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Finding Structure in Science and Mathematics 
Noson S. Yanofsky 

 
One can view the laws of nature as having goals and intentions to produce the 
complex structures that we see. But there is another, deeper, way of seeing our 
world.  The universe is full of many chaotic phenomena devoid of any goals and 
intents. The structure that we see comes from the amazing ability that scientists 
have to act like a sieve and isolate those phenomena that have certain regularities. 
By examining such phenomena, scientists formulate laws of nature. There is an 
analogous situation in mathematics in which researchers choose a subset of 
structures that satisfy certain axioms. In this paper, we examine the way these two 
processes work in tandem and show how science and mathematics progress in this 
way. The paper ends with a speculative note on what might be the logical 
conclusion of these ideas. 

 
 

The laws of nature that we find 
 
Scientists look around the universe and see amazing structure. There are objects and processes of 
fantastic complexity. Every action in our universe follows exact laws of nature which are perfectly 
expressed in a mathematical language. These laws of nature are fine-tuned to bring about life, and 
in particular, intelligent life. It seems that the final goal of all these laws of nature is to create a 
creature that is in awe of the universe that created him. What exactly are these laws of nature and 
how do we find them? 

The universe is so structured and orderly that we compare it to the most complicated and exact 

contraptions of the age. In the 18th and 19th century, the universe was compared to a perfectly 

working clock or watch. Philosophers then discussed the Watchmaker. In the 20th and 21st century, 
the most complicated object is a computer. The universe is compared to a perfectly working 
supercomputer. Researchers ask who programed this computer. The analogy is taken even further 
with scientists wondering if we are like characters in The Matrix and actually a simulation. 

How does one explain all this structure? What are the goals of these laws? Why do the laws seem 
so perfect for producing life and why are they expressed in an exact mathematical language? 
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One answer to these questions is Platonism (or its cousin Realism.) This is the belief that the laws 
of nature are objective and have always existed. They possess an exact ideal form that exists in 
Plato’s realm. These laws are in perfect condition and they have formed the universe that we see 
around us. Not only do the laws of nature exist in this realm but it lives alongside all perfectly 
formed mathematics. This is supposed to help explain why the laws are written in the language of 
mathematics. Platonism leaves a lot to be desired. The main problem is that Platonism is 
metaphysics, not science. However, even if we were to accept it as true, many questions remain. 
How was this Platonic attic set up? Why does our physical universe follow these ethereal rules? 
How do scientists and mathematicians get access to Plato’s little treasure chest of exact ideals? 

The multiverse is another answer that has recently become quite fashionable. This is the belief that 
our universe is just one of many universes called the multiverse. Each universe has its own set of 
rules and its own possible structures that come along with those rules. Physicists who push the 
multiverse theory, believe that the laws in each universe is somewhat arbitrary. The reason why 
we see structure in our universe is that we happen to live in one of very few universes that have 
laws that can produce intelligent life. While the multiverse explains some of the structure that we 
see, there are questions that are left open. Rather than asking why the universe has any structure at 
all, we can push the question back and ask why the multiverse has any structure at all. Another 
problem is that while the multiverse would answer some  of the questions we posed if it existed, 
who says it actually exists? Since we have no contact with possible other universes, the question 
of the existence of the multiverse is essentially metaphysics. 

There is another, more interesting, explanation for the structure that is the focus of this paper. 
Rather than saying that the universe is very structured, say that the universe is chaotic and lacks 
structure. The reason why we see so much structure is that scientists act like a sieve and pull out 
only those phenomena that are predictable. They do not take into account all phenomena; rather, 
they select those phenomena they can deal with. 

Some people say that science studies physical phenomena. This is simply not true. The exact shape 
of a cloud is a physical question that no scientist would try to describe. Who will win the next 
election is a physical question but no hard scientists would venture to give an absolute prediction. 
Whether or not a computer will halt for a given input can be seen as a physical question and yet 
we learned from Alan Turing that this question cannot be answered. Science does not study all 
physical phenomena. Rather, science studies predictable physical phenomena. It is almost a 
tautology: science predicts predictable phenomena. 

