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Foreshadowing

Chapter 1: Introduction
Section 1.2: Categories

We give some historical and philosophical motivation for the
concept of a category.
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Some History

Category theory began with the intention of relating and
unifying two different areas of study.

The aim was to characterize and classify certain types of
geometric objects by assigning to each of them certain types
of algebraic objects.

The geometric objects are structures called topological
spaces, manifolds, bundles, etc.

The algebraic objects are called groups, rings, abelian groups,
etc.

The assignments have exotic names like homology,
cohomology, homotopy and K-theory, etc.)
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Some History

Geometric Objects Algebraic Objects

• •
homology

// ∗ ∗ ∗

• •
cohomology

// ∗

•
homotopy

// ∗

• • •

... // ∗ ∗
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Some History

People realized that if they were going to relate geometric
objects with algebraic objects they needed a language that is
neither specialized to a geometric content nor an algebraic
content.

Only with such a general language can one discuss both
fields.

This is the birth of category theory.

It is a language about nothing, therefore it is a language about
everything.
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Some History

Category theory was invented by Samuel Eilenberg and Saunders
Mac Lane.

Samuel Eilenberg (1913-1998) Saunders Mac Lane (1909-2005)
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Some History

Saunders Mac Lane and Samuel Eilenberg in their older years.
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Some History

The first paper on category theory.
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Some History

Eilenberg and Mac Lane described various collections of
mathematical objects. Each collection was called a category.

There was a collection of geometric objects and a collection of
algebraic objects.

They were interested in many different categories and in order
to relate one category with another, they formulated the notion
of a functor which — like a function — assigns to each entity
in one category an entity in another category.

They went further and formulated the notion of a natural
transformation which is a way of relating one functor to
another functor. (In a sense, a natural transformation transfers
the results of one functor to the results of another functor.)
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The Three Levels of Category Theory

A

α ⇓ B

.

There is category A.

And category B.

These categories are
related by functor F

And by functor G.

These functors are related
by natural transformation α.
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The Three Levels of Category Theory

A

α ⇓

B.

There is category A.

And category B.

These categories are
related by functor F

And by functor G.

These functors are related
by natural transformation α.
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The Three Levels of Category Theory

A

F

$$

α ⇓

B.

There is category A.

And category B.

These categories are
related by functor F

And by functor G.

These functors are related
by natural transformation α.
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The Three Levels of Category Theory

A

F

$$

G

::

α ⇓

B.

There is category A.

And category B.

These categories are
related by functor F

And by functor G.

These functors are related
by natural transformation α.
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The Three Levels of Category Theory

A

F

$$

G

::
α ⇓ B.

There is category A.

And category B.

These categories are
related by functor F

And by functor G.

These functors are related
by natural transformation α.
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Intuition

What is a category?

It is a collection of structures called objects of a particular
type,

and a collection of transformations or processes between the
objects called morphisms or maps.

If a and b are objects and f is a morphism from a to b we

write it as f : a −! b or a f // b .
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Intuition

The morphisms are to be thought of as ways of transforming
objects.

As time went on, the morphisms between objects took central
stage.

Category theory became not only the study of structures but
also the study of transformations or processes between
structures.
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Intuition

a b c.

One of the main properties of processes
is that they can be combined.

That is, one process followed by another
process can be combined into a single
process.

In a category, if there is a morphism from
object a to object b called f

and a morphism from object b to object c
called g,

then there exists an associated morphism
from object a to object c written as g ◦ f
and called “g composed f ,” or “g following
f ,” or “g after f .”

This composition is the most fundamental
part of a category.
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Intuition

a f // b

c.

One of the main properties of processes
is that they can be combined.

That is, one process followed by another
process can be combined into a single
process.

In a category, if there is a morphism from
object a to object b called f

and a morphism from object b to object c
called g,

then there exists an associated morphism
from object a to object c written as g ◦ f
and called “g composed f ,” or “g following
f ,” or “g after f .”

This composition is the most fundamental
part of a category.
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Intuition

a f // b
g
// c.

One of the main properties of processes
is that they can be combined.

That is, one process followed by another
process can be combined into a single
process.

In a category, if there is a morphism from
object a to object b called f

and a morphism from object b to object c
called g,

then there exists an associated morphism
from object a to object c written as g ◦ f
and called “g composed f ,” or “g following
f ,” or “g after f .”

This composition is the most fundamental
part of a category.
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Intuition

a f //

g◦f

##

b
g
// c.

One of the main properties of processes
is that they can be combined.

That is, one process followed by another
process can be combined into a single
process.

In a category, if there is a morphism from
object a to object b called f

and a morphism from object b to object c
called g,

then there exists an associated morphism
from object a to object c written as g ◦ f
and called “g composed f ,” or “g following
f ,” or “g after f .”

This composition is the most fundamental
part of a category.
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Intuition

An example of part of a category.
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Every object has an identity morphism (id).
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Motivation

Since categories are disassociated from any specific field or
area, category theory received the reputation of being a
language without content.

The field was derided by some as “general abstract
nonsense.”

It is precisely this independence from any field which gives
category theory its power.

By not being formulated for one particular field, it is capable of
dealing with any field.
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Motivation

At first, category theory was extremely successful in dealing
with various fields of mathematics.

As time went on, researchers realized that many branches of
science that deal with structures or processes can be
discussed in the language of category theory.

Computer science is the study of computational processes,
and hence, has taken a deep interest in category theory.

More recently, category theory has been shown to be very
adept at discussing structures and processes in physics.

Researchers have also shown that category theory is great at
discussing the structures and processes of chemistry, biology,
artificial intelligence, and linguistics.
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Motivation

Many diverse fields are shown to be related because they are
discussed in the single language of category theory.

Researchers have found similar theorems and patterns in
areas that were thought to be unrelated.

Moreover, in the past few decades, category theory has
further unified different fields by revealing amazing
relationships between them.

There are functors from a category in one field to a category in
a totally different field that preserve properties and structures.

Such property-preserving functors show that the two fields are
similar.
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Motivation

For example, quantum algebra is a field that uses categorical
language to show how certain algebraic structures are related
to geometric structures like knot theory.

Another prominent example is topological quantum field
theory, which is a branch of math and physics that uses
functors to unite relativity and quantum theory.

Quantum computing is a field that sits at the intersection of
computer science, physics, and mathematics and can easily
be understood using various categorical structures.
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Foreshadowing

Chapter 1: Introduction
Section 1.2: Monoidal Categories

We give some historical and philosophical motivation for the
concept of a monoidal category.
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Some History

In the early 1960s, Jean Bénabou and Saunders Mac Lane
described categories that have more structure called monoidal
categories or tensor categories.

