],
but is too week to be used to implement other types of constraints. In addition,
the compilation from constraints into indexicals is so straightforward that it is
impossible to try some new compilation algorithms and optimization techniques.

In this paper, we present a high-level intermediate language, called delay-Prolog,
for implementing finite-domain constraints. Delay-Prolog extends Prolog in that it
supports domain variables and a delay mechanism, called delay clause, that has the
functionality of describing delay conditions on goals, triggering times for delayed
goals, and actions taken after goals are delayed. Delay-Prolog will be defined in
Section 3.

Delay-Prolog is a nice implementation language for programming constraint
propagation. We will show in Section 4 how to program constraint propagation for
various constraints including reification and the global constraint all distinct(L).
Delay-Prolog has a much stronger description power than indexical, and opens new
ways to compiling constraints. Besides the indexical algorithm, we will describe in
Section 5 two new algorithms: the wait algorithm that compiles each constraint as
a whole into a propagation procedure without splitting it into small pieces, and the
incremental simplification algorithm that incrementally simplifies constraints into
smaller ones. We will also analyze these algorithms and clarify their advantages
and disadvantages.

We have implemented all the algorithms in B-Prolog and compared their perfor-
mance for several benchmark programs. The results, which will be given in Section
6, are noteworthy: The wait algorithm is the best algorithm which generates code
that is 3 times faster than that generated by the indexical algorithm. The wait
algorithm is used in the latest version of B-Prolog (Version 3.0). The experimental
results also show that B-Prolog is comparable in performance with, and sometimes
faster than SICStus-Prolog and clp(FD), although it is an emulated system.

The advantages of delay-Prolog have not yet been explored thoroughly. In Sec-
tion 7, we will propose two important optimization techniques.

The reader is assumed to be familiar with logic programming and constraint
satisfaction, but no knowledge about abstract machines is assumed. In Section 2,
we define some preliminary terms about CLP(FD) and constraint propagation. For
detailed description, the reader may consult [7] and [9].



2 Preliminaries

2.1 CLP(FD)

In general, a CLP(FD) program is composed of three parts: the first part, called
variable generation, generates variables and specifies their domains; the second part,
called constraint generation, specifies constraints over the variables; and the final
part, called labeling, instantiates the variables by doing enumeration.

The domain of a variable is defined as follows:

Vars in D

where Vars is a variable or a list of variables, and D is a list of integers or a range
between two integers l..u which denotes the set of integers {l,I+1,...,u}.

A basic constraint is a call in the form E; R E5 where E; and E5 are two
arithmetic expressions and R is a relation symbol in {#=, #\=, #>, #>=, #<, #=<}
which is self-explainable. There are several other primitives available for describing
other types of constraints, choosing variables, instantiating variables, and finding
optimal solutions with respect to some criteria.

2.2 Constraint propagation

Constraint Propagation (CP) is a basic operation employed in CLP(FD) systems
for solving constraints. It uses constraints actively to exclude no-good values from
the domains of variables. Many algorithms can be derived from this idea depending
on when and to what level CP is applied. The following table illustrates how
domains in X#=Y+1 (X,Y € 1..5) are updated by four different algorithms. The
consistency checking algorithm performs CP when constraints are generated. The
forward checking algorithm, besides doing consistency checking, also invokes CP
when a domain variable is instantiated. The partial look-ahead algorithm, besides
doing forward checking, also invokes CP when a bound of a domain is updated. The
full look-ahead algorithm, besides doing partial look-ahead, also invokes CP when
an intermediate element is excluded from a domain.