Scientists have described the criteria for which phenomena they select: it is called symmetry. 
Symmetry is the property that despite something changing, there is some part of it that still remains 
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the same. When you say that a face has symmetry, you mean that if the left side is swapped with 
the right side, it will still look the same. When physicists use the word symmetry they are 
discussing collections of physical phenomena. A set of phenomena has symmetry if it is the same 
after some change. The most obvious example is symmetry of location. This means that if one 
performs an experiment in two different places, the results should be the same. Symmetry of time 
means that the outcomes of experiments should not depend on when the experiment took place. 
There are many other types of symmetry. 

If phenomena are to be selected by scientists, then they must have many different types of 
symmetry. When a physicist sees a lot of phenomena, she must first determine if these phenomena 
have symmetry. She performs experiments in different places and at different times. If she achieves 
the same results, she then studies them to find the underlying cause. In contrast, if it failed to be 
symmetric, it would be ignored by the scientist. 

 
The power of symmetry was first truly exploited by Albert Einstein. He postulated that the laws of 
physics should be the same even if the experimenter is moving close to the speed of light. With this 
symmetry requirement in mind, he was able to compose the laws of special relativity. Einstein was 
the first to understand that symmetry was the defining characteristic of physics. Whatever has 
symmetry will have a law of nature. The rest is not part of science. 

A little after Einstein showed the importance of symmetry for the scientific endeavor, Emmy 
Noether proved an important theorem that established a connection between symmetry and 
conservation laws. Again, if there is symmetry, then there will be conservation laws. The physicists 
must be a sieve and allow the phenomena that do not possess symmetry to slip through her fingers. 
 
There is actually something deeper going on here. The laws of physics cannot be found without 
“bracketing out” different phenomena. Consider the way the laws of physics are given as they are 
taught in any physics class. While they are not exactly false, they are totally useless! Ponder the 
simple law that Newton taught us about gravity. The force between two objects is given by the 
product of the two masses divided by the square of the distance. That is,  
 

𝐹𝐹 = 𝐺𝐺 𝑚𝑚1𝑚𝑚2
𝑑𝑑2

. 
 
This is only useful when the two bodies are spherically symmetric. The bodies also have to be totally 
homogenous (the mass must be evenly distributed). There cannot be any third body or gravitational 
forces affecting either of the bodies. Both bodies must be magnetically and electrically neutral. They 
cannot be traveling near the speed of light (lest the theory of special relativity take over). The bodies 
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also cannot be too small (lest quantum effects come into play.) And the list goes on. In summation, 
it is safe to say that there were probably never two bodies that exactly satisfied the requirements for 
Newton’s laws to be exactly true. Rather, the physicists must make controlled experiments and ignore 
all these other effects. By selecting the phenomena, he idealizes the actual world to find the ideal 
laws of nature. Without selecting the phenomena, no such laws can be found.    

No one is asserting that selecting subsets of phenomena is the only way of finding laws of nature. 
There are other methods for finding such laws. For example, in statistical mechanics and in quantum 
theory, one considers large ensembles of phenomena to be one phenomenon (a quotient set of 
phenomena, rather than a subset). While we acknowledge the existence of other methods, in this 
paper we will focus on our selection method. 

There are a few problems with this explanation of the structure found in the universe. For one, it 
seems that phenomena that we do select and that have laws of nature are exactly the phenomena 
that generate all the phenomena. So, while the shape of a cloud or the winner of an election are too 
complicated for the scientist to worry about, they are generated by laws of water molecules and 
brain synapses that are part of science. Where is the boundary between science and non-science? 

Despite these failings of our explanation for the structure, we believe it is the best candidate for 
being the solution. It is one of the only solutions that does not invoke any metaphysical principle or 
the existence of a multitude of unseen universes. We do not have to look outside the universe to 
find a cause for the structure that we find in the universe. Rather, we look at how we are looking at 
phenomena. 

Before we move on, we should point out that our solution has a property in common with the 
multiverse solution. We postulated that, for the most part, the universe is chaotic and there is not so 
much structure in it. We, however, focus only on the small amount of structure that there is. 
Similarly, one who believes in the multiverse believes that most of the multiverse lacks structure. 
It is only in a select few universes that we do find any structure. And we inhabitants of this structured 
universe are focused on that rare structure. Both solutions are about focusing on the small amount 
of structure in a chaotic whole. 
 
 

A hierarchy of number systems 
 
This idea that we only see structure because we are focusing on a subset of phenomena is novel and 
hard to wrap one’s head around. There is an analogous situation in mathematics that is much easier 
to understand. We will focus on one important example where on this selection process is seen very 
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clearly. First we need to take a little tour of several number systems and their properties. 