Jean Bénabou (1932-2022)

Saunders Mac Lane (1909-2005)
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Monoidal Categories

In these categories, one can “multiply” or “combine” objects.

Symbolically, within a monoidal category, object a and object
b can be combined to form object a ⊗ b (read “a tensor b”).

As always in category theory, one is interested not only in
combining objects but also in combining morphisms.

For f : a −! a′ and g : b −! b ′, there exists a morphism
f ⊗ g which we write as

a f // a′

⊗

b g
// b ′

or

a ⊗ b
f⊗g

// a′ ⊗ b ′.
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Monoidal Categories - Foreshadowing

Notice that there are two ways of combining morphisms in a
monoidal category.

There is f ◦ g and there is f ⊗ g.

In physics, the combination f ◦ g corresponds to performing
one process after another while the combination f ⊗ g
corresponds to performing two independent processes.

In computers, the combination f ◦ g corresponds to sequential
processes, while f ⊗ g corresponds to parallel processes.

In mathematics, the interplay of the two combinations of
morphisms is very important.
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Monoidal Categories - Foreshadowing

Classical algebra is the branch of mathematics that deals with
sets and operations on those sets.

For sets of numbers and the addition operation, we have the
rule that x + y = y + x while in general, for subtraction,
x − y , y − x.

In the theory of monoidal categories there are rules that
govern the relationship between a ⊗ b and b ⊗ a.

What about the relationship between (a ⊗ b) ⊗ c and
a ⊗ (b ⊗ c)?

Within monoidal categories there are many possible
relationships when dealing with these combined objects.

For each rule relating these operations, there will be a
corresponding type of monoidal category.

In Chapter 7, we will see many different types of monoidal
categories.
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Monoidal Categories - Foreshadowing

This variability allows for many phenomena to be modeled by
monoidal categories.

The area that deals with the different types of rules among
operations is called coherence theory

How the various operations cohere with each other.

Also called higher-dimensional algebra.

This area of study has become pervasive. Higher-dimensional
algebra will arise even more frequently in the science and
mathematics of the coming decades.
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Foreshadowing

Chapter I: Introduction
Section 1.3: The Examples and the Mini-courses

We describe how the examples and the mini-courses are
structured.
The way the material is spread through the book.
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Organization of the Book

This text is centered on the examples. Our goal is to show the
pervasiveness of categories, and in particular, monoidal
categories.

We also want to emphasize how categories can reveal the
interconnectedness of various fields.

We do so by introducing many examples from many different
areas.

The literature of category theory has many more examples.

We are showing the beauty of category theory but only
revealing the tip of the iceberg.
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Organization - Table of Contents

Chapter 1 Introduction

Chapter 2 Categories

Chapter 3 Structures Within Categories

Chapter 4 Relationships Between Categories

Chapter 5 Monoidal Categories

Chapter 6 Relationships Between Monoidal Categories

Chapter 7 Variations of Monoidal Categories

Chapter 8 Describing Structures

Chapter 9 Advanced Topics

Chapter 10 More Mini-Courses
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Organization - Table of Contents

The examples are spread throughout the book. For example:

In Chapter 2, a category will be introduced.

In Chapter 3, some properties of this category will be
described.

In Chapter 4, this category will be related to other categories.

In Chapter 5, we will show that the category has a monoidal
structure.

In Chapter 6, we will see how that monoidal structure relates
to the monoidal structure of other categories.

In Chapter 7, this same category will be shown to have even
more structure .

We will also see how this category arises in various mini-courses.
By the time the reader finishes the book, the category will be an
old friend.
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Organization - Table of Contents

One of the highlights of the book are the mini-courses.

Section 1.4 Mini-course: Sets and Categorical Thinking

Section 2.4 Mini-course: Basic Linear Algebra

Section 3.4 Mini-course: Self-Referential Paradoxes

Section 4.8 Mini-course: Basic Categorical Logic

Section 5.6 Mini-course: Advanced Linear Algebra

Section 6.4 Mini-course: Duality Theory

Section 7.4 Mini-course: Quantum Groups

Section 8.5 Mini-course: Databases and Schedules

Section 9.6 Mini-course: Homotopy Type Theory

Section 10.1 Mini-course: Knot Theory

Section 10.2 Mini-course: Basic Quantum Theory

Section 10.3 Mini-course: Quantum Computing
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Organization - Notation
In order to improve readability, for the most part, we keep to the
following notation.

Categories are in blackboard bold font:
A,B,C,D,Circuit,Set, . . .

Objects in general categories are the first few lowercase Latin
letters: a, b , c, d, a′, b ′, a′′ . . .
Morphisms in general categories are lowercase Latin letters:
f , g, h, i, j, k , f ′, g′′, . . .
Functors are capital Latin letters: F ,G,H, I, J, . . .
Natural transformations are lowercase Greek letters:
α, β, γ, δ, η, κ, . . .

Higher-dimensional morphisms will be capital Greek letters:
Γ,∆,Θ,Φ,Ψ, . . .
2-Categories are in blackboard bold font with a line above:
A,B,C,D,Cat . . .

3-Categories are in blackboard bold font with a two lines

above: A,B,C,D, 2Cat . . .
Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 1: Introduction — Sec. 1.3: The Examples and the Mini-courses



Organization - Notation

There are several different types of arrows in this book.

Morphism, map or functor: //

The input and output of a function or a functor: � // or
� //

Inclusion or injection: �
�

//

Surjection or full functor: // //

Natural transformation: +3
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Foreshadowing

Chapter 1: Introduction
Section 1.4: Mini-course: Sets and Categorical Thinking

Sets and Operations
Functions
Operations on Functions
Equivalence Relations
Graphs
Groups

We introduce basic notions of sets and functions.

We focus on functions and how they are used to tell us about
the structure of the sets.

This is fundamental to thinking about categories.

Basic examples of structures that sets have, such as
equivalence relations, graphs, and groups are mentioned.
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Central Idea

Category theory is not just a language that is capable of
describing an immense amount of science and mathematics.

Rather, it is a new and innovative way of thinking.

One of the central ideas is that we define properties of objects
by the way they interact with other objects.

In order to get a feel for this, we take an in-depth look at the
familiar world of sets and functions between sets.

We show that many of the usual ideas and constructions
about sets can be described with functions between sets.

This mini-course will also be a gentle reminder of many
concepts that are needed in the rest of the course.
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Central Idea

Important Categorical Idea

Morphisms Are Central.

