
Social Software
Rohit Parikh

City University of New York
Departments of Computer Science, Mathematics and Philosophy

CUNY Graduate Center
365 Fifth Avenue

New York, NY 100161

Abstract

We suggest that the issue of constructing and verifying social procedures, which
we suggestively call social software, be pursued as systematically as computer soft-
ware is pursued by computer scientists. Certain complications do arise with so-
cial software which do not arise with computer software, but the similarities are
nonetheless strong, and tools already exist which would enable us to start work on
this important project. We give a variety of suggestive examples and indicate some
theoretical work which already exists.

I send someone shopping. I give him a slip marked “five red apples”. He takes
the slip to the shopkeeper who opens a drawer marked “apples”; then he looks
up the word “red” in a table and finds a colour sample opposite it; then he
says the series of cardinal numbers – I assume he knows them by heart – up
to the word “five” and for each number he takes an apple of the same colour
as the sample out of the drawer.

“But what is the “meaning of the word ‘five’?” No such thing was in question
here, only how the word “five” is used.

In this passage from the Philosophical Investigations Wittgenstein is describing a social
algorithm, albeit a simple one. He also introduces the notion of a data type (though
not by that name) which is now quite important in computer algorithms. The words
“apple”, “red”, “five” belong to different data types and are used in very different ways.
This variety forms a sharp contrast to the uniformity of objects in set theory, where
everything, natural numbers, reals, etc. are constructed from the same basic material.
But it does form a parallel to the variety we find in computer algorithms. In computer
algorithms we also find integers, stacks, queues, and pointers which play different sorts of
roles.

Wittgenstein’s purpose in his example is to wean us away from the notion that there is
just one kind of thing – meaning – which explains all different kinds of words, and he uses
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his language games as a way of re-iterating the primacy of use as well as the variety of
ways in which words are used.

But something important in human practices is left out by Wittgenstein, namely why do
these people act as they do? Perhaps we can put aside that question with the shopkeeper
as we are ourselves used to shopping, but the issue arises again with Wittgenstein’s exam-
ple of the builder and his assistant. Wittgenstein’s builder uses various words like “block”,
“pillar”, etc., and his assistant brings the corresponding objects. Why the assistant does
this is not a question which is raised. Perhaps the assistant is paid, perhaps he is under
some threat, or perhaps he worships the builder. It does not matter for Wittgenstein.
But of course for any genuine theory of social software it does matter. There is not much
point in designing a social algorithm for some purpose unless one has provided for people
to want to carry out that algorithm.

Perhaps the point for Wittgenstein is that utility or purpose need not matter for an
explanation of meaning. But the issue is important for Grice. Grice wants to explain why
logical symbols like “or” or “implies” as used in natural language seem to have different
properties from their formal counterparts ∨ and →. In explaining this difference, Grice
introduces the notion of implicature, a notion which is primarily pragmatic.

For instance, If my car is out of gas and you say that there is a gasoline station around
the corner, you have implicated, but not said, that the gasoline station is open. If you
say that someone for whom I am looking is in the south of France, you have not said, but
implicated that you do not know more precisely. The implicature comes from the fact
that you have some idea of my needs in asking some question and your answer is expected
to be as helpful as it can be, given your state of information.2

Grice’s point is that language is a human activity where people help each other to per-
form tasks. In a conversation, the help takes the form of relevant information, and the
consequent requirements of relevance and helpfulness go beyond the requirement of sim-
ple truth. In as much as language is performing such a utilitarian role, Grice’s maxims
like, “Avoid obscurity”, “Avoid ambiguity”, etc., make sense. Grice sees the parties in a
conversation to be taking part in a game of co-operation, and explains his maxims and
their linguistic impact as coming out of the need to co-operate.

The co-operation can take odd forms at times. A butler entering a hotel room to clean
it encounters a woman guest coming out of the shower. “Excuse me, sir”, he says and
withdraws. Here he is implicating that he did not see the guest clearly, thereby saving her
embarrassment. But this kind of implicature is different from the usual one, as there is
no common knowledge here, e.g. of the fact that the guest is female, nor is there common
belief that the guest is male. What we have instead is helpful deception.

2One difference between the implicature of an uttered sentence and its meaning is that the implicature
is normally cancellable. For instance you could perfectly well say, in the first case, “There is a gasoline
station around the corner, but I do not know if it is open”, or in the second, “He is in the south of France,
and actually I know more precisely, but am not at liberty to tell anyone”.
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Grice has brought in the notion of utility which was absent from Wittgenstein’s examples,
but of course he does not study utilities formally as game theorists do. Grice’s purpose is
to sketch a rough outline of a theory and leave the details to the future. Moreover, Grice
is not concerned with buying and selling, activities both like and unlike conversation,
which game theorists are interested in.

Since my purpose here is to study social software in general, I shall not confine myself
to language, nor to buying and selling, but will look at the nature of social software in
very general terms. The first task is to raise the twin questions of why such a study is
important and why it is feasible.

——————-

It is quite usual these days for an off the shelf PC to be able to carry out tens of millions
of multiplications every second. By contrast, it took New York City around ten years
to contemplate the Westway project, study it, and finally not carry it out. There is a
striking contrast between the efficiency with which purely computational processes are
carried out, and the inefficiency of the social processes which are intended to be, and
sometimes actually are, to the benefit of all of us.

There are many reasons why social procedures do not always succeed or when they do, are
cumbersome and give rise to unintended ill effects. This fact may seem to be part of the
domain. People just aren’t as tidy and well behaved as computers, they are willful and
forgetful and selfish. Moreover, different people have different ideas of what is the best
thing to do in any given situation so that conflicts can arise even between well meaning
individuals.