Consider the real numbers. In the beginning of high school, the teacher draws the real number line 
on the board and says that these are all the numbers one will ever need. Given two real numbers, 
we know how to add, subtract, multiply and divide them. They comprise a number system that is 
used in every aspect of science. The real numbers also have an important property: they are totally 
ordered. That means that  given any two different real numbers, one is less than the other. Just think 
of the real number line: given any two different points on the line, one will be to the right of the 
other. This property is so obvious that it is barely mentioned. 

While the real numbers seem like a complete picture, the story does not end there. Already in the 

16th century, mathematicians started looking at more complicated number systems. They began 
working with an “imaginary” number i which has the property that when it is squared it is -1. This 
is in stark contrast to any real number whose square is never negative. They defined an imaginary 
number as the product of a real number and i. Mathematicians went on to define a complex number 
that is the sum of a real number and an imaginary number. If r1 and r2 are real numbers, then r1+r2i 
is a complex number. Since a complex number is built from two real numbers and we usually draw 
them in a two-dimensional plane. The real number line sits in the complex plane. This corresponds 
to the fact that every real number, r1, can be seen as the complex number r1+0i. 

We know how to add, subtract, multiply, and divide complex numbers. However, there is one 
property that is different about the complex numbers. In contrast to the real numbers, the complex 
numbers are not totally ordered. Given two complex numbers, say 3 + 7.2i and 6 - 4i, can we tell 
which one is more and which one is less? There is no obvious answer. (In fact, one can totally order 
the complex numbers but the ordering will not respect the multiplication of complex numbers.) The 
fact that the complex numbers are not totally ordered means that we lose structure when we go from 
the real numbers to the complex numbers. 

The story is not over with the complex numbers. Just as one can construct the complex numbers 
from pairs of real numbers, so too, one can construct the quaternions from pairs of complex 
numbers. Let c1 = r1 + r2i and c2 = r3 + r4i be complex numbers; then we can construct a quaternion 
as q = c1 + c2j where j is a special number. It turns out that every quaternion can be written as 
 

r1 + r2i + r3j + r4k,  
 

where i, j, and k are special numbers. So while the complex numbers are comprised of two real 
numbers, the quaternions are comprised of four real numbers. Every complex number r1 + r2i 
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can be seen as a special type of quaternion: r1+ r2i + 0j + 0k. We can think of the quaternions as 
a four-dimensional space which has the complex numbers as a two-dimensional subset of it. We 
humans have a hard time visualizing such higher-dimensional spaces. 

The quaternions are a full-fledged number system. They can be added, subtracted, multiplied and 
divided with ease. Like the complex numbers, they fail to be totally ordered. But they have even 
less structure than the complex numbers. While the multiplication of complex numbers is 
commutative, that is, for all complex numbers c1 and c2 we have that c1c2 = c2c1, this is not true 
for all quaternions. This means there are quaternions q1 and q2 such that q1q2 is different than 
q2q1. 

This process of doubling a number system is called the “Cayley–Dickson construction,” named 
after the mathematicians Arthur Cayley and Leonard Eugene Dickson. Given a certain type of 
number system, one gets another number system that is twice the dimension of the original system. 
The new system that one develops has less structure (i.e. fewer axioms) than the starting system. 

If we apply the Cayley–Dickson construction to the quaternions, we get the number system called 
the octonions. This is an eight-dimensional number system. That means that each of the octonions 
can be written with eight real numbers as 

r1+ r2i + r3j + r4k +r5l + r6m + r7n + r8p. 

Although it is slightly complicated, we know how to add, subtract, multiply, and divide octonions. 
Every quaternion can be written as a special type of octonion in which the last four coefficients are 
zero. 

Like the quaternions, the octonions are neither totally ordered nor commutative. However, the 
octonions also fail to be associative. In detail, all the number systems that we have so far discussed 
possess the associative property. This means that for any three elements, a, b, and c, the two ways 
of multiplying them, a(bc) and (ab)c, are equal. However, associativity does not always work with 
the octonions. That is, there exists octonions o1, o2 and o3 such that o1(o2o3) ≠ (o1o2)o3. 