Algorithm Time Effect

Consistency checking | generated | X € 2..5,Y € 1.4
Forward checking X=3 X=3Y=2

Partial look-ahead X #5 X€e24Ye€el.3

Full look-ahead X #4 X €[2,3,5],Y €[1,2,4]

3 Delay-Prolog

3.1 Domain variables

A domain variable is represented internally just like a suspending variable of Prolog,
but there is more information associated with it (see the table below).



type | type of the domain

min | minimum element

max | maximum element

size | number of elements in the domain

ins_cs | list of constraints to be executed when the variable is instantiated

min_cs | list of constraints to be executed when the low bound is updated
max_cs | list of constraints to be executed when the upper bound is updated
dom _cs | list of constraints to be executed when any element is excluded

elms | data structure that stores the elements

The information about a domain variable can be accessed and/or updated
through a group of primitives. The expression min(X) denotes the minimum el-
ement, max(X) the maximum element, dom(X) the list of elements, and size(X)
the size of the domain of X. The primitive exclude(X,E) excludes the element E
from the domain of X, and the primitive elm(X,E) checks whether E is an element
in the domain of X.

A failure occurs when the domain of a variable becomes empty. When the
domain of a variable becomes a singleton, then the variable will be bound to the
element.

An update of a domain variable is called a trigger and the variable is called a
triggering variable. There are four kinds of triggers. The trigger ins(X) is on when
X is instantiated; min(X) is on when the low bound of X is updated; max(X) is on
when the upper bound of X is updated; and dom(X) is on when any change happens
to X. There are four lists of constraints associated with a domain variable, each
of which stores the constraints to be executed when the corresponding trigger is
turned on. Notice that the triggers are not completely independent each other. If
the trigger ins(X) is on, all the other three triggers will be on too. If either min (X)
or max (X) is on, then dom(X) will be on too.

3.2 Delay clauses

In this subsection, we describe the syntax and semantics of delay clauses. Examples
that illustrate their usage will be given in the next Section.
A delay clause takes the following form:

delay Head :- Condition : [{Triggersl}] Action.

where Condition is a sequence of in-line tests, Triggers is a sequence of trigger
declarations, and Action is a sequence of arbitrary calls.

For any call to the predicate of Head, if it matches Head (i.e., the call is an
instance of Head) and Condition is satisfied, then the call delays and Action is
executed. Since one-directional matching rather than full-unification is used to
match the call against Head and Condition is composed of only in-line tests, the
call will be kept unchanged before Action is executed. If the call does not match
Head or Condition fails, then the next clause will be tried. If Action fails, then
the original predicate call will fail.

The sequence of trigger declarations Triggers, which is optional, declares when
the clause should be re-executed. The trigger declaration ins(X) means the time
when the variable X is instantiated; min (X) (max (X)) means the time when the the
low (upper) bound of X is updated; and dom(X) means the time when any change
happens to X. When no trigger declaration is given, the compiler automatically
generates a trigger ins(X) for each variable occurring in Condition.



A delay clause is executed in a event-driven manner. At the entry and exit
points of every predicate, the system checks to see whether or not there is trig-
ger that has been turned on. If so, then the current procedure is interrupted and
control is moved to the lists of constraints associated with the trigger. When a
delay clause is re-entered, the execution starts from different points depending on
the type of the trigger. If the trigger is ins(X), then the execution starts from
the condition; otherwise, the execution starts from the action. This optimization
technique avoids testing of the condition redundantly because the triggers min (X)),
max (X), and dom(X) do no affect the satisfiability of the condition. After the con-
straints finish their execution, the interrupted procedure will resume its execution.
The implementation tails can be found in [13].

Delay clauses defined here are much more powerful than other delay constructs
available in different Prolog systems. It extends delay clauses proposed by Meier
[10] which are unable to describe triggers and actions. All other constructs, such as
freeze in Prolog-1T and when declarations in NU-Prolog, can be implemented very
easily by using delay clauses.

4 Programming Constraint Propagation

In this section, we show four examples that illustrate how to programming constraint
propagation in delay-Prolog.

4.1 An FD-constraint interpreter

After we have delay clauses, it becomes a trivial work for us to write a constraint
interpreter. The following shows such an interpreter:

delay interp_constr(C) :-no_dvars_gt(C,0)
{min(C) ,max(C)}, reduce_domains(C).
interp_constr(C) :-true : test_constr(C).

The condition no_dvars_gt (T,N) succeeds if there are more than N domain variables
in the term T. For a constraint C, if there are at least one variable in ¢} , the interpreter
delays the constraint and invokes the procedure reduce_domains which excludes no-
good values from the variables in C to ensure the consistency of the constraint. The
two triggers, min(C) and max(C), ensure that the constraint will be reconsidered
whenever either bound of any variable in C is updated.

4.2 Indexical

Indexical, which is adopted by many CLP(FD) compilers for compiling constraints,
can be implemented easily with delay-Prolog. Consider the indexical

X in min(Y)+min(Z) . .max(Y)+max(Z) .

This indexical is a primitive constraint that excludes no-good values from the do-
main of X that do not lie in the range of min(Y)+min(Z) . .max(Y)+max(Z). This
constraint is reconsidered whenever a bound of Y or Z is updated. The following
procedure implements the indexical:

delay °’V in V+V’(X,Y,Z):-dvar(X)
{min(Y) ,max(Y) ,min(Z) ,max(Z)},
X in min(Y)+min(Z) . .max(Y)+max(Z) .
'V in V+V’ (X,Y,Z) :-true : X >= min(Y)+min(Z), X=< max(Y)+max(Z).



The predicate call *V in V+V’(X,Y,Z) propagates changes from Y and/or Z to X.
This implementation is inefficient because the action taken is the same regardless
of the instantiation states of Y and Z.

To improve the efficiency, we rewrite the first clause into four clauses, each one
taking care of one instantiation state of the constraint:

delay °’V in V+V’(X,Y,Z):-
dvar (X) ,dvar(Y) ,dvar(Z)
{min(Y) ,max(Y) ,min(Z) ,max(Z)},
X in min(Y)+min(Z) . .max(Y)+max(Z) .
delay °’V in V+V’ (X,Y,Z):-
dvar (X) ,dvar(Y):
{min(Y) ,max(Y)},
X in min(Y)+Z. .max(Y)+Z.
delay °V in V+V’(X,Y,Z):-
dvar (X) ,dvar(Z):
{min(Z) ,max(Z)},
X in Y+min(Z)..Y+max(Z).
W oin V4V (X,Y,Z) -
dvar (X) :
X in Y+Z.

We can do the same thing to the second clause in the previous definition of 'V in
V4V’ but cannot expect as much gain in efficiency because non-delay clauses are
executed only once while delay clauses may be executed many times.

4.3 Reification

One well used technique in FD constraint programming is called reification, which
uses a new Boolean variable B to indicate the satisfiability of a constraint C. C must
be satisfied if and only if B is equal to 1. This relationship is denoted as:

C<=> (B #=1)

Reification is useful for implementing various global constraints, such as cardinality
constraints [8].

It is straightforward to implement reification in delay-Prolog. Consider, as an
example, the reification:

(X #=Y) <=> (B #= 1)

where X and Y are domain variables, and B is a Boolean variable. The following
procedure describes the relationship:

delay reification(X,Y,B):-

dvar(B) ,dvar(X) ,X\==Y : {ins(X),ins(Y),ins(B)}.
delay reification(X,Y,B):-

dvar(B) ,dvar(Y) ,X\==Y : {ins(Y),ins(B)}.
reification(X,Y,B):-dvar(B) : (X==Y -> B=1; B=0).
reification(X,Y,B):-true : (B==0 -> X #\=Y; X #=Y).

Curious readers might have noticed that ins(Y) is a trigger in the first clause but
ins(X) is not a trigger in the second clause. The reason is simply that ins(Y)
affects the condition of the first clause but ins(X) has no effect on the condition



of the second clause. When Y is bound after the first clause is executed, it may be
bound to be the same variable as X. In this case, the test X\==Y in the condition
will fail. In contrast, X is guaranteed to be an integer after the constraint is delayed
by the second clause. Therefore, declaring ins(X) as a trigger is a nonsense.

4.4 all distinct(L)

Besides arithmetic constraints, a constraint system usually offers the functionality
for describing and solving symbolic constraints. Delay-Prolog is also a nice lan-
guage for implementing symbolic constraints. We consider, as an example, how to
implement all distinct(L).

The constraint all distinct(L) holds if variables in L are pair-wisely differ-
ent. One naive way of implementing this constraint is to generate binary inequality
constraints between all pairs of variables in L. This implementation has two prob-
lems: First, the space required to store the constraint is quadratic in the number
of variables in L; Second, splitting the constraint into small granularity ones may
lose possible propagation opportunities. The second problem has been pointed out
before by other researchers (e.g., [11], [12]).

To solve the space problem, we define all distinct (L) in the following way:

all_distinct(L):-all_distinct(L,[]).

all_distinct([],Left).

all_distinct ([X|Right],Left):-
outof (X,Left,Right),
all_distinct(Right, [X|Left]).

delay outof(X,Left,Right):- dvar(X) : {ins(X)}.
outof (X,Left,Right) :—~true : outof (X,Left),outof (X,Right).

For each variable X, let Left be the list of variables to the left of X and Right be the
list of variables to the right of X. The predicate call outof (X,Left ,Right) holds if
X appears in neither Left nor Right. Instead of generating inequality constraints
between X and all the variables in Left and Right, the call outof (X,Left,Right)
delays until X is instantiated. After X becomes an integer, the calls outof (X,Left)
and outof (X,Right) exclude X from the domains of the variables in Left and
Right. It is not difficult to understand that this implementation only consumes
linear space.

In terms of the propagation ability, the second implementation is the same as
the first one. In some systems, consistency checks are done to detect failure as early
as possible. It is very easy to introduce consistency checks into the implementation.
To do so, we only need to define outof (X,Left,Right) as follows:

delay outof(X,Left,Right):- dvar(X) : {dom(X)},
consistency_check(X,Left,Right).
outof (X,Left,Right) :-true : outof (X,Left),outof(X,Right).

where consistency_check(X,Left,Right) does the consistency check. There are
many possible algorithms. The one implemented in B-Prolog is as follows: Let n
be the size of the domain of X, and m be the number of variables in Left and
Right whose domains are subsets of that of X. If m + 1 > n, then fails; otherwise,
if m + 1 = n, then for each value v in X’s domain, exclude v from the domains of
all the variables whose domains are not subsets of that of X. The soundness of the



algorithm is obvious: If m 4+ 1 > n, then it is impossible to assign n different values
to m + 1 variables, and if m + 1 = n, then no value in the domain of X can be
assigned to other variables except X and the m variables.

5 Compiling Arithmetic Constraints

In this section, we show that delay-Prolog can serve as an excellent intermediate
language for compiling constraints. For each constraint, the compiler generates a
constraint propagator tailored to the source constraint. We only consider linear
arithmetic constraints.

Definition 1 (Canonical-form) A constraint E1 R Es is said to be in canonical-
form if Ey and Es are expressions in the following form: Ty +1s5+...4+T, where
T:(i = 1,...,n) is either a domain variable or a domain variable proceeded by a
positive coefficient.

For each constraint, the compiler first translates it into a canonical-form and
then generates a constraint propagator for it. It is usually impossible to know the
run-time properties of the variables in an expression at compilation time. A variable
may be a constant, a domain variable, or even a complex expression at execution
time. To invoke the propagator, the variables must be first checked at runtime.
If they are domain variables or integers, then execute the specialized propagator;
otherwise, call the constraint interpreter.

5.1 Compiling low-degree constraints

We first consider how to compile constraints that contains three or less variables.
As unary constraints, i.e., constraints containing only one variable, can be trans-
lated into appropriate primitives on domain variables, we only need to consider
constraints that contains two or three variables.

5.1.1 Compiling constraints into indexicals

We have shown in the previous section how to implement indexical. With indexical,
we can compile constraints in the same way as many other compilers do. Consider,
for example, the constraint X #= Y+Z. This constraint is replaced by the following
three indexicals:

'V in V4V (X,Y,Z),
'V in V-V (Y,X,Z),
'V in V-V’ (Z,X,Y).

This algorithm has both advantages and disadvantages. On one hand, indexicals
themselves are specialized code that contains no redundancy. For example, when a
bound of X is updated, the indexicals ’V in V-V’ (Y,X,Z) and ’V in V-V’ (Z,X,Y)
will be triggered but the indexical ’V in V+V’(X,Y,Z) will not be triggered. On
the other hand, the granularity of indexicals is very small and the cost for executing
them is usually high because space is required for storing the constraints and the
execution context, i.e., some of the registers of the abstract machine, has to be
switched frequently.