Given these difficulties it may seem that we should accept whatever we can get in terms
of the relative success of the social procedures we do have.3

I want to argue that even though all the difficulties mentioned are real and no doubt we
shall never have social procedures which work ideally, we can nonetheless have a theory
of social procedures which is analogous to the formal theories for computer algorithms
which exist in computer science. I am referring here to a whole group of theories, some
of which have come into existence during the early seventies and some are newer.

These are
a) the theories of program correctness which seek to prove that computer programs achieve
the purpose (called the specification) which they are intended to achieve.
b) the analysis of programs which seeks to analyse the efficiency of programs in terms of
resources utilized and the amount of time taken and
c) Concurrency theory, and Distributed computing which analyze the behaviour of sev-
eral computing processes acting together and which must ensure that different processes

3I shall use the terms algorithm, game, procedure, more or less equivalently.
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sharing some resources do not frustrate each others’ purposes and do share information so
that when a process needs to act, it knows the facts that it needs to decide which action
to take.

Can there be analogous theories in the social domain – theories which tell us how to
construct a social procedure which brings about a desired result in an efficient and reliable
way, at least when such a thing is possible at all? I shall give some examples and partial
results which suggest that such a thing may be possible; and surely no one would deny
that were it possible, it would have tremendous potential for good. It might even have
theoretical interest if we are able to formulate something analogous to the Church-Turing
thesis as to what is socially achievable and what is not.

It so happens that we do have an analogue to one of these three concerns, namely Game
theory is an analogue both to concurrency theory when we consider agents acting concur-
rently and in ignorance of each others’ moves, and to distributed computing, since we also
consider situations where the agents are acting in turn, in full knowledge of each others’
moves.

Surely it is because of these similarities that the issue of knowledge is important in both
distributed computing and in game theory, and the communities in both areas have par-
ticipated in the TARK conferences which began in 1986 and have continued to this day.

In proving correctness, one approach has been Game logic. Early work on Game logic
in the early 80’s [Pa83,Pa85] showed how the correctness of the (Banach-Knaster last
dimisher) cake cutting algorithm could be proved formally. Here the correctness consists
of showing that each player has a winning strategy and can get a fair portion of the cake
regardless of the actions of the other players. This work has been followed up recently,
especially by Marc Pauly, who has constructed a formal logic to reason with coalitions.

But there is not yet a general formal theory to prove to us that social procedures achieve
the desired effect. Since the structure of games in terms of simpler subgames is not ana-
lyzed very much in Economics, there is no genuine analogue to the analysis of algorithms.
Games like the centipede game do have a structure, but it is rather simple and there is no
general theory of how complex games can be constructed from simpler ones. There are of
course certain special cases. For instance the Prisoners’ Dilemma which is problematic is
often replaced by the repeated prisoners’ dilemma. Thus we do have iteration, a common
construct in program development. But other constructs, and even a systematic study of
iteration are lacking.

Before we try to extend ordinary algorithmic intuitions to the social setting we need to
recall that unlike computers, people do not obey orders, or at least not reliably. So in order
for a complex procedure to be carried out, people have to be given inducements to take
part in such a procedure. Game theory, whatever its limitations, allows us to formalize
the notion of the incentive to do something rather than something else. Roughly speaking,
if an agent has a choice among several actions, we would expect that the agent will carry
out that (pure) action which the agent thinks will bring the maximal benefit (utility) to
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the agent. Since the benefit may depend on the actions of other agents, the agent also
may need to have some theory of their probable actions which may be backed up by some
theory of what they want and what they think about the probable actions of yet other
agents.4 It is quite likely that crowd actions like a riot or a round of applause happen
when the beliefs of the agents about the actions of other agents suddenly change. If I
think that a sonata has ended but am not sure, I will hesitate to applaud unless I see
and hear others clapping. When they do clap, I am safe from ridicule and I will join in.
Such sudden movements where perception changes arise also with stocks, and when large
enough, a crash in the stock market can occur.

Thus a successful social algorithm will depend on creating incentives for all agents to act
in a certain way and also on creating certain perceptions which back up the actions of
agents by making them think that the other agents will act in a suitable way. For example
if I am a stand up comic and I want the audience to laugh at certain points, I may plant
some friends in the audience whose function it is to laugh on cue. Once my friends laugh,
others in the audience will feel that the joke is a safe one and not in such bad taste that
no decent person would laugh. The facts that my friends are laughing will then cause
general laughter, with many or most joining in.

In (Chwe 2001) Michael Chwe discusses the role which common knowledge plays in cultural
rituals giving a variety of rich examples. Examples include patterns in advertising, the
role played by royal processions, and the shape of the theatre in which plays were staged
in Greece (conducive to common knowledge). Common knowledge, or something close to
it, can be decisive because an agent who feels that there is safety in numbers may act in
concert in ways in which the agent may be reluctant to act alone.

In the movie The Messenger, after Joan of Arc first arrives to meet the Dauphin, she
is introduced to an archer who will find out what her needs are. They are, a sword, a
war horse, a suit of armor, and a banner. The function of the first three is clear. But
what about the banner? Its function is largely informational. During a battle, the banner
creates common knowledge among the soldiers of the fact that Joan of Arc is alive, and
moreover, where she is. The first creates in them the resolve to fight on, and the second
serves to co-ordinate their actions.5

To sharpen our intuitions, I shall start with some more specific examples. Unlike the
examples used in game theory textbooks, most of these will be real life or close to real
life examples to indicate that the theory has potential applications.

One way functions: let me illustrate with an example. Suppose I give you the name of
someone who is listed in the telephone book and ask for her phone number. Then you can
find it easily by just looking up the name. Suppose, however that I give you someone’s
number and ask you for the name. You can also find that, but essentially only by looking

4See the paper by Brandenburger and Keisler for a possible paradox which can arise here.
5The ubiquitousness of the US flag in the aftermath of the WTC bombing seems to have a purely

emotional role, without the informational aspects of Joan’s banner.
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through the entire directory. There is no easy procedure. So we have a function f from
names to numbers which is easy to ‘compute’ and whose inverse g from numbers to names,
while also computable, is cumbersome and time consuming. The telephone directory is a
one-way function.

Now for our actual example:

At the American Philosophical Association (APA) meeting in New York (Dec 2000), we
had an example of a one way function at work, in the wrong direction. The program
booklet gave, for each talk and session the name of the room in which the talk or session
was taking place. Thus for example many logic sessions were in Gramercy. The program
booklet also gave a floor map for each of the four floors of the Hilton hotel where the
conference was taking place. Thus given the program and the map, one could find out in
theory where a given talk was. However, the maps constituted a one-way function in the
wrong direction. What they had was the sort of information, ‘what is the name of the
room at the north east corner of the third floor?’, and not ‘What is the location of the
room with a given name?’ In other words, given a location, the maps gave you the name
of the room at that location. The program itself, on the other hand, gave you the name
of the room where a particular talk was taking place. Thus we had two functions, the
booklet gave you a function f : events −→ room names. The maps gave you a function
g : locations −→ room names. Clearly one could not compose them without inverting
the function g. Hence there was no easy way to find the location from the name of the
room. You could find the location using the maps, but only by looking through all the
floor maps.

It would have been easy to construct the program booklet in such a way that one could
use it to go directly to the room where a talk was being held, without going through four
maps. Instead of saying only that the Logic session was in Gramercy suite, the booklet
could have told you that it was in Gramercy, on the south side of the second floor. A
great deal of time could have been saved for people running around, looking in vain for the
room of their session and many of whom missed the first few minutes of the talk. What
the APA booklet did was like giving you a phone book which allowed you to find names
from numbers, when what you needed was one which gave you numbers from names.6

This example has some interest since there are no game theoretic issues here, no one wants
someone else to go to the wrong room for some talk (I hope). It is merely an issue of
algorithmic efficiency.

The Carousel example: Many of us prefer to carry our luggage on board when taking
a flight. However, sometimes we have, for various reasons, to check our baggage. Then
on arrival one has to wait at a moving carousel which brings all pieces of luggage one
after another. If we are lucky, ours is among these. However, a curious phenomenon takes

6Some maps do indeed give you a key whose effect is to diminish the wrong way function problem.
Thus a street map may be divided into squares and there may be a key which, given the street name,
gives you the square in which the street lies. But these keys still tend to leave a lot of searching to be
done.
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place which resembles the problems of the Prisoners’ Dilemma, or The Tragedy of the
Commons.7 One gets a better view of the approaching suitcases if one goes closer to the
carousel. But by doing this, one inevitably blocks the view of one’s neighbour who then
also proceeds forward towards the carousel. When this process is finished, all passengers
are right at the carousel, blocking each other’s view, and every one is worse off than if no
one had walked up to the carousel.

However, there is a difference between the carousel problem and the other two problems,
which makes the carousel problem a social programming problem. In the classic prisoner’s
dilemma for instance, the jailer hopes to use the game theoretic pressure on both prisoners
so as to get them to confess, send them to prison, and win a promotion. With the
carousel, the airline has no such malicious motive. Indeed their profits will be greater if
the passengers find their flight experience less unpleasant, and are motivated to use this
airline again.

And the airline does have a solution to the carousel problem. All they need to do is to
paint a line about 18 inches from the carousel and post signs saying ‘Do not cross the line
until you actually see your own suitcase approaching’. Then social pressure would keep
people from crossing the line unnecessarily, and everyone would enjoy a better view of
the oncoming luggage. Subways routinely do something similar at platforms to prevent
passengers from falling onto the tracks or being hit by an incoming train. There is an
orange line about 18 inches from the platform edge which you are asked not to cross until
the train is in the station and has come to a complete stop. Surely many accidents are
avoided this way, and the same method would work for baggage carousels. But somehow,
since the carousel problem is not life threatening, no one has thought of this simple
solution.

In Chopra and Parikh (1999) the problem of overbooking by airlines is considered. Airlines
typically overbook so that the set of promises made by the airline is inconsistent with the
physical fact of the plane’s capacity. An inconsistency tolerant logic is then needed to
handle the airline’s verbal behaviour (which may be described by its customers as lies!).
However, algorithmically, the airline can be successful if the number of passengers actually
claiming seats is less that the capacity of the plane or exceeds it only slightly.

Resource sharing: The Sante Fe bar problem, first discussed by Brian Arthur (1994)
(see also Greenwald, Mishra and Parikh 1998) goes as follows. There is a certain bar in
Santa Fe where Irish music is offered on some nights. There are (say) a hundred people
who would like to go, but the bar has room only for 60. People prefer to go if the bar
is not crowded, but prefer not to go if it is. Now suppose that people have (the same)
data on previous weeks, how many people went etc. And they want some theory which
utilizes this data to tell them whether the bar will be crowded this week. There cannot
be a correct theory because if there were, surely they ought to believe it, but then if the

7The tragedy of the commons arises when several families from a village share the same pasture for
grazing their cows. Since no one has an incentive to limit the size of his herd, overgrazing takes place
and the grass dies.
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theory said that the bar would be crowded, they would all not go and the bar would not
be crowded. If the theory said that the bar would not be crowded, they would all go and
the bar would be crowded. This is reminiscent of the Russell set R which has the property
that R ∈ R iff R 6∈ R.