We can go on with this doubling and get an even larger, sixteen-dimensional number system called 
the sedenions. In order to describe a sedonian, one would have to give sixteen real numbers. 
Octonions are a special type of sedonian: their last eight coefficients are all zero. But researchers 
steer clear of sedenions because they lose an important property. While one can add, subtract, and 
multiply sedenions, there is no way to divide them nicely. Most physicists think this is beyond the 
pale and “just” mathematics. Even mathematicians find sedenions hard to deal with. One can go on 
to formulate 32-dimensional number systems and 64-dimensional number systems, etc. But they 
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are usually not discussed because, as of now, they do not have many applications. We will 
concentrate on the octonions. 

 

Here is a diagram of all these different number systems and the properties they have: 

 

Let us discuss the applicability of these number systems. The real numbers are used in every aspect 
of physics. All quantities, measurements, durations, and lengths of physical objects are given as real 
numbers. Although complex numbers were formulated by mathematicians to help solve equations (i 

is the solution to the equation x2 = -1), in the middle of the 19th century, physicists started using 

complex numbers to discuss waves. In the 20th century, complex numbers became fundamental for 
the study of quantum mechanics. By now, the role of complex numbers is very important in many 
different branches of physics. The quaternions show up in physics but are not a major player. The 
octonions, the sedenions, and the larger number systems rarely arise in the physics literature. 
 
 

The laws of mathematics that we find 
 
The usual view of these number systems is to think that the real numbers are fundamental while the 
complex, quaternions, and octonions are strange larger sets that keep mathematicians and some 
physicists busy. The larger number systems seem unimportant and less interesting. 

Let us turn this view on its head. Rather than looking at the real numbers as central and the octonions 
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as strange larger number systems, think of the octonions as fundamental and all the other number 
systems as just special subsets of octonions. The only number system that really exists is the 
octonions. To paraphrase Leopold Kronecker, "God made the octonions, all else is the work of 
man." The octonions contain every number that we will ever need. (And, as we stated earlier, we 
can do the same trick with the sedenions and even the 64-dimensional number system. We shall fix 
our ideas with the octonions.) 

Let us explore how we can derive all the properties of the number systems that we are familiar with. 
Although the multiplication in the octonions is not associative, if one wants an associative 
multiplication, one can look at a special subset of the octonions. (We are using the word “subset” 
but we need a special type of subset that respects the operations of the number system. Such subsets 
are called “subgroups,” “subfields,” or “sub-normed-division-algebras,” etc. For the reader’s 
benefit, we use “subset.”) So if one selects the subset of all octonions of the form 

r1+ r2i + r3j + r4k + 0l + 0m + 0n + 0p, 

then the multiplication will be associative (like the quaternions). If one further looks at all the 
octonions of the form 
 

r1+ r2i + 0j + 0k + 0l + 0m + 0n + 0p, 

then the multiplication will be commutative (like the complex numbers). If one further selects all 
the octonions of the form 
 

r1+0i + 0j + 0k +0l + 0m + 0n + 0p, 

then they will have a totally ordered number system. All the axioms that one wants satisfied are 
found “sitting inside” the octonions. 
 
This is not strange. Whenever we have a structure, we can focus on a subset of special elements that 
satisfies certain properties. Take, for example, any group. We can go through the elements of the 
group and pick out those X such that, for all elements Y, we have that XY = YX. This subset is a 
commutative (abelian) group. That is, it is a fact that in any group there is a subset which is a 
commutative group. We simply select those parts that satisfy the axiom and ignore (“bracket out”) 
those that do not. The point we are making is that if a system has a certain structure, special subsets 
of that system will satisfy more axioms than the starting system. 

This is similar to what we are doing in physics. We do not look at all phenomena. Rather, we pick 
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out those phenomena that satisfy the requirements of symmetry and predictability. In mathematics, 
we describe the subset with the axiom that describes it. In physics, we describe the selected subset 
of phenomena with a law of nature. 
 

Working in tandem and moving forward 
 
We have shown that there is an important analogy between physics and mathematics. In both fields, 
if we do not look at the entirety of a system, but rather look at special subsets of the system, we see 
more structure. In physics we select certain phenomena (the ones that have a type of symmetry) and 
ignore the rest. In mathematics we are looking at certain subsets of structures and ignore the rest. 
These two bracketing operations work hand in hand. 
 
The job of physics is to describe a function from the collection of observed physical phenomena to 
mathematical structure: 
 

observed physical phenomena  mathematical structure. 
 