5.1.2 Compiling constraints into delay predicates

Another algorithm is to compile each constraint into one delay predicate without
splitting it into smaller pieces. The delay predicate contains clauses for different
modes of the constraints, starting from the mode where all the variables are free to
the mode where all the variables are instantiated. The delay predicates for binary
constraints (i.e., constraints having two variables) look like:

delay p(X,Y,C):-dvar(X),dvar(Y) : {Triggers}, Actions.
p(X,Y,C):-dvar(X) : solve the unary constraint over X.
p(X,Y,C):-dvar(Y) : solve the unary constraint over Y.
p(X,Y,C):-true : test the ground constraint.

The contents of Triggers and Actions are determined based on the type of the
constraint.
For example, the constraint X #= Y is compiled into the following predicate:

delay neq(X,Y) :-dvar(X) ,dvar(Y): {ins(X),ins(Y)}.
neq(X,Y) :-dvar(X) : exclude(X,Y).

neq(X,Y) :-dvar(Y) : exclude(Y,X).

neq(X,Y) :-true : X=\=Y.

No action will be taken when both X and Y are uninstantiated. As another example,
consider the equality constraint X #= Y+C. The compiled predicate is as follows:

delay ’X=Y+C’(X,Y,C):-dvar (X) ,dvar(Y)
{min (X) ,max (X) ,min(Y) ,max(Y)},
X in min(Y)+C. .max(Y)+C.
Y in min(X)-C. .max(X)-C.
’X=Y+C’ (X,Y,C) :-dvar(X) : X is Y+C.
’X=Y+C’ (X,Y,C) :-true : Y is X-C.

This predicate is a little different from the skeleton we mentioned above: The last
clause takes care of both of the cases when Y is a variable and when Y is an integer.

Compared with the scheme of compiling constraints into indexicals, this scheme
does not have the small granularity problem. One constraint is compiled into only
one predicate and thus only one frame is enough for storing the constraint. On the
other hand, the code for reducing domains is not as specialized as in indexicals.
Executing X in min(Y)+C. .max(Y)+C is redundant if the constraint is triggered by
changes to X. It is difficult to judge which scheme is better than the other without
doing experimental comparison. In Section 6, we will give the experimental results.

5.2 Compiling high-degree constraints

There are many ways for compiling n-ary constraints where n is greater than 3. The
first algorithm is to compile all constraints in the same way as that for compiling low-
degree constraints: generate a clause for each mode of a constraint. We call this the
explosive examination algorithm. This algorithm has the advantage that specific
code for reducing domains can be generated for different modes of a constraint.
However, for an n-ary constraint, there are 2" clauses in the generated predicate.
This algorithm is obviously not practical for compiling constraints with large n.
The second algorithm is to split an n-nary constraint into a sequence of three-
tuple constraints each of which contains at most three variables. We call this al-
gorithm split algorithm. This algorithm is adopted by many compilers, such as



SICStus-Prolog and clp(FD). It does not have the size-explosion problem of the
explosive examination algorithm and can take advantage of the constraint library
which is usually implemented in low-level languages and are well tuned. In addi-
tion, this algorithm, as described in [2], can restrict value propagation within small
constraints as long as the shared variables do not change. The disadvantages of this
algorithm are that new domain variables have to be introduced and the granularity
of constraints becomes smaller.

The third algorithm is to incrementally simplify n-ary constraints to lower degree
ones. The generated predicate for an n-ary constraint looks like:

delay c(X;,Xs5,...,X,,I):-
dvar(X;),...,dvar(X,)
{Triggers}
reduce domains of Xi,...,X,.
C(Xl,XQ,...,Xn,I):—
integer (X;)
I; is a new constant,
Cl(XQ,...,Xn,Il).

C(Xl,Xz,...,Xn,I)Z—
integer(X,)
I, is a new constant,
Cn(Xl,...,Xn_l,In).

When the reduced constraints c¢;, ¢3, ..., and ¢, have the same structure, then
only one predicate is adequate to define the propagation procedure for them. The
simplification process is repeated until the simplified constraints have no more than
three variables. We call this algorithm incremental simplification algorithm. This
algorithm has the advantage that specific code is used to reduce domains. The
disadvantages are that: there are a lot of argument passing involved in the execution,
and the compiled code takes at least O(n®) space and thus cannot be applied to
large constraints.
The fourth algorithm is to compile an n-ary constraint into:

delay c(X1,X2,...,Xn):-

(dvar(X1) ;dvar(X2);...;dvar(Xn))
{Triggers},
reduce domains of X1,...,Xn.

c(X1,X2,...,Xn) :-true : do the test.

The constraint is delayed until it becomes ground. We call this wait algorithm. This
algorithm is simple and generates linear-size code. However, the code for reducing
domains does not take the modes of constraints into account and is thus inefficient.

In the current implementation of delaying, no constraint can be delayed after it
becomes ground. In other words, ground constraints will possibly become garbage
to be collected by the garbage collector. By taking advantage of this feature, we
can simplify the predicate to:

delay c(X1,X2,...,Xn):-
true : {Triggers},
reduce domains of X1,...,Xn.

It does not test the instantiation state of the constraint, but relies on the system to
do the test.

10



Table 1: Comparison of four compilation algorithms (SPARC-2, milliseconds)

| Program | Wait |  Splitl |  Split2 | Simplify |
magic4 | 33 (1) | 83(2.52) [ 66 (2.00) [ 33 (1.00)
eql0 | 100 (1) | 700 (7.00) | 665 (6.65) | 116 (1.16)
eq20 | 256 (1) | 1466 (5.73) | 1950 (7.61) | 333 (1.30)
crypta | 83 (1) | 300 (3.61) | 300 (3.61) | 83 (1.00)
alpha-ff | 167 (1) | 400 (2.40) | 483 (2.89) | 200 (1.20)

6 Experimental Results

All the algorithms described in this paper have been implemented in B-Prolog. In
this section, we first compare the performance of the four compilation algorithms
and then compare the best one with other three CLP(FD) systems.

6.1 Comparing different compilation algorithms

Table 1 compares the execution time (on a SPARC-2) of the code generated by
the four compilation algorithms: Wait is the algorithm that delays constraints un-
til they become ground; Split is the algorithm that splits n-ary constraints into
three-tuple ones; and Simplify is the algorithm that incrementally simplifies n-
ary constraints into lower degree ones. For Split, the two algorithms for compiling
small constraints are tested: Splitl compiles constraints into indexicals and Split2
compiles constraints into delay predicates. Each program was run five times and
the minimal time was taken. There is no big difference between Split1 and Split2.
Based on the results, we can rank the algorithms as follows:

Wait > Simplify > Split

The Wait algorithm is the best. The generated code by Wait is 2 to 7 times as fast
as that generated by the Split algorithm.

The cost of executing a constraint program comes mainly from three sources:
delay-condition tests, domain reduction, and context switching. The Wait algorithm
is the best in terms of the costs of delay-condition tests and context switching, but
the worst in terms of the cost for domain reduction. The Split algorithm is the
best in terms of the cost for reducing domains because value propagation can be
restricted to small constraints as long as the temporary variables that connect them
with others do not change. Nevertheless, the Split algorithm is the worst in terms
of the cost for context switching. For an n-ary constraint, a change to one variable
in it may trigger as many as n — 1 three-tuple constraints in the worst case. The
Simplify algorithm is better than Wait in terms of the cost for reducing domains,
but has to pay the cost for passing arguments.

In B-Prolog, all propagation procedures are encoded in Prolog which are com-
piled to byte code that is interpreted by an emulator. In many systems, propagation
procedures for small granularity constraints are written directly in C and are well
tuned. If small constraints are handled in the same way, then the results for the
Split algorithm will certainly become better. However, the same thing can be done
to the Wait and Simplify algorithms. We have noticed that the code for reducing
domains involves a lot of arithmetic computations. If it is compiled into C, then a

11



Table 2: Comparison of four systems (SPARC-2)

Program | BP | SICS [  clp(FD) | Eclipse |
magicd 33 (1) 50 (1.52) 45 (1.36) 233 (7.06)
eq-10 100 (1) 120 (1.80) 80 (0.80) 416 (4.16)
eq-20 256 (1) 200 (0.78) 120 (0.50) 867 (3.39)
crypta 83 (1) 110 (1.33) 80 (0.96) 366 (4.41)
alpha | 24,550 (1) | 34,600 (1.41) | 8,045 (0.33) | 201,433 (8.21)

queens-16 914 (1) | 2,290 (2.50) | 1,553 (1.70) | 12,084 (13.22)

great speed-up is expectable because the overhead of interpreting byte code is gone
and the data involved in the computation can be untagged.

Through this experiment, we found that the Wait algorithm should be chosen.
As a side result, we found that compiling constraints into small granularity ones is
not a good idea.

6.2 Comparing B-Prolog with three other constraint systems

Table 2 compares the CPU times required to execute the benchmark programs by
four systems: B-Prolog[14] version 3.0 (BP), SICStus-Prolog[11] version 3.0 #6
(SICS), clp(FD)[4] version 2.21, and Eclipse [6] version 3.5.2. For all the programs,
variables are instantiated in the given order from left to right.

The constraints in queens-16 are compiled by hand into efficient forms for
running in BP, SICS, and clp(FD). Therefore, this comparison is a little unfare to
Eclipse. On average, c1p(FD) is the fastest and Eclipse is the slowest system. BP
and SICS lie in between, but BP is a little faster than SICS.

The systems compared are very different. clp(FD) compiles programs into C,
SICS compiles programs into native code, and BP and Eclipse are emulated. In
addition, Eclipse uses a general data structure, called meta-terms, to represent
domain variables, while the other three systems use a special data structure for
representing domain variables.

The results are very encouraging for us. Except for eq-20 and alpha, BP has a
comparable performance with c1p(FD), the fastest finite-domain constraint solver
available now. If constraint propagation procedures are translated into C as done
in c1p(FD), then a great speed-up is expectable because the overhead of byte-code
interpretation and many low-level operations such as tagging and untagging can be
eliminated. Therefore, delay-Prolog is not only a good programming language for
programming constraint propagation, but also an efficient intermediate language
for compiling constraints.

7 Improvements
As we mentioned before, the cost of executing a constraint program comes from

mainly three sources: delay-condition tests, domain reduction, and context switch-
ing. All these three operations can be optimized.
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7.1 Improving domain reduction

The code for reducing domains can become much faster if value propagation is done
only when necessary. By profiling program executions of the benchmark programs,
we found that more than 80% of the primitives of X in L. .U are fruitless because
the range L. .U is bigger than or equal to the domain of X. To avoid executing this
kind of useless primitives, we can do similar things done in the indexical compila-
tion algorithm and split constraints into three-tuple ones by introducing temporary
variables and connect these constraints into a loop chain. Aslong as the connecting
variable changes, the code for the next three-tuple constraint in the chain will be
executed. For each triggering variable in the constraint, there is a re-entry point
that indicates the code of the three-tuple constraint to be executed first when the
constraint is triggered by the variable. When registering the constraint into the
corresponding constraint list of the triggering variable, we also register the re-entry
point.

Let us take the constraint X+Y+Z #= U as an example to illustrate the idea. The
constraint is split into two small ones: X+Y #= T and T+Z #= U. Notice here that the
temporary variable T is not a domain variable. No event happens when temporary
variables are updated, and for a temporary variable, we only need to store its low
and upper bounds. The code for reducing domains looks like:

X_updated: Y in min(T)-max(X)..max(T)-min(X), %X+Y = T

T in min(X)+min(Y) . .max(X)+max(Y),

if (updated(T)) goto T1l_updated else continue,
Y_updated: X in min(T)-max(Y)..max(T)-min(Y),

T in min(X)+min(Y) ..max(X)+max(Y),

if (updated(T)) goto T1l_updated else continue,
T2_updated:X in min(T)-max(Y)..max(T)-min(Y),

Y in min(T)-max(X)..max(T)-min(X),

continue,
T1_updated:U in min(T)+min(Z)..max(T)+max(Z), %T+Z = U

Z in min(U)-max(T) . .max(U)-min(T),

continue,
Z_updated: U in min(T)+min(Z)..max(T)+max(Z),

T in min(U)-max(Z) . .max(U)-min(Z),

if (updated(T)) goto T2_updated else continue,
U_updated: T in min(U)-max(Z)..max(U)-min(Z),

Z in min(U)-max(T) . .max(U)-min(T),

if (updated(T)) goto T2_updated else continue.

For each variable V in the original constraint, the label V_updated indicates the
re-entry point from where the execution starts when the constraint is triggered by
an update of V. For each temporary variable T, there are two labels that indicate,
respectively, the two points to go when the two occurrences of the temporary vari-
able is updated. The code has the advantages of indixicals but does not have the
problems because no new domain variables are introduced and the granularity of
constraints never become smaller.

7.2 Increasing the granularity of constraints

Increasing the granularity of constraints is an important technique for reducing
the number of delay-condition tests and context switching. To do so, we combine
multiple constraints and compile them into a bigger propagation procedure.
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For several constraints, if they share the same set of variables, then combing
them is quite straightforward. Consider, for example, the three constraints taken
from the queens program:

X #\= Y, X+C #\= Y, X-C #\= Y

where C is an integer, and X and Y are domain variables. As the constraints share the
same set of variables, they can be compiled as a whole into the following propagation
procedure:

delay noattack(X,Y,C):-dvar(X),dvar(Y) : {ins(X),ins(Y)}.
noattack(X,Y,C) :-dvar(X)

exclude(X,Y), exclude(X,Y-C), exclude(X,Y+C).
noattack(X,Y,C) :-dvar(Y)

exclude(Y,X), exclude(Y,X-C), exclude(Y,X+C).
noattack(X,Y,C) :-X=\=Y, X+C=\=Y,X-C=\=Y.

When X or Y is instantiated, context switching is done only once rather than three
times, and thus the delay-condition tests against X and Y need not be done separately
three times.

For constraints that do not have the same set of variables but share some vari-
ables, we can also increase the granularity by combining them. Let X, Y, and
Z be three disjoint sets of variables. Suppose there are two constraints ¢;(X,Y)
and c2(X,Z). We generate three propagation procedures, one called p(X,Y) for
c1 which is triggered only when some change happens to variables in Y, one called
q(X, Z) for ¢, which is triggered only when some change happens to variables in Z,
and the third called pg(X,Y, Z) for both ¢; and ¢y which is triggered only when
some shared variable in X changes. The two constraints is translated into the
following three calls:

p(X,Y),q(X,Z),p4(X,Y,Z)
The procedure p(X,Y) is defined as follows:

delay p(X,Y) :-
delay condition tests over variables in Y :
declare variables in Y as triggering variables,

reduce domains of the variables in X and Y.

The procedure ¢(X, Z) is similar, but only variables in 7 become triggering vari-
ables. The procedure pg(X,Y, Z) is defined as follows:

delay pq(X,Y,Z) :-
delay condition tests over variables in X :
declare variables in X as triggering variables,
reduce domains of the variables in Y, 7, and Z.

When a shared variable in X changes, only the propagator pq will be triggered.
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8 Concluding Remarks

we presented a high-level intermediate language, called delay-Prolog, for program-
ming constraint propagation and compiling finite-domain constraints. Delay-Prolog
has a much stronger description power than indexical and opens new ways to com-
piling constraints. We tried four compilation algorithms and found that the wait
algorithm is the best algorithm and that compiling constraints into indexicals has
the worst performance. We also showed that B-Prolog, which employs the wait
compilation algorithm, is already comparable in performance with the fastest finite-
domain constraint systems available now. We further proposed two techniques for
improving the compilation algorithm. A great speed-up of the generated code is
expected after the techniques are implemented.
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