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C’est l’harmonie des diverses parties, leur symétrie, l’eur heureux balancement; c’est
en un mot tout ce qui y met de l’ordre, tout ce qui leur donne de l’unité, ce qui nous

permet par conséquent d’y voir clair et d’en comprendre l’ensemble en même temps
que les détails.

It is the harmony of the diverse parts, their symmetry, their happy balance; in a word
it is all that introduces order, all that gives unity, that permits us to see clearly and to

comprehend at once both the ensemble and the details.
Henri Poincaré [211], page 25, and [212], page 30.
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Preface

... if we expand our experience into wilder and wilder regions of experience - every
once in a while, we have these integrations when everything’s pulled together into a

unification, in which it turns out to be simpler than it looked before.
Richard P. Feynman [73], page 15

Over the past few decades category theory has been used in many different areas
of mathematics, physics, and computers. The applications of category theory have
arisen in (to name just a few) quantum field theory, database theory, abstract algebra,
formal language theory, quantum algebra, theoretical biology, knot theory, universal
algebra, string theory, quantum computing, self-referential paradoxes, etc. This book
will introduce the category theory necessary to understand large parts of these different
areas.

Category theory studies categories, which are collections of structures and ways
of changing those structures. Categories have been used to describe many different
phenomena in mathematics and science. Our central focus will be monoidal categories,
which are souped-up categories that allow one to describe even more phenomena. The
theory of monoidal categories has emerged as a theory of structures and processes.

Category theory is a simple, extremely clear and concise language in which vari-
ous fields of science can be discussed. It is also a unifying language. Different fields
are expressed in this single language so that one can see common themes and prop-
erties. Category theory also brings together different fields by actually establishing
connections between them. It is particularly suited to show the “big picture.” Once
this language is understood, one is capable of easily learning an immense amount of
science, mathematics, and computing.

This book is an introduction to category theory. It begins with the basic definitions
of category theory and takes the reader all the way up to cutting-edge research topics.
Rather than going “down the rabbit hole” with a lot of very technical “pure” category
theory, our central focus will be examples and applications. In fact, an alternative title
of this text could be Category Theory by Example. A major goal is to show the ubiquity
of category theory and finally put an end to the silly canard that category theory is
“general abstract nonsense.” Another important goal is to show how a multitude of
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fields are related through category theory.
Within each chapter, whenever there is a definition or theorem, it is immediately

followed by examples and exercises that clarify the categorical idea and makes it come
alive. The fun is in the examples, and our examples are from many diverse disciplines.

This text contains twelve self-contained mini-courses on various fields. They are
short introductions to major fields such as quantum computing, self-referential para-
doxes, quantum algebra, etc. These sections do not introduce new categorical ideas.
Rather, they use the category theory already presented to describe an entire field. The
point we are making with these mini-courses is that, with the language of category
theory in your toolbox, you can master totally new and diverse fields with ease.

This book is different from other books on category theory. In contrast to other
books, we do not assume that the reader is already a mathematician, a physicist, or a
computer scientist. Rather, this book is for anyone who wants to learn the wonders
of category theory. We assume that reader is broad-minded, interested in many areas,
and wants to see how diverse areas are related to each other. The reader will not only
learn all about category theory, they will also learn an immense amount of science,
mathematics, and computers.

Another major difference between this book and other introductory category theory
books is the way the book is organized. While in most books, the concepts of category,
functor, and natural transformation are introduced in the first few pages, here we slowly
present each idea separately and in its correct time. With such a presentation, the novice
will not be overwhelmed.

Organization
Chapter 1 is an introduction that places category theory in its historical and philosoph-
ical context. The introduction ends with a discussion of constructions on sets which
will be useful for the rest of the text. Chapters 2, 3, and 4 are a simple introduction to
category theory. Chapter 2 contains the basic definitions and properties of categories.
Chapter 3 deals with special structures within a category. The real magic begins in
Chapter 4 where we see how different categories relate to each other.

Chapters 5, 6, and 7 discuss monoidal categories. Chapter 5 describes monoidal
categories, which are categories with extra structure. Chapter 6 deals with the relation-
ships between monoidal categories. The core of the book is Chapter 7, where several
variations of monoidal categories are presented with many of their properties and ap-
plications.

The final three chapters contain some advanced topics. Many categorical ways of
describing structures are explored in Chapter 8. Chapter 9 has a sampling of research
areas in advanced category theory. We conclude with Chapter 10 which is a collection
of more mini-courses from many different areas.