That is, we have to give mathematical structure to the world we observe. As physics advances and 
we try to understand more and more observed physical phenomena, we need larger and larger classes 
of mathematics. In terms of this function, if we are to enlarge the input of the function, we need to 
enlarge the output of the function. 
 
Some examples of this broadening of physics and mathematics are needed. (i) When physicists 
started working with quantum mechanics they realized that the totally ordered real numbers are too 
restrictive for their needs. They required a number system with fewer axioms. They found the 
complex numbers. (ii) When Albert Einstein wanted to describe general relativity, he realized that 
the mathematical structure of Euclidean space with its axiom of flatness (Euclid’s fifth axiom) was 
too restrictive. He needed curved, non-Euclidian space to describe the space-time of general 
relativity. (iii) In quantum mechanics it is known that for some systems, if we first measure X and 
then Y, we will get different results than first measuring Y and then measuring X. In order to describe 
this situation mathematically, one needed to leave the nice world of commutativity. They required 
the larger class of structures where commutativity is not assumed. (iv) When Boltzmann and Gibbs 
started talking about statistical mechanics, they realized that the laws they were coming up with were 
no longer deterministic. Outcomes of experiments no longer either happen (p(X) = 1)  or do not 
happen (p(X) = 0). Rather, with statistical mechanics one needs probability theory. The chance of a 
certain outcome of an experiment is a probability (p(X)) is an element of the infinite set [0,1] rather 
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than the restrictive finite subset {0,1}). (v) When scientists started talking about the logic of quantum 
events, they realized that the usual logic, which is distributive, is too restrictive. They needed to 
formulate the larger class of logics in which the distributive axiom does not necessarily hold true. 
This is now called quantum logic. Many other examples exist. 
 
Paul A.M. Dirac understood this loosening of axioms about 85 years ago when he wrote the 
following: 
 

The steady progress of physics requires for its theoretical formulation a 
mathematics which get continually more advanced. This is only natural and to be 
expected. What however was not expected by the scientific workers of the last 
century was the particular form that the line of advancement of mathematics would 
take, namely it was expected that mathematics would get more and more 
complicated, but would rest on a permanent basis of axioms and definitions, while 
actually the modern physical developments have required a mathematics that 
continually shifts its foundation and gets more abstract. Non- euclidean geometry 
and noncommutative algebra, which were at one time were considered to be purely 
fictions of the mind and pastimes of logical thinkers, have now been found to be 
very necessary for the description of general facts of the physical world. It seems 
likely that this process of increasing abstraction will continue in the future and the 
advance in physics is to be associated with continual modification and 
generalisation of the axioms at the base of mathematics rather than with a logical 
development of any one mathematical scheme on a fixed foundation. 

 
As physics progresses and we become aware of more and more physical phenomena, larger and 
larger classes of mathematical structures are needed and we get them by looking at fewer and fewer 
axioms. There is no doubt that if Dirac lived now, he would talk about the rise of octonions and 
even the sedenions within the needed number systems. 

In order to describe more phenomena, we will need larger and larger classes of mathematical 
structures and hence fewer and fewer axioms. What is the logical conclusion to this trend? How far 
can this go? Physics wants to describe more and more phenomena in our universe. Let us say we 
were interested in describing all phenomena in our universe. That is, we don’t “bracket out” any 
phenomena. What type of mathematics would we need? How many axioms would be needed for 
the mathematical structure to describe all the phenomena? Of course, it is hard to predict but it is 
even harder not to speculate. One possible conclusion would be that if we look at the universe in 
totality and not bracket any subset of phenomena, the mathematics we would need would have no 
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axioms at all. That is, the universe in totality is devoid of structure and needs no axioms. Total 
Lawlessness! This would finally eliminate all metaphysics when dealing with the laws of nature 
and mathematical structure. It is only the way that we look at the universe that gives us the illusion 
of structure. 

With this view of physics, we come to even more profound questions. These are the future projects 
of science. If the structure that we see is only an illusion, then why do we see this illusion? Instead 
of looking at the laws of nature that are formulated by scientists, we have to look at scientists and 
the way they pick out subsets of phenomena and their concomitant laws of nature. What is it about 
human beings that renders us so good at being sieves? Rather than looking at the universe, we 
should look at the way we look at the universe. 
 
 
(I am grateful to Jim Cox, Avi Rabinowitz, Karen Kletter, Karl Svozil, and Mark Zelcer for many 
helpful conversations.) 
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