Properties and structures in a category can be described by
the morphisms of the category.

The objects do not stand alone.

One must see how the objects relate to each other with
morphisms.

The objects have to be seen in context of the morphisms.

In particular, many properties of an object b can be
understood by looking at the collections of morphisms
a −! b for various simple objects a.

Similarly, many properties of b are described by looking at
collections of morphisms b −! c for various simple objects c.
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Sets - Basic Concepts

Definition
A set is a collection of elements. If S is a set and x is an element
of S, we write x ∈ S. If x is not an element of S we write x < S.
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Sets - Basic Concepts

Example

We will deal with both infinite sets and finite sets. Some of the
most important infinite sets of numbers are

The natural numbers, N = {0, 1, 2, 3, . . .}.

The integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The rational numbers, Q = {mn : m and n in Z and n , 0}.

The real numbers, R, that is, all numbers on the real number
line.

The complex numbers, C = {a + bi : a and b in R}.
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Sets - Basic Operations

Definition
We begin by discussing several operations on sets. Let S and T
be sets. If s is in S and t is in T, we write an ordered pair of the
elements as (s, t). The set of all ordered pairs is called the
Cartesian product of sets S and T

S × T = {(s, t) : s ∈ S, t ∈ T }.
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Sets - Basic Operations

Example

If Pants = {black, blue1, blue2, gray} is the set of pants that you
own, and Shirts = {white, blue, orange} is the set of shirts that you
own, then the set of Outfits is

Pants × Shirts =



(black, white), (black, blue), (black, orange),

(blue1, white), (blue1, blue), (blue1, orange),

(blue2, white), (blue2, blue), (blue2, orange),

(gray, white), (gray, blue), (gray, orange)
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Sets - Basic Operations

Technical Point
The most important aspect of an ordered pair is its order.

In contrast, sets are just collections, and as such, do not have
a preferred order.

The set {s, t} is considered to be the same set as {t , s}.

In contrast, the pair (s, t) is not considered the same as (t , s).

Hence, we cannot simply use two curly brackets to describe
ordered pairs.

There are other ways of describing an ordered pair of
elements from S and T. For example:

We could write them as ⟨s, t⟩ or {s, t , {s}} , or {s, t , {t}}.

There is nothing special about the notation (s, t).
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Sets - Basic Operations

Definition
The most interesting property about a finite set is the number of
elements in such a set. For every finite set S, we write |S | to
denote the number of elements in S. If there are m elements in S
and n elements in T, then there are mn elements in S × T. In
symbols we write this as

|S × T | = |S | · |T |.
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Sets - Basic Operations

Definition
We can generalize the notion of ordered pairs to ordered
triples, ordered 4-tuples, ordered 5-tuples, etc.

If there are n sets, S1,S2, . . . ,Sn, then an ordered n-tuple is
written as (s1, s2, . . . , sn) where si is in Si .

The set of all n-tuples is S1 × S2 × · · · × Sn.

The number of n-tuples is given as follows:

|S1 × S2 × · · · × Sn | = |S1| · |S2| · · · |Sn |.
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Sets - Basic Operations

Definition
Another operation performed on sets is the union.

Let S and T be sets. The union of S and T is the set S
⋃

T
which contains those elements that are in S or in T.

S
⋃

T = {x : x ∈ S or x ∈ T }.

It is important to notice that if there is some element that is in
both S and in T then it will occur only once in S

⋃
T.

This is because when dealing with a set, repetition does not
matter. The set {a, b , c, b} is considered the same set as
{a, b , c}.
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Sets - Basic Operations

Definition
A related operation is the disjoint union.

Given sets S and T, one forms the disjoint union S ⨿ T
which contains the elements from S and T but considers
elements that are in both sets as different elements.

One way this is done is by tagging every element with extra
information that says which set it comes from. This way an
element that is both in S and in T would be considered two
different elements.
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Sets - Basic Operations

Example

For example, if S = {a, b , c, x, y} and T = {q,w, b , x, e, r},
then S ⨿ T is

{(a, 0), (b , 0), (c, 0), (x, 0), (y, 0), (q, 1), (w, 1),

(b , 1), (x, 1), (e, 1), (r , 1)},

where the elements of S are tagged with a 0 and the
elements of T are tagged with a 1.

In general, for sets S and T, we have

S ⨿ T = (S × {0})
⋃

(T × {1}).

The formula for the number of elements in the disjoint union is

|S ⨿ T | = |S |+ |T |.
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Functions - Basic Definitions

The central idea of this mini-course is the notion of functions
between sets and how they determine properties of sets.

Definition
Let S and T be sets. A function f from S to T, written f : S −! T
is an assignment to every element of S an element of T. The value
of f on the element s is written as f(s) (“f of s”). If f(s) = t we write
s 7! t (“s maps to t”).

It is important to understand the difference between the
symbol −! and the symbol 7!.

The symbol −! goes between two sets. It describes a
function from one set to another.

In contrast, the symbol 7! goes from an element in the first set
to an element in the second set. It describes how the function
is defined.
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Functions - Basic Definitions

Example

For every set S, there is an identity function idS : S −! S which
takes every element to itself. In symbols it is defined as idS(s) = s
or s 7! s.
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Central Idea

Important Categorical Idea

Not Entities, But Morphisms Between Entities.

In category theory, whenever we have a notion (for example, a
set), the immediate next task is to consider how these notions
relate to each other.

Category theory is not about “things,” but about how “things”
relate to “things.”

Relations between objects are usually described by
morphisms or functions between the objects.

Following this rule, once we describe the morphisms between
the objects we must immediately ask what is between the
morphisms. Usually the answer will be other morphisms.

The computer scientist might protest that this recursive
procedure will lead into an infinite loop. It will! We will see this
in higher-dimensional category theory.
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Functions - Basic Definitions

Let us look at how morphisms to a set determine properties of
a set.

Functions can be used as a way of describing or choosing
elements of a set.

Consider a one-element set, {∗}. (There are many
one-element sets such as {a}, {b}, {Bill}, etc.)

For a set S, a function f : {∗} −! S picks out one element of
S.

The single element ∗ goes to the selected element s in S.

In symbols, f(∗) = s or ∗ 7! s.
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Functions - Basic Definitions

Example

Let S be the set {Jack, Jill, Joan, June, Joe, John}.

The element Joe in S can be described as a function
f : {∗} −! S where f(∗) = Joe. We might want to distinguish
this function by calling it fJoe : {∗} −! S.

There will be other functions like fJill : {∗} −! S where
fJill(∗) = Jill.

For this set of six elements, there are six different functions
from {∗} to S.
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Functions - Examples

Example

If we are interested in choosing two elements of S, we can
look at functions from a two-element set to S.

So f : {0, 1} −! S will choose two elements of S. The first
element is f(0) and the second element is f(1).

If f(0) , f(1) then f will choose two different elements of S.

Functions from {a, b , c} to S will choose three elements of S.

If we wanted to choose n elements of a set, we would look at
functions of the form {1, 2, . . . , n} −! S.
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Functions - Examples

Definition
Set T is a subset of S if every element of T is an element of
S.

We write this as T ⊆ S.

If T is a subset of S but not equal to S, we call T a proper
subset and write T ⊊ S or T ⊂ S. This is the case when there
is at least one element in S that is not in T.

If T is a subset of S, there is an inclusion function that takes
every element of T to its corresponding element of S which is
written as inc : T ↪−! S.

There is a special set that has no elements called the empty
set and denoted ∅. Since it is true that whatever is in ∅
(nothing) is in any other set, we have that the empty set is a
subset of every set. Furthermore, for every set S, there is a
unique function from the empty set to S. We sometimes
denote this function as ! : ∅ −! S.
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Functions - Examples

Example

Subsets of a set are of fundamental importance. We shall be
interested in the collection of all subsets of a particular set

For a set S, the set of all subsets of S is called the power set
of S and is denoted P(S). In other words,

P(S) = {T : T is a subset of S}.

For the set {a}, the powerset is P({a}) = {∅, {a}}.

The powerset of a two element set is
P({a, b}) = {∅, {a}, {b}, {a, b}}.

The powerset of a three-element set is
P({a, b , c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b , c}, {a, b , c}}.

Whenever we add an element to a set, we double the number
of elements in the powerset. We have following rule:
|P(S)| = 2|S |.
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Functions - Examples
Functions can be used to describe subsets.

Definition

For any set S and subset T ⊆ S, there is an associated
characteristic function χT : S −! {0, 1}. This function assigns
either 1 or 0 to every element s of S. If s is in T, the characteristic
function assigns a 1 to s, and if s is not in T, it assigns a 0 to s, i.e.,

χT (s) =


1 : s ∈ T

0 : s < T .

(The Greek letter χ is pronounced “chi” and is supposed to remind
you of the first syllable of “characteristic”.) The function χT tells
which elements of S are in T and which elements of S are not in
T. Characteristic functions establish a correspondence between
subsets of S and functions from S to {0, 1}.
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Functions - Examples

Example

Let S be the set {Jack, Jill, Joan, June, Joe, John}. Consider the
subset T = {Jack, Joe, John} of S that contains all the boys in S.
This subset can be described by the function χT : S −! {0, 1}
which can be visualized as

Jack �

++

Jill �

##

Joan �

++

June �

))

1

Joe
'

33

John
+

55

0
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Functions - Examples

Example

A characteristic function assigns the elements of S to one of
two possible values.

There might be a need to assign one of many values to every
element of S.

In general, a function S −! {1, 2, . . . , n} assigns every
element of S one of n numbers.

We can also assign to every element of S an element of [0, 1],
the real interval between 0 and 1. Such a function may
correspond to assigning a probability to every element.

In school, every student usually has an associated grade point
average (GPA). This is written as a function
Students −! [0, 4].
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Functions - Examples

Example

If S is a set, then there is a function called the diagonal
function ∆: S −! S × S which takes every element to an
ordered pair of the same element. In symbols, for s in S we
have

∆(s) = (s, s).

If f : S −! S′ and g : T −! T ′ are functions then there exists
a function f × g : S × T −! S′ × T ′ that takes an ordered pair
of elements and applies f to the first element and g to the
second. In symbols, the function is defined for elements s of
S and t of T as

(f × g)((s, t)) = (f(s), g(t)) ∈ S′ × T ′.

In a sense, this process is a parallel process. The function f
processes s while the function g processes t.
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Functions - Special Types

Definition
There are some special types of functions. We say f : S −! T is

one-to-one or injective if different elements in S go to
different elements in T. That is, for all s and s′ in S, if s , s′

then f(s) , f(s′). Another way to say this is that if
f(s) = f(s′), then it must be that s = s′. This means that if
the function takes elements to the same output, the elements
must have started off equal.

onto or surjective if for every element t in T, there is an s in
S such that f(s) = t .

an isomorphism or a one-to-one correspondence or a
bijection if f is one-to-one and onto. That is, for every
element s of S there is a unique element t of T so that
f(s) = t and for every element t of T there is a unique
element s of S so that f(s) = t .
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Function Set - Example

Definition
One of the central ideas about sets is that given sets S and T
we can form a set which consists of all functions from S to T.

We call this collection a set of functions or a function set or
a Hom set and we denote it as Hom(S,T) or TS . (The
notation Hom(S,T) comes from the word “homomorphism”
which is a vestige of the algebraic origins of the idea.

The notation TS is similar to exponentiation because the
function set has similar properties to exponentiation.)
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Function Set - Examples

Example

Let us write down the set of all the functions from the set {a, b , c}
to the set {0, 1}. Each of the following lines is a function.

f(a) = 0 f(b) = 0 f(c) = 0

f(a) = 0 f(b) = 0 f(c) = 1

f(a) = 0 f(b) = 1 f(c) = 0

f(a) = 0 f(b) = 1 f(c) = 1

f(a) = 1 f(b) = 0 f(c) = 0

f(a) = 1 f(b) = 0 f(c) = 1

f(a) = 1 f(b) = 1 f(c) = 0

f(a) = 1 f(b) = 1 f(c) = 1
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Function Set - Examples

Example
We saw that every element in a set S can be described as a
function {∗} −! S. This correspondence between elements of
S and functions from {∗} to S shows that

S � S {∗} = Hom({∗},S).

Using characteristic functions, we saw there is a
correspondence between subsets of S and functions from S
to {0, 1}. This correspondence is stated as

P(S) � {0, 1}S = Hom(S, {0, 1}).

We denote the set {0, 1} as 2 and then write this as

P(S) � 2S = Hom(S, 2).
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Functions - Examples

Example

Consider the binary addition operation +: N × N −! N. Let
us write this function with its inputs clearly marked as follows

( ) + ( ) : N × N −! N.

Now consider the function ( ) + 5 : N −! N. This is a function
with only one input. We could also make another function of
one variable ( ) + 7 : N −! N. In fact we can do this for any
natural number.

We can define a function that inputs a natural number and
outputs a function from natural numbers to natural numbers.
That is, there is a function Φ: N −! Hom(N,N) which is
defined as Φ(n) = ( ) + n.

The information described by the ( ) + ( ) function is the
same as the information described by the Φ function.
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Functions - Examples

Example
Notice that what we said about + really applies to every
function with two inputs.

If f : S × T −! U is a function from S × T, then for every t ∈ T
there is a function f( , t) : S −! U.

This shows that there is a function f ′ : T −! Hom(S,U).

The assignment described by any function f has the same
information as the assignment described by the function f ′.

f and f ′ relay the same information.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 1: Introduction — Sec. 1.4: Mini-course: Sets and Categorical Thinking



Functions - Theorem

These examples brings to light the following important theorem.

Theorem

For sets S, T and U there is an isomorphism

Hom(S × T ,U) � Hom(T ,Hom(S,U)) or US×T � (US)T

Proof.
Consider f : S × T −! U.

From this function let us define an f ′ : T −! Hom(S,U).

For a t in T we have the function f ′(t) : S −! U which is
defined as follows: for s in S, let f ′(t)(s) = f(s, t).

This function has the same information as f .

One can go from f ′ to f also.

□
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Functions - Counting

Let us count how many functions there are between two finite
sets.

Consider S with |S | = m and T with |T | = n, and a function
f : S −! T .

For each element s in S there are n possible values of f(s) in
T .

For two elements in S there are n · n possibilities of choices in
T .

In total, there are n · n · · · · · n (m times) possible maps. So

|Hom(S,T)| = |TS | = nm = |T ||S |.
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Functions - Counting

Remark
For three finte sets S, T, and U, we have

|Hom(S × T ,U)| = |US×T |

= |U||S×T |)

= |U||S |·|T |

= (|U||S |)|T |

= |Hom(S,U)||T |

= |Hom(T ,Hom(S,U))|

Notice that the rule about exponentiation usually learned as
children, m(n·p) = (mn)p is expanded to a rule about sets and
functions.
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Operations on Functions

Often we are going to take two functions and perform an operation
to get another function. Three such operations are

composition,

extension, and

lifting.

Remarkably, many ideas about functions can be understood as
operations in one of these three forms.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 1: Introduction — Sec. 1.4: Mini-course: Sets and Categorical Thinking



Operations on Functions - Composition

Definition
The simplest operation is composition.

If there is a function f : S −! T and a function g : T −! U,
then the composite of them is a function h = g ◦ f : S −! U.

It is defined on an s in S as h(s) = g(f(s)).

We write these functions as

S
f //

h=g◦f

��

T

g

��

U.

We say that f and g are factors of h or h factors through T.
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Operations on Functions - Composition

Definition

S
f //

h=g◦f

��

T

g

��

U.

This diagram is called a commutative diagram.

If you start with any element s in S and you apply the
functions f followed by g, you will get to the same resulting
element as applying the function h.

In detail, for all s, we have that g(f(s)) = h(s).

The diagram is “commutative” because we can go around the
triangle this way or that way.
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Operations on Functions - Composition

Example
Let a and b be real numbers.

Consider the function ( ) · a : R −! R that takes any real
number and multiplies it by a.

There is also a function ( ) · b : R −! R that multiplies by b.

The composition of these two functions is the function
( ) · (a · b) : R −! R that takes any real number and
multiplies it by a · b

R
( )·a

//

( )·(a·b)

��

R

( )·b

��

R.
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Operations on Functions - Composition

Theorem
Function composition is associative. That is, let f : S −! T,
g : T −! U and h : U −! V, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f .
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Operations on Functions - Composition

When dealing with the identity function, the input is the same as
the output. This has an interesting consequence when dealing with
composition.

Theorem
If you compose a function with an identity map, then you get the
original function. In detail, for f : S −! T, idS : S −! S, and
idT : T −! T, we have f ◦ idS = f and idT ◦ f = f .We can see
these equations as the following commutative diagram:

S
idS //

f=f◦idS

��

S

f

��

f=idT◦f

��

T
idT

// T .
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Operations on Functions - Composition

Example

Evaluation of a function can be seen as composition. Let
f : S −! T be a function and let an element be described by the
function g : {∗} −! S. Then the value of f on the element that g
chooses is the element that f ◦ g chooses, as in

{∗}
g

//

f◦g

��

S

f

��

T .

If g performs the assignment ∗ 7! s, then f ◦ g performs the
assignment ∗ 7! f(s).
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Operations on Functions - Composition

Example

A restriction function is an example of composition.

Let f : S −! T be a function.

Let A is a subset of S with inclusion function inc : A ↪−! S.

The restriction of f to A is the function f | : A −! T which is
given as the composition

A �
� inc //

f |=f◦i

��

S

f

��

T .
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Operations on Functions - Composition

Theorem
The three properties of functions that we saw can be described
with function composition.
For non-empty sets S and T, the function f : S −! T is
one-to-one if and only if there exists a g : T −! S such that
g ◦ f = idS

S
f //

idS

��

T

g

��

S.

(Proof. The existence of a g such that the diagram commutes
implies f is one-to-one. If f(s) = f(s′) then apply g to both sides of
the equation and get g(f(s)) = g(f(s′)). But g ◦ f = idS implies
s = s′.
If f is one-to one, then there exists a g such that the diagram
commutes. Let t ∈ T. Assign g(t) to be the unique s such that
f(s) = t . If t is not an output of f then it does not matter what value
you give to g(t).)
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Operations on Functions - Composition

Theorem
onto if and only if there exists a g : T −! S such that f ◦ g = idT

T
g

//

idT

��

S

f

��

T .

(Proof. The existence of a g implies f is onto. The function f is onto
because for any t ∈ T, the function g has g(t) = s for some s ∈ S.
This s gives an input to f whose output is t, i.e.,
f(s) = f(g(t)) = idT (t) = t .
Onto implies the existence of g such that the diagram commutes.
Let g(t) equal any s such that f(s) = t . There must be one such t
because f is onto. This proof assumes the axiom of choice which
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Operations on Functions - Composition

Theorem
isomorphism or one-to-one correspondence if and only if there
exists a g : T −! S such that g ◦ f = idS and f ◦ g = idT . Or
putting the previous two triangles together, we have

S
f //

idS

��

T

g

��

idT

��

S
f

// T .
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Another way to express isomorphism:

S T

f

idSg◦f =

g

idT f◦g=

We will see variations of this diagram again and again.
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Operations on Functions - Extension

Example

A second operation of functions is an extension.

If f : R −! T is a function and R is a subset of S with the
inclusion function inc : R ↪−! S, then an extension of f along
inc is a function f̂ : S −! T such that the following commutes

R �
� inc //

f

��

S

f̂

��

T .

In English, f̂ extends f to a larger domain.
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Operations on Functions - Extension

Example

As a simple example, consider R to be a set of students and

f : R −! {A ,B ,C ,D,F}

assigns every student a grade.

If some new students came into the class, the teacher would
have to extend f to give grades to all the students (including
the new ones) as f̂ : S −! {A ,B ,C ,D,F}.

We want f̂ to assign the same grades as f did for any of the
original students.

This is clear with the following commutative diagram:

{original students} �
� inc //

f
++

{original and new students}

f̂
rr

{A ,B ,C ,D,F}
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Operations on Functions - Extension

Example

Let {3, 5} be a set of two real numbers.

There is an obvious inclusion inc : {3, 5} ↪−! R.

Let f : {3, 5} −! R be any function that picks two values.

Then, there exists a function f̂ : R −! R that extends f .

{3, 5} �
� inc //

f
��

R.

f̂
��

R

This extension is another way of describing the simple idea
that given any two points on the plane, there is a straight line
that passes through both of them.
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Operations on Functions - Extension

Example
This can be visualized as

3 5

f̂

f(3)
f(5)
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Operations on Functions - Extension

The previous example of an extension can be ... extended...

Example

Let {x0, x1, x2, . . . , xn} be a set of n + 1 different real numbers and
let inc : {x0, x1, x2, . . . , xn} ↪−! R be the inclusion function. Every
f : {x0, x1, x2, . . . , xn} −! R has an extension called f̂ : R −! R
along inc which is a polynomial function of degree at most n.

{x0, x1, x2, . . . xn}
� � inc //

f

  

R

f̂

��

R
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Example
This can be visualized as

x0 x1 x2

The function f̂ is called the “Lagrange interpolating polynomial” of
the points described by f . (We will not use this.)
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Operations on Functions - Lifting

The third operation of functions is a lifting.

Definition
Consider an onto function p : T −! T ′. Let f : S −! T ′ be any
function. A lifting of f along p is a function f̂ : S −! T that makes
the following triangle commute

S
f̂ //

f

��

T

p

��

T ′.

In a sense, we “lift ” the map f from the target of p to the source of
p.
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Operations on Functions - Lifting

Example

Consider the following commutative diagram:

{∗}
f̂ //

f

��

T

p

��

T ′.

Here a function f : {∗} −! T ′ picks out an element of T ′.

A lifting of f is f̂ : {∗} −! T which picks out an element of T.

p will take outputs of f̂ to outputs of f .

The set of all possible elements that a lifting can pick is
denoted p−1(t0) ⊆ T which is called the “preimage” of p.
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Operations on Functions - Lifting

Example

Here is a cute example of a lifting from the world of politics.

Let T be the set of 320 million American citizens and let T ′ be
the set of 50 states.

The function p takes every citizen to the state they live in.

Let S be a set of three elements such as {a, b , c}. The
function f : S −! T ′ chooses three states.

A lifting of f along p is a function f̂ : S −! T which will choose
three citizens. Each of the three will be from the states f
chooses.

There are obviously many such liftings.
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Operations on Functions - Lifting

Example

Let us build on the last example. Let T, T ′ and p be as in the
last example.

Let S be the set {a, b , c} × T ′, i.e., pairs of letters and states.

The f : S −! T ′ function is defined as follows:
f(b ,New Jersey) = New Jersey, i.e., f takes a letter and a
state and outputs the same state.

A lifting of f along p is a function f̂ : S −! T which will choose
three citizens from each state.
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Operations on Functions

One can see these three operations — composition, extension,
and lifting — as three sides of a triangle:

•
Lifting

//

Composition

��

•

Extension

��
•

Each side uses the other two sides as the input to the operation.
Composition will be used on almost every slide. We will see that
the extension and lifting operations are very important in many
contexts besides sets and functions.
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Foreshadowing

The rest of this mini-course will be concerned with the following
structures based on sets:

Equivalence Relations

Graphs

Groups
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Equivalence Relations

We are not only interested in how a set is related to other sets.
Sometimes the elements of a set are related to each other in
interesting ways.

Definition
Let S be a set. A relation on S is a subset R of the set S × S. The
ordered pair (s1, s2) in R means s1 is related to s2.
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Equivalence Relations

Example

Let S be the set of citizens of the United States. Consider the
following relations on this set.

R1 consists of those (s, t) where s and t are cousins.

R2 consists of those (s, t) where s is the same age or older
than t.

R3 consists of those (s, t) where s and t live in the same state.

R4 consists of those (s, t) where s and t belong to the same
political party.
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Equivalence Relations

The following three properties of a relation will characterize the
notion of “sameness.”

Definition

The relation R ⊆ S × S on a set S is

reflexive if every element is related to itself: for all s in S,
(s, s) is in R.

symmetric whenever one element is related to another, then
the other is related to the first: for all s and t in S, if (s, t) is in
R, then (t , s) is in R.

transitive whenever s is related to t and t is related to u, then
s is related to u: for all s, t and u in S, if (s, t) is in R and (t , u)
is in R, then (s, u) is in R.
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Equivalence Relations

Example

Let us look which properties are satisfied from the relations of
Example.

The cousin relation R1 is not reflexive (no one is their own
cousin); it is symmetric; but it is not transitive (x can be a
cousin to y through y’s mother’s side and y can be a cousin to
z through y’s father’s side. In this case x will, in general, not
be cousins to z.)

The older relation R2 is reflexive (everyone is the same age as
themselves), not symmetric (if x is older than y then y is not
older than or the same age as x), and it is transitive.

The state relation R3 is reflexive, symmetric, and transitive.

The political party relation R4 is reflexive, symmetric, and
transitive.
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Equivalence Relations

Definition
A relation on a set is an equivalence relation if it is reflexive,
symmetric, and transitive. We write such relations as ∼⊆ S × S
and write r ∼ s for (r , s) ∈∼.
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Equivalence Relations

Many times a set of elements can be split up or partitioned
into different subsets where each subset will have all the
elements with the “same” particular property.

For example, the set of cars can be split up by color: there is a
subset of blue cars, a subset of red cars, a subset of green
cars, etc.

The collection of all such subsets will form a set itself.
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Equivalence Relations

Let us be formal.

Definition
With an equivalence relation on the set S, we can describe disjoint
subsets of S called equivalence classes. If s is an element of S,
then the equivalence class of s is the set of all elements that are
related to it:

[s] = {r ∈ S : r ∼ s}

That is, [s] is the set of all elements that are “the same” as s. For a
given set S and an equivalence relation ∼ on S, we form a
quotient set denoted S/ ∼. The elements of S/ ∼ are all the
equivalence classes of elements in S. There is an obvious
quotient function from S to S/ ∼ that takes s to [s].
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Equivalence Relations

Example

Let us examine the equivalence classes for the equivalence
relations of Example 27.

Each equivalence class for the relation R3 consists of all the
residents of a particular state. The quotient set contains the
50 equivalence classes corresponding to the 50 States (we
are ignoring abnormalities like Guam and Washington D.C.).
The quotient function takes every citizen to the state in which
they reside.

Each equivalence class for the relation R4 consists of all the
people belonging to a particular political party. The quotient
set is a set whose elements correspond to political parties.
The quotient function takes every citizen to the political party
to which they belong (we are ignoring independents.)
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Graphs
A directed graph is a common structure (based on sets) that has
applications everywhere. Directed graphs also have many
similarities to categories.

Definition

A directed graph G = (V(G),A(G), srcG , trgG) is

a set of vertices, V(G), and

a set of arrows, A(G).

Furthermore,

every arrow has a source: there is a function
srcG : A(G) −! V(G), and

every arrow has a target: there is a function
trgG : A(G) −! V(G).

If f is an element of A(G) with srcG(f) = x and trgG(f) = y, we

draw this arrow as x f // y .
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Graphs
An example of a graph:

c f //
99 d

g
// d′

}}

a
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// b
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Graphs

Example

Graphs are everywhere.

A street map can be thought of as a directed graph where the
vertices are street corners and there is an arrow from one
corner to the other if there is a one-way street between them.
When there is a two-way street, we might write it like this

∗
//

∗
oo

or ∗ ∗.

Such an arrow is called a “symmetric edge.”

An electrical circuit can be viewed as a directed graph. The
vertices are the branching points and edges might have
resistors, batteries, capacitors, diodes, etc. The arrows
describe the direction of the flow of electricity.
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Graphs

Example

Graphs are everywhere.

Computer networks can be seen as directed graphs where
the vertices are computers and there is an arrow from one
computer to another if there is a way for the first computer to
communicate with the second.

The billions of web pages in the World Wide Web form a
directed graph. The vertices are the web pages and there is
an arrow if there is a link from one web page to another.

Facebook can be seen as a directed graph. Every personal
Facebook account is a vertex, and there are arrows between
two Facebook accounts if they are friends. Notice that if x is
friends with y then y must be friends with x. So all the arrows
are symmetric edges and the graph is called symmetric.
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Graphs

Example

Graphs are everywhere.

All the people on Earth form a graph. The vertices are the
people. There is an arrow from x to y if x knows y. (We are
not being specific as to what it means to “know” someone.)
There is an idea called “six degrees of separation,” which says
that in this graph, you never need to traverse more than six
arrows to get from any person to any other person. We are all
connected!

The collection of all sets and functions form a giant graph. In
detail, the vertices are all sets. The arrows are functions from
a set to another set. (This will be a motivating example of a
category.)
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Graphs

A graph homomorphism is a way of mapping one graph to another.
This will be similar to what happens when we talk about mapping
one category to another category. Basically the vertices map to the
vertices and the arrows map to the arrows but we insist that they
match up well.

Definition

Let G = (V(G),A(G), srcG , trgG) and
G′ = (V(G′),A(G′), srcG′ , trgG′) be graphs. A graph
homomorphism H : G −! G′ consists of

A function that assigns vertices to vertices,
HV : V(G) −! V(G′).

A function that assigns arrows to arrows,
HA : A(G) −! A(G′).
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Graphs

Definition
These two maps must respect the source and target of each arrow.
That means:

For all f in A(G), HV(srcG(f)) = srcG′(HA (f)).

For all f in A(G), HV(trgG(f)) = trgG′(HA (f)).

Saying that these axioms are satisfied is the same as saying that
the following two squares commute:

A(G)
HA //

srcG

��

A(G′)

srcG′

��

A(G)
HA //

trgG

��

A(G′)

trgG′

��

V(G)
HV

// V(G′) V(G)
HV

// V(G′).
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Graphs

Definition
Another way to understand these requirements is to see what the
maps HV and HA do to a single arrow f (that is, f � // HA (f) . We
use the wavy arrow so that the reader can see what is going on
easier.)

Graph G Graph G′

srcG(f)

f

��

� HV // HV(srcG(f)) = srcG′(HA (f))

HA (f)

��

� HA //

trgG(f)
� HV // HV(trgG(f)) = trgG′(HA (f))
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Graphs
Just as we can determine many properties of sets by examining
functions, we can also determine many properties of graphs by
examining graph homomorphisms from simple graphs.

Example

A vertex of a graph G can be described by a graph
homomorphism from the one-vertex graph (∗) (no arrows) as
follows H : ∗ −! G.

A directed edge of a graph can be determined by a graph
homomorphism from the graph ∗ −! ∗ to G.

A triangle in a graph G can be determined by a graph
homomorphism from the graph

∗ //

��

∗

��
∗

to the graph G.

A path of length n in a graph G can be determined by a graph
homomorphism from the “snake” graph

∗ // ∗ // ∗ // · · · // ∗

of length n to G.
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Graphs

Example

Graph homomorphisms can be used to determine different types
of paths in a graph:

A simple path in a graph (a simple path is a path that does not
have repeated vertices).

A cycle of length n (a cycle is a path that starts and ends at
the same vertex).

A simple cycle of length n (a simple cycle is a cycle in which
the only repeating vertex is the starting point which is the
ending point).
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Graphs

Theorem
The composite of graph homomorphisms is a graph
homomorphism. The composition is an associative operation.

Theorem
There is an identity graph homomorphism, IG , for any graph G.
If H : G −! G′ is a graph homomorphism then H ◦ IG = H and
IG′ ◦ H = H.
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Groups

Another important structure that is based on sets and related to
categories is a group. It is nice to see the definition of a group from
a function perspective.
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Groups

First a discussion of operations.

Definition
We all know what we mean by operations on numbers. If you
take numbers x and y, you can perform the addition
operation, x + y or x − y or y · x.

All of these are examples of binary operations. Operations are
really just functions. For a given set, S, a binary operation is
a function f : S × S −! S.

A unary operation is a function that takes one element of S
and outputs one element of S, i.e., f : S −! S. An example of
a unary operation is the inverse operation that takes x and
returns x−1.
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Groups

More types of operations:

Definition
A ternary operations f : S × S × S −! S

A n-ary operations f : S × S × · · · × S︸              ︷︷              ︸
n times

−! S

If n = 0, then we write the 0-ary product as the set with one
element {∗} and a 0-ary operation is written as f : {∗} −! S
which basically picks out an element of S. Such an operation
describes an element that does not change, i.e., a constant.
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Groups

Let us put this all together and give the formal definition of a group.

Definition

A group (G, ⋆, e, ( )−1) is a set G with the following three
operations:

A binary operation: a function ⋆ : G × G −! G.

An identity: there is a special element e in G called the
identity of the group. This can be stated in a functional way:
there is a 0-ary operation u : {∗} −! G where u(∗) = e.

An inverse operation: a unary operation ( )−1 : G −! G
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Groups

Definition
These three operations satisfy the following axioms:

The binary operation is associative: for all x, y and z, we have
(x ⋆ y) ⋆ z = x ⋆ (y ⋆ z).

The identity acts like a unit of the binary operation (like when
you multiply a number with 1, the result does not change, i.e.,
1 · n = n hence 1 is a “unit”): for all x, x ⋆ e = x = e ⋆ x.

Applying the binary operation to an element with its inverse
gives the identity: for all x in G, x ⋆ x−1 = e = x−1 ⋆ x.
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Groups

Example

The additive integers: (Z,+, 0,−( )). Addition and negation
are the usual operations.

The additive real numbers: (R,+, 0,−( )). Addition and
negation are the usual operations.

The multiplicative positive reals: (R+, ·, 1, ( )−1) where R+ are
the positive real numbers, the operation · is multiplication, and
the function ( )−1 takes r to 1

r .

Clock arithmetic: ({0, 1, 2, 3, . . . , 11},+, 0,−) where addition
and subtraction is going around the clock. 0 is the unit
because when you add 0 to any number you get back to the
original number. Notice that any non-negative integer would
have worked.

The trivial group: ({0},+, 0,−). This is the world’s smallest
group.
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Central Idea

Important Categorical Idea

Descriptions Using Morphisms.

Many times, even when we have a nice, clear definition or
description of a mathematical structure in terms of elements,
we still desire a description in terms of functions or
morphisms.

The reason that a description using functions or morphisms is
important is that once we have it, we can use it in many
different categories.

Whereas a description in terms of elements is good only in
one context, a description in terms of functions or morphisms
can be used in many different categories and contexts.
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Groups

Parts of the three axioms of a group can be seen as commutative
diagrams.

x, y, z � //
_

��

x ⋆ y, z
_

��

G × G × G
⋆×id //

id×⋆

��

G × G

⋆

��

G × G ⋆
// G

x, y ⋆ z � // x ⋆ (y ⋆ z) (x ⋆ y) ⋆ z
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Groups

x_

��

� // x, ∗_

��

G
� //

id

��

G × {∗}

id×u

��

G G × G⋆
oo

x x ⋆ e x, e�oo

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 1: Introduction — Sec. 1.4: Mini-course: Sets and Categorical Thinking



Groups

x � //
_

��

x, x_

��

G
∆ //

��

G × G

id×( )−1

��

G × G

⋆

��

x, x−1
_

��

{∗} u
// G

∗
� // e x ⋆ x−1.
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Groups

Just as a function is a way of mapping one set to another, and a
graph homomorphism is a way of mapping one graph to another, a
group homomorphism is a way of mapping one group to another.

Definition

Let (G, ⋆, e, ( )−1) and (G′, ⋆′, e′, ( )′−1) be groups. A group
homomorphism f : (G, ⋆, e, ( )−1) −! (G′, ⋆′, e′, ( )′−1) is a
function f : G −! G′ that satisfies the following two axioms

The function respects the group operation: for all x, y ∈ G,
f(x ⋆ y) = f(x) ⋆′ f(y)

The function respects the unit: f(e) = e′. Or:

G × G
f×f //

⋆
��

G′ × G′

⋆′

��

{∗}

u

}}

u′

""

G
f

// G′ G
f

// G′
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Groups

Example

Here are some examples of group homomorphisms.

There is always a unique group homomorphism from any
group to the trivial group where every element of the group
goes to 0 of the trivial group.

There is always a unique group homomorphism from the
trivial group to any group in which the 0 of the trivial group
goes to the identity of the group.

There is an inclusion group homomorphism inc : Z −! R.

There is a group homomorphism Z −! {0, 1, 2, 3, . . . , 11} that
takes every whole number x and sends it to the remainder
when x is divided by 12.
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Groups

Example

Here are some examples of group homomorphisms.

Let b be some positive real number called the “base”. There
is a exponential function b( ) : (R,+, 0,−) −! (R+, ·, 1, ( )−1)
that takes a real number r and sends it to b r . The two
requirements to be a group homomorphism turn out to mean
that b r+r ′ = b r · b r ′ (b( ) takes addition to multiplication) and
b0 = 1.

There is a logarithm function (that is the inverse of the
exponential function) Logb : (R+, ·, 1, ( )−1) −! (R,+, 0,−).
The function Logb takes a positive real number r to Logb(r).
The requirements to be a group homomorphism are the
well-known facts that Logb(r · r ′) = Logb(r) + Logb(r ′) (Logb

takes multiplication to addition) and Logb(1) = 0.
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Groups

Theorem
The composite of group homomorphisms is a group
homomorphism. The composition is an associative operation.

Theorem
There is an identity group homomorphism, IG , for any group G.
If f : G −! G′ is a group homomorphism then f ◦ IG = f and
IG′ ◦ f = f .
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Summary

We met sets, and functons between sets.

We saw that functions from and to a set are helpful in
determining properties of the set.

We discussed three operations on functions: composition,
extension, and lifting.

We met equivalence relations and quotient sets.

Sets, graphs, and, groups have nice notions of maps between
them. There are set functions, graph homomorphisms, and
group homomorphisms. These maps have nice properties.
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Foreshadow

In the next Chapter we will meet the definition of a category.

We will see that the collection of sets and functions between
sets form a category.

Similarly, we will see that the collection of graphs and graph
homomorphisms between graphs form a category.

And similarly, we will see that the collection of groups and
group homomorphisms between groups form a category.

In the next chapter we will see that many many other
structures and maps between the structures form a category.
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