At the end of each chapter, there is a self-contained mini-course on a single topic.
Every chapter and mini-course ends with several pointers to where you can learn more
about the particular topic.

Appendix A contains Venn diagrams that describe the relationships of various
structures used throughout the text.
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Appendix B is an index of the categories that appear in the text.
Appendix C has some suggestions for further study of category theory and its ap-

plications.
Appendix D has answers to selected exercises.

Ancillaries
This text does not stand alone. I maintain a web page for the text at

www.sci.brooklyn.cuny.edu/~noson/MCtext.html.
Please send any and all comments and suggestions to

noson@sci.brooklyn.cuny.edu.
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Chapter 1

Introduction

So the problem is not so much to see what nobody has yet seen, as to think what
nobody has yet thought concerning that which everybody sees.

Arthur Schopenhauer

We gently introduce the world of category theory. In Section 1.1, a little of the
historical and philosophical context is provided. It shows how unification has always
been a motivating factor of category theory. Section 1.2 explains the motivation for
monoidal categories. We then lay out the structure of the text in Section 1.3. Some
standard notation is also presented there. Section 1.4 is a mini-course that uses con-
structs on sets and functions to teach many categorical ideas.

1.1 Categories
Category theory began with the intention of relating and unifying two different areas of
study. The aim was to characterize and classify certain types of geometric objects by
assigning to each of them certain types of algebraic objects as depicted in Figure 1.1.
(In detail, the geometric objects are structures called topological spaces, manifolds,
bundles, etc. The algebraic objects are called groups, rings, abelian groups, etc. The
assignments have exotic names like homology, cohomology, homotopy and K-theory,
etc.) Researchers realized that if they were going to relate geometric objects with
algebraic objects they needed a language that is neither specialized to a geometric
content nor an algebraic content. Only with such a general language can one discuss
both fields.

Category theory was invented by Samuel Eilenberg and Saunders Mac Lane [67].
They described various collections of mathematical objects. Each collection was called
a category. There was a collection of geometric objects and a collection of algebraic
objects. Eilenberg and Mac Lane were interested in many different categories and in
order to relate one category with another, they formulated the notion of a functor which
— like a function — assigns to each entity in one category an entity in another category.
They went further and formulated the notion of a natural transformation which is a
way of relating one functor to another functor. (In a sense, a natural transformation

1



2 CHAPTER 1. INTRODUCTION

Geometric Objects Algebraic Objects

• •
homology

// ∗ ∗ ∗

• •
cohomology

// ∗

•
homotopy

// ∗

• • •

... // ∗ ∗

Figure 1.1: Relating geometric objects to algebraic objects.

transfers the results of one functor to the results of another functor.) These structures
can be visualized as

category A

functor F

++

functor G

33
natural transformation α ⇓ category B.

(1.1)
There is category A and category B. These categories are related by functor F and by
functor G. And, finally, these functors are related by natural transformation α.

What is a category? It is a collection of structures called objects of a particular
type, and a collection of transformations or processes between the objects. We call
these transformations or processes morphisms or maps. If a and b are objects and f is

a morphism from a to b we write it as f : a −! b or a
f
// b . We can visualize part

of a category as Figure 1.2. The morphisms are to be thought of as ways of transforming
objects. As time went on, the morphisms between objects took central stage. Category
theory became not only the study of structures but also the study of transformations or
processes between structures. One of the main properties of processes is that they can
be combined. That is, one process followed by another process can be combined into
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Figure 1.2: An example of part of a category. Every object has an identity morphism
(id).

a single process. In a category, if there is a morphism from object a to object b called
f and a morphism from object b to object c called g, then there exists an associated
morphism from object a to object c written as g ◦ f and called “g composed f ,” or “g
following f ,” or “g after f .” This can be drawn as follows:

a
f

//

g◦ f

&&
b

g
// c. (1.2)