Greenwald et al discuss several kinds of equilibria and learning bahaviours which can
arise when prospective bar-goers try to balance their desire to go, with their information
about the attendance in previous weeks, together with the knowledge that the bar could
very well be crowded on just the day they choose to go. Ironically, the desire of the
bar-goers to maximize their own pleasure conflicts with the most efficient use of the bar
itself and one device suggested by Greenwald et al is a system of taxes imposed on the
bar-goers, the proceeds of which are shared among those who do not go. A simulation
shows that such a system works against (destructive) individual selfishnes and maximizes
total (social) satisfaction.

Such problems arise in other contexts when the demand exceeds the supply. The free
market solution is to let prices rise to diminish demand. For instance the bar could raise
its prices high enough to drive out 40 potential customers. But many consider this sort
of solution to be unfair. Another solution is rationing, but that involves some big brother
making decisions and is too inflexible. What if Jack wants more than his share of coffee
but is willing to take less than his fair share of sugar, whereas with Jill it is the other way
around? Rationing may leave them both unsatisfied unless Jack and Jill happen to run
into each other.

Another similar puzzle arises when a highway which can handle 10,000 cars per hour is
shut down for roadwork. There are two older roads, A and B, each of which can handle
5,500 cars. If we put a detour sign at the entrance to the highway, what should it say? If
it says to take the road A, it would be jammed. If it says to take the road B, that would
also be jammed! Could we have a sign saying, “Take route A if you are a Democrat and
route B if you are a Republican”? 8 Resource allocation and sharing require information
transfer and some sort of utility pressure and creative solutions are needed to bring that
about.

For a practical case of this, after the World Trade Center disaster in New York City there
were calls for people to give blood. However, many more people responded than were
needed and there were long lines of donors at the hospitals. If ten thousand pints of blood
are needed and an appeal is made to a socially conscious city with a population of eight
million, then such a problem is bound to arise. But if no appeal is made then of course
there would be a shortage of blood. So again the same sort of problem arises as we saw
in the Santa Fe bar problem. A person who goes to give blood when her blood is needed
is very happy to help whereas a person who goes to find a surfeit of donors is going to be
frustrated.

8Marc Pauly points out that this could lead to accidents involving Buchanan and Nader’s third party
followers!
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The two horsemen: Suppose we want to find out which of two horses is faster. This is
easy, we race them against each other. The horse which reaches the goal first is the faster
horse. And surely this method should also tell us which horse is slower, it is the other
one. However, there is a complication which will be instructive.

Two horsemen are on a forest path chatting about something. A passerby M , the mischief
maker, comes along and having plenty of time and a desire for amusement, suggests that
they race against each other to a tree a short distance away and he will give a prize of
$100. However, there is an interesting twist. He will give the $100 to the owner of the
slower horse. Let us call the two horsemen Bill and Joe. Joe’s horse can go at 35 miles
per hour, whereas Bill’s horse can only go 30 miles per hour. Since Bill has the slower
horse, he should get the $100.

The two horsemen start, but soon realize that there is a problem. Each one is trying to
go slower than the other and it is obvious that the race is not going to finish. There is a
broad smile on the canny passerby’s face as he sees that he is having some amusement at
no cost. Figure I, below, explains the difficulty. Here Bill is the row player and Joe is the
column player. Each horseman can make his horse go at any speed upto its maximum.
But he has no reason to use the maximum. And in figure I, the left columns are dominant
(yield a better payoff) for Joe and the top rows are dominant for Bill. Thus they end up
in the top left hand corner, with both horses going at 0 miles per hour.
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Figure I

However, along comes another passerby, let us call her S, the problem solver, and the
situation is explained to her. She turns out to have a clever solution. She advises the two
men to switch horses. Now each man has an incentive to go fast, because by making his
competitor’s horse go faster, he is helping his own horse to win! Figure II shows how the

9



dominant strategies have changed. Now Joe (playing row) is better off to the bottom,
and Bill playing column is better off to the right – they are both urging the horse they
are riding (their opponents’ horse) as fast as the horse can go. Thus they end up in the
bottom right corner of figure II. Joe’s horse, ridden by Bill comes first and Bill gets the
$100 as he should.
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Figure II

Of course, if the first passerby had really only wanted to reward the slower horse (or its
owner) he could have done this without the horses being switched and for a little extra
money. He could have kept quiet about the $100 and offered a prize of $10 to the owner
of the faster horse. Then when the race was over, he would hand over the $10 to Joe and
$100 to Bill. Here the effect would be achieved by hiding from the two horsemen what
their best strategy was, and to fool them into thinking that some other action was in fact
better.

While the problem of finding the faster horse, and that of finding the slower, are equivalent
algorithmically, they are not equivalent game theoretically when the men ride their own
horses. The equivalence is restored when the two men switch horses.

For a practical analogue of the two horses example, consider the issue of grades and letters
of recommendation. Suppose that Prof. Meyer is writing a letter of recommendation for
his student Maria and Prof. Shankar is writing one for his student Peter. Both believe
that their respective students are good, but only good. Not very good, not excellent, just
good. Both also know that only one student can get the job or scholarship. Under this
circumstance, it is clear that both of the advisers are best off writing letters saying that
their respective student is excellent. This is strategic behaviour in a domain familiar to
all of us. Sometimes employers will try to counter this by appealing to third parties for an
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evaluation, but the close knowledge that the two advisers have of their advisees cannot be
discovered very easily. And unfortunately, there is no obvious analogue to the strategem
of exchanging horses.

Shankar’s choices

Meyer’s

choices
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NJ , NJ

NJ , NJ

NJ , J

NJ , J

NJ , J

J , NJ

J , NJJ , NJE
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G
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Figure III

In Figure III above, J represents job and NJ represents no job for the student. Then
Meyer’s lower strategies dominate his upper ones. And for Shankar, his rightward strate-
gies dominate the strategies to the left. Hence, with each playing his dominant strategies,
they end up in the lower right hand corner with neither student getting the job.

Bills in restaurants: When we go to a restaurant the waiter brings a menu. We order,
then the food comes and after we eat, we pay. All of this is a social ritual which ends
with the waiter computing a charge and with us paying for the total cost including tax
and tip.

But what is the function of this ritual of paying? Or what is the specification which this
algorithm fulfills? Clearly the function is to make sure that we get the food that we want,
and that the restaurant manages to make enough money to stay in business. These are
the two requirements. The ‘paying for what you ate’ ethic is normally used but is not
essential.

For example, during a lunch buffet, Joe eats 2 pounds of food for which he pays $13.95
plus tax and tip. Bill and Sally together eat 1.8 pounds of food for which they pay $27.90
plus tax and tip. They ate less, but they pay more. If Joe had brought his friend Edna
along and they had shared the 2 pounds of food, the restaurant would not have accepted
a payment of $13.95, which is only for one person. Thus the buffet restaurant is not
charging by the quantity of food consumed but by the number of people eating. The two
methods are not equivalent in detail. A big eater will benefit from a buffet and a frugal
eater will benefit less or will lose out. But as long as the prices are reasonable, both
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may be willing to eat the buffet, and the restaurant will make enough money to stay in
business.9

Dim Sum restaurants often use quite another method. The customers select what they
want out of carts which constantly go by. There is no formal menu as such, but dishes
with different prices are kept in plates of different colors. Thus all blue plates might have
contained dishes costing $4 and all green ones might have contained dishes costing $3. At
the end of the meal, if there are six blue and eight green plates left on the table, then the
cost of the meal is $24 + $24 or $48.

Thus the same specifications, satisfied customers, solvent restaurant, can be fulfilled by
different procedures. Once we know what we want in a certain situation, we can then
proceed to try to work out a procedure which fulfills our desires.

Vagueness and social algorithms: in the Philosophical Investigations, (paragraph 88)
Wittgenstein asks:

If I tell someone “Stand roughly there” – may not this explanation work
perfectly? And cannot every other one fail too?

But isn’t it an inexact explanation? – Yes; why shouldn’t we call it “inex-
act”? Only let us understand what “inexact” means. For it does not mean
“unusable”.

I would like to suggest that a degree of exactness is sufficient if it is adequate for the
particular social algorithm. For example suppose a group of people going for a picnic
are supposed to meet at Grand Central at 9 AM. It may not matter if one of them is
a minute late. But if they are planning to take the 9:10 and that person is 11 minutes
late, they will miss the train and the algorithm will break down. If that person is only 5
minutes late, they will make the train, but only through someone else having to suffer the
aggravation of buying the late person’s ticket for him. It is clear that there is no sharp
distinction here of success vs. failure of the algorithm. Perhaps even if the 9:10 is missed,
there is the 9:40. But the picnic will be shorter.

No feasible algorithm can require perfect exactness. But different algorithms may require
different amounts of exactness, and when one says, “Be here at 9 AM sharp!”, one is not
asking for a degree of exactness which is perfect, but for a degree which is more than
customary.

Vague predicates also suffer from the Sorites kind of difficulties, first mentioned by Eubu-
lides. They do not have precise extensions, and cases where a predicate clearly applies can

9Wittgenstein makes a similar point. “These people – we should say – sell timber by cubic measure –
but are they right in doing so? Wouldn’t it be more correct to sell it by weight – or by the time that it
took to fell the timber – or by the labour of felling measured by the age and strength of the woodsman?”
RFM I-148
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shade gradually into cases where it clearly does not. Social algorithms have to provide
for these difficulties too.

For instance, the color green, which indicates Go in traffic signals can gradually shade
into yellow, which means Slow, which can gradually shade into red, which means Stop. If
traffic signals were allowed to be of various colors, then different observers might disagree
on whether a particular signal was yellow or green. This could lead to accidents. To avoid
this problem we use signals of three fixed colors only. The space of all colors which is
connected and continuous, allows for Sorites type paradoxes. But we replace it by the
space of only three colors, which is immune to such problems (Parikh 94, PPP 2001).

Solomon and Gibbard-Satterthwaite: In his survey paper John Moore (1992) dis-
cusses Solomon’s dilemma (The Old Testament, the first book of kings) and Solomon’s
game theoretic solution. Two women, say Anna and Bess, claim the same child and come
before Solomon to adjudicate. Solomon threatens to cut the child into two and share it
between the two women, at which the real mother protests and expresses willingness to
give the child to the other. Once Solomon realizes who the real mother is, his problem is
solved.

Let us look at this game theoretically. There are two possible states of nature, α in which
Anna is the real mother and β in which Bess is the real mother. Solomon does not know
which is the actual state, but the two women do. Moreover, if we say that there are three
possible decisions (Moore considers four), a for giving the child to Anna, b for giving the
child to Bess and k for killing the child, then the preferences go as follows:

In state α Anna’s preferences are a > b > k. Anna would like her DNA passed on (not
that Solomon thought of this) so that she would prefer the child to be brought up by Bess
than to have it killed. Bess on the other hand merely wishes to experience the pleasures
of parenthood. She dislikes Anna so that she prefers to have the child killed than to have
Anna enjoy it. Thus Bess’ preferences are b > k > a.

In state β, it is the other way around. Anna’s preferences are a > k > b and Bess’
preferences are b > a > k. Thus regardless of the actual state of nature, the real mother
will prefer to give up the child than have it killed whereas the other woman’s preference
will be to have the child killed. Solomon uses this difference of preferences to find out
who the real mother is and gives her the child.

But what if Anna is the real mother and Bess plays strategically, pretending that she too
would give up the child? Then Solomon would be in a dilemma. But Solomon was also
Machiavellian, since he did not reveal to the two women their actual utilities. They did
not know that once they made their choices, Solomon was going to give the child to the
woman who offered to give it up. And so the thought of imitating Anna did not occur to
Bess.

The Gibbard-Satterthwaite theorem (Gibbard 1973, Satterthwaite 1975, Brams and Fish-
burn, to appear, Benoit 1999) deals with similar problems. What they have shown is that
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any social choice function which accepts as input the preference orderings of the agents
(voters), and outputs a social preference ordering for the society, will be vulnerable to
strategic voting. In other words, there will be situations where some voter i will do better
by lying, and giving in as input an ordering which is not her actual ordering, than she
would have if she did give her actual ordering as input.

An example from the recent US election shows this. If a voter’s actual preferences are
Nader, Bush, Gore, Buchanan, in that order, (there were such voters) she would have done
better voting for Bush (not her first choice) than for Nader who was her actual first choice.
However, using such a strategy required that the voter knew how others were voting. In
this case the voter who voted for Bush rather than Nader needed to know in advance that
almost all other voters were for Bush or Gore and that they were not planning to vote
strategically. Perhaps strategic voting can be prevented by simply making polls illegal
and keeping voters in the dark so as to keep them honest! But this is murky territory
and I shall not venture further into it.

Some general considerations: It is time now to consider some general issues which
are raised by these examples.

The examples with the carousel and the horses, do show that a social procedure which
is viable as an algorithm may not be viable when game theoretic considerations come in.
Thus it is in everyone’s interest that visibility be maintained at carousels. It is also in
the two horsemen’s interest that the determination of the slower horse be done speedily.
Non-game theoretic algorithms obviously exist for achieving these two goals. But as we
saw with the horsemen, not every such algorithm may be viable as a game, for the best
thing for a player to do at a game stage, in terms of that player’s current utilities, may
be something different from what the algorithm calls for.

However, transformations of algorithms can sometimes be found so that the action which
the transformed algorithm calls for from some player, turns out to be the same as the
action which is in the interests of the player to perform. And occasionally social pressure,
or possible legal sanctions, can take up some of the slack. Thus social pressure is needed
to keep the passengers from approaching the carousel prematurely. The function of my
proposed orange line is merely to increase the social pressure and to make violation of
the code obvious. In the case of the two horsemen, however, there is no need of social
pressure. What the horsemen should do, namely urge on the horse they are sitting on,
and what they want to do, coincide once the horses are switched.

The designer of the social algorithm may be Machiavellian or honest. A Machiavellian
designer will encourage players to carry out the desired moves by deceiving them as to
the utilities of such moves. The example I gave earlier where the actual payment of $100
is masked by the gambit payment of $10, is of this sort. An honest designer will see to it
that the players are fully informed. Such a strategy is more stable, for the algorithm will
work even if players find out something which was not expected to be known by them.

Proving programs correct:
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Before we consider the problem of proving correctness of games, let us look quickly at an
example of the use of Hoare logic for proving a program correct (Kozen and Tiuryn 1990,
Cousot 1990, Parikh 2001)

Consider the program αg for computing the greatest common divisor gcd(u, v) of two
positive integers u, v. We want this program to have the property

{u > 0, v > 0} αg {x = gcd(u, v)}

This property has three components: the pre-condition u > 0, v > 0, the desired post-
condition {x = gcd(u, v)} and the program αg itself. We want that if we start with two
integers u, v which are both positive, then the program αg when it ends will have set x to
the gcd of u, v. One such program αg, Euclid’s algorithm, is given by

(x := u); (y := v); (while (x 6= y do (if x < y then y := y − x else x := x− y))).

The program sets x to u and y to v respectively, and then repeatedly subtracts the smaller
of x, y from the larger until the two numbers become equal. If u, v are positive integers
then this program terminates with x = gcd(u,v), the greatest common divisor of u, v.

The reason is that after the initial (x:=u);(y:=v) clearly gcd(x, y) = gcd(u, v). Now it is
easy to see that both the instructions x := x − y and y := y − x leave the gcd of x, y
unchanged. Thus if B is gcd(x, y) = gcd(u, v), and β is (if x < y then y := y−x else x :=
x − y), then {B}β{B} holds. Thus if the program αg terminates, then by Hoare’s rule
for “while,” x 6= y will be false, i.e. x = y will hold, and moreover B will hold. Since
gcd(x, x) = x, we will now have gcd(u, v) = gcd(x, y) = gcd(x, x) = x.

Hoare’s rules allow us to derive the properties of complex programs from those of simpler
ones. Given program β let α =“while A do β”. A, B are first order formulas. then the
Hoare rule says that if we know {B}β{B} i.e. that β preserves the truth of B,10 then we
can conclude {B}α{B ∧ ¬A}. I.e. that α will also preserve B and will moreover falsify
A.

In other words, provided that β preserves the truth of B and that B holds when α begins,
then B will still hold when α ends and moreover, A will be false. This rule allows us to
predict that when the gcd program terminates, gcd(u, v) = gcd(x, y) will still hold and
x 6= y will be false, i.e. x will equal y.

Hoare Logic was extended by Vaughan Pratt to Dynamic Logic which treats programs as
modalities. In Pratt’s notation, if B is a formula and α is a program, then [α]B is a new
formula which says that after α is performed, the property B will hold. Hoare’s assertion
{A}α{B} can then be rewritten A → [α]B, if A is true now, then after α is performed,
B will hold.

10Indeed it is sufficient if β, applied once, yields B under the precondition that both A and B hold.
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However, just as programs can be seen as modalities, so can games. And this insight leads
us to our next topic.

Game logic and cake cutting: Game Logic is a sublogic of Dynamic Logic, i.e. has
fewer validities, but enjoys wider semantics. We saw that Dynamic Logic is an extension
of Hoare Logic and can be used to prove correctness of programs. Now a program can be
thought of as a one person game without opponents. Game logic extends this to proper
(at first two person) games.

The intuition is to think of a game as a predicate transform. Given a game G and a set
of winning positions X, we can define a set Y of starting positions which are favourable
to player I, i.e. Y is just the set of positions from which, playing the game G, player
I can ensure reaching the set X regardless of player II’s actions. Then Y = G(X) as a
function of X is monotonic in X. I.e. if X ⊆ X ′ then G(X) ⊆ G(X ′). For obviously,
if we make it easier for player I to win, we increase the set of positions from which she
can start and go on to win. Game logic uses this mathematical fact to good purpose and
studies complicated games. We compose games from simpler games, and also compose
sets to form more complex sets. Moreover, each game, as we saw, forms a map from sets
to sets. Formal details follow. For a full treatment see (Parikh 1983, 1985).

Syntax: Finite number of atomic formulas, P, P1, Q...etc

Finite number of atomic games: g1, ..., gn

Formulas: Each Pi is a formula
If A, B are formulas, so are ¬A, A ∨B
If A is a formula and α is a game, then (α)A is a formula.

Roughly, (α)A means that player I has a winning strategy to play the game α in such a
way that A will be true when the game finishes.

Games: Each gi is a game.
If α, β are games, then so are α; β, α ∪ β, < α∗ >, and αd

If A is a formula, then < A? > is a game.

Here the complex games are seen as composed of simpler ones in an intuitive way. E.g.
the game α; β is just the composite game which consists of playing first α and then β.
< α∗ > is α played finitely many times, with player I deciding when to stop. In the
composite game α ∪ β, player I decides which of the two games α, β to play. Finally, αd

is just α with the two players interchanged.

Semantics of Game Logic: Given, a set W of states and for each Pi a subset π(Pi) of
W . For each gi a set ρ(gi) ⊆ W × P(W ). ρ is monotonic so that if (s, X) ∈ ρ(g) and
X ⊆ Y then (s, Y ) ∈ ρ(g). Let ρ(g)(X) = {s|(s, X) ∈ ρ(g)}. Then ρ(g) is a function
from P(W ) to itself.

Now let
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π(A ∨B) = π(A) ∪ π(B)
π(¬A) = W − π(A)
π((α)A) = ρ(α)(π(A))

We let ρ(α; β)(X) = (ρ(α)((ρ(β)(X))
ρ(α ∪ β)(X) = ρ(α)(X) ∪ ρ(β)(X)
ρ(< α∗ >)(X) = µY (X ⊆ Y ∧ ρ(α)(Y ) ⊆ Y )
(where the minimization is relative to set inclusion)
ρ(< αd >)(X) = W − ρ(α)(W −X)
ρ(< A? >)(X) = π(A) ∩X

A valid formula is one which is true at all points in all models, i.e. a formula A such that
π(A) is always W .

Complete axiomatization for the valid formulas of the dual free part of Game
Logic:

1. All tautologies (or a complete subset of them)

2. (α; β)A ↔ (α)(β)A

3. (α ∨ β)A ↔ (α)A ∨ (β)A

4. (< α∗ > A) ↔ (A ∨ (α)(< α∗ > A))

5. (< A? >)B ↔ A ∧B

Rules:

1. Modus ponens: from A, A → B derive B.

2. Monotonicity: from A → B derive (α)A → (α)B

3. Bar induction: from (α)A → A derive (< α∗ >)A → A

This set of axioms and rules is complete. A sound and possibly complete axiom for the
dual operator is

(αd)A ↔ ¬(α)(¬A)

Cake cutting: In cake cutting the number of players goes up to n. The cake cutting
algorithm due to Banach and Knaster goes as follows. If there are n players, then the first
player cuts out a slice which she claims is her fair share. Then the other players examine
it in turn. Anyone who thinks it is too big may reduce it and put something back in the
main cake. After each one has examined the slice, the last person to have reduced it,
takes it. If no one reduced it, then the person who cut the slice takes it. At this stage we
have n− 1 players left and the procedure is repeated. The following questions arise:

What does it mean to say that the cake cutting algorithm is fair?

17



How do we prove that it is fair?

The answer is that each player has a winning strategy to ensure µi(Pi) ≥ 1/n, where Pi is
the piece received by player i, and µi is player i’s personal measure by which she evaluates
the value of a piece. It is assumed that the value of the whole cake is 1. We skip the
details of the proof of correctness, which will be found in (Parikh 1983, 1985). The proof
makes use of stability properties analogous to that we saw in the while rule of Hoare.

To give just one example of the techniques used in the proof, let r be the move which
reduces the slice, i.e. puts something back from the slice to the main part of the cake. This
is an action which occurs repeatedly in the algorithm. And let F (m, k) be the proposition
that the main part m of the cake is large enough for k people. Then F (m, k) is invariant
under the action r. If F (m, k) is true before r, then it is still true after. Another property
which holds is that if F (m, k + 1) is true then it can be true that after the action c, of
cutting a slice from the cake, the remaining main part is big enough for k people and the
slice itself is big enough for one. Note the contrast, that the action r preserves F (m, k)
regardless of how r is performed whereas the action c, of cutting the cake, may yield the
desired outcome but need not.

Future Work: Our basic structure, as in the original work in Game logic will remain
that of a state space W where to each state is assigned a unique player whose turn it is
to act. Moreover at each state s ∈ W , the acting player has a choice of (deterministic)
actions.

We will also assume utility functions for the agents assigned to the various states. And
our assumption will be that at each state, the agent chooses an action which will maximize
the utility of the resulting state. However, we will not make any assumption of mutual
knowledge of rationality. Nor will we assume as part of our model that the agents have
any theory of the other agents or any knowledge of their rationality.

This procedure will have two advantages. One is that it simplifies our work and makes it
more general since it will also apply to games where the agents do not know each other’s
utilities. The other is that it will be more realistic since we know in fact that real agents
reason about other agents only in a partial and haphazard way. Building in ‘mutual
knowledge of rationality’ assumptions into our model would exlude consideration of such
situations and would moreover involve us in curently active controversies which are not
central to this paper.

There are various ways a game designer can achieve the requisite conditions on utilities.
One extreme is to observe every action performed by every agent and impose penalties on
performance of undesired actions. Thus for example we could prevent speeding by having
every car be accompanied by a police car. This is unrealistic, but is not excluded by
purely theoretical considerations. Something like this does indeed happen in examination
halls where non-cheating is enforced through diligent supervision.

At the other extreme, we may impose certain utilities only at boundary points and rely on
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the agents to calculate the utilities of intermediate points both for themselves and for the
other game players. For example, in chess, the {win, lose, draw} trichotomy is imposed
only at the end of the game and the notions of ‘good position’ or ‘bad move’ are derived
notions. Locally, each player tries to make his own position ‘better’ in terms of whatever
criterion is being used. Globally, each player is trying to win. If the players were logically
omniscient, then of course there would be a tight connection between the possibility of
winning (or at least not losing) and the local notion of goodness. However, if the players’
logical powers are limited, the connection is a rough one, not easy for a mathematical
theory to flesh out.

With cake cutting, there is no social goal as such. Each player has his own goal and
the structure of the game ensures that each player can achieve his goal regardless of the
actions of the other players. With other games the situation may be more complex. For
example we may impose fines for going through a red light. These fines then create a
slight predisposition to obey the lights. Once there is a slight bias in favour of obeying
the traffic signal, the risk of an accident (because of the behaviour of other motorists)
becomes a strong force which reinforces the bias introduced by fines.

Development of a formal model which takes these factors into account will be carried out
in future work. The reader may feel that she has seen a great many loosely connected, but
markedly different themes. I plead guilty to this charge. The richness of social software
is so great that giving a survey of the range of possibilities is a necessary first step.

Pointers to other work: The two books by Brams and others are very much worth
reading as they are both instructive and entertaining. Prashant Parikh (2000) gives an
application of game theory to show how ambiguities in normal discourse are resolved
through Nash equilibria. Elections are an extremely important and well studied case of
social software. Paradoxically, the Arrow theorems seem to indicate that elections are a
software for which a specification does not exist. Reasonable conditions we could impose,
on what a social choice function should look like, turn out to be incompatible. However,
there are occasions when we do know what we want an election to achieve.

One goal that has been considered is that whenever there is a Condorcet winner, one who
would beat any other candidate, then the Condorcet winner should be the choice of the
election procedure. In fact even this is not quite clear. Suppose we have two candidates
A and B, where A commands 51% of the vote but is strongly disliked by the other 49%
and B is rather liked by 90%. Then A might well beat B in a head to head contest, but
B should be the preferable candidate. The survey by Brams and Fishburn, and the book
by Dummett are good introductions to the theory of elections. Pauly contructs a logic
for the study of coalitions and proves completeness. Our own paper, (Parikh 2001) gives
a direction for understanding language which replaces the normal role played by truth
by a social software paradigm which makes many puzzles, e.g. Quine’s indeterminacy
of translation, much clearer. Finally, an immense debt is owed to Wittgenstein, whose
language games have been a large part of the inspiration for this paper.
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Other work which is related to some of the issues includes certainly the path breaking
paper by Aumann (1976) with sequels by Geanakoplos and Polemarchakis, and others,
as well as one by Krasucki and myself (Parikh and Krasucki 1990) in which the issue
of revision of beliefs under communication and the possibility of common knowledge are
studied. The book by Fagin et al (1995) is an important resource for knowledge issues.
The paper by Brandenburger and Keisler (2000) presents an interesting paradox which
arises when we consider two agents and what mutual beliefs they might have about each
other. Finally, we should acknowledge the debt to the classic books by Hintikka (1962)
and Lewis (1969) which investigate knowledge and co-ordination respectively. I apologize
to all the other very important sources which I have not listed – listing them all would
be a paper by itself.
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