This composition is the most fundamental part of a category.
Categories are related to more familiar structures called directed graphs. A directed

graph is a structure that has objects (also called “vertices,” “nodes,” or “points”) and
morphisms (also called “arrows,” or “directed edges”) between them. One can view
a category as a souped-up directed graph. Categories, like directed graphs, also have
objects and morphisms, but within categories, one morphism after another can be com-
posed. A directed graph is used to deal with various phenomena of interconnectivity.
A category, with its extra structure, deals with more sophisticated notions of intercon-
nectivity (such as reachability). A category can also be seen as a generalization of a
group. A group is a set where one can combine elements to form other elements. In
a category, one can combine morphisms that follow one another. Graphs and groups
are ubiquitous in modern science and mathematics. Categories — as generalizations of
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both structures — are even more pervasive.
Since categories are disassociated from any specific field or area, category theory

received the reputation of being a language without content. Because of this, the field
was derided by some as “general abstract nonsense.” However, it is precisely this
independence from any field which gives category theory its power. By not being
formulated for one particular field, it is capable of dealing with any field. At first,
category theory was extremely successful in dealing with various fields of mathematics.
As time went on, researchers realized that many branches of science that deal with
structures or processes can be discussed in the language of category theory. Computer
science is the study of computational processes, and hence, has taken a deep interest
in category theory. More recently, category theory has been shown to be very adept
at discussing structures and processes in physics. Researchers have also shown that
category theory is great at discussing the structures and processes of chemistry, biology,
artificial intelligence, and linguistics.

Many diverse fields are shown to be related because they are discussed in the single
language of category theory. Researchers have found similar theorems and patterns in
areas that were thought to be unrelated. Moreover, in the past few decades, category
theory has further unified different fields by revealing amazing relationships between
them. There are functors from a category in one field to a category in a totally dif-
ferent field that preserve properties and structures. Such property-preserving functors
show that the two fields are similar. For example, quantum algebra is a field that uses
categorical language to show how certain algebraic structures are related to geometric
structures like knot theory. Another prominent example is topological quantum field
theory, which is a branch of math and physics that uses functors to unite relativity and
quantum theory. Quantum computing is a field that sits at the intersection of com-
puter science, physics, and mathematics and can easily be understood using various
categorical structures.

1.2 Monoidal Categories
In the early 1960s, Jean Bénabou and Saunders Mac Lane described categories that
have more structure called monoidal categories or tensor categories. In these cat-
egories, one can “multiply” or “combine” objects. Symbolically, within a monoidal
category, object a and object b can be combined to form object a ⊗ b (read “a tensor
b”). As always in category theory, one is interested not only in combining objects but
also in combining morphisms. With morphisms f : a −! a′ and g : b −! b′, there
exists objects a ⊗ b, a′ ⊗ b′, and there also is a morphism f ⊗ g which we write as

a
f

// a′

⊗ or a ⊗ b
f⊗g

// a′ ⊗ b′.
b g

// b′

(1.3)

Notice that there are two ways of combining morphisms in a monoidal category.
There is f ◦ g and there is f ⊗ g. In physics, the combination f ◦ g corresponds to
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performing one process after another while the combination f ⊗ g corresponds to per-
forming two independent processes. In computers, the combination f ◦ g corresponds
to sequential processes, while f ⊗ g corresponds to parallel processes. In mathematics,
the interplay of the two combinations of morphisms is very important.

Classical algebra is the branch of mathematics that deals with sets and operations on
those sets. For sets of numbers and the addition operation, we have the rule that x+y =
y+x while in general, for subtraction, x−y , y−x. In the theory of monoidal categories
there are rules that govern the relationship between a ⊗ b and b ⊗ a. What about the
relationship between (a ⊗ b) ⊗ c and a ⊗ (b ⊗ c)? Within monoidal categories there are
many possible relationships when dealing with these combined objects. For each rule
relating these operations, there will be a corresponding type of monoidal category. In
Chapter 7, we will see many different types of monoidal categories. This variability
allows for many phenomena to be modeled by monoidal categories. The area that deals
with the different types of rules among operations is called coherence theory (i.e., how
the various operations cohere with each other) or higher-dimensional algebra. This
area of study has become pervasive, and it is believed that higher-dimensional algebra
will arise even more frequently in the science and mathematics of the coming decades.

1.3 The Examples and the Mini-courses
This text is centered on the examples. Our goal is to show the pervasiveness of cat-
egories, and in particular, monoidal categories. We also want to emphasize how cat-
egories can reveal the interconnectedness of various fields. We do so by introducing
many examples from many different areas. Immediately following a definition or a
theorem of category theory there are lots of examples that illustrate the idea. There
are also some examples that are left to the reader as exercises. It is important to realize
that although this book is chock-full of examples, we have barely scratched the surface.
The literature of category theory has many more examples. We chose the examples that
arise most frequently or are the easiest to understand. The reader will be directed to
places in the literature where other examples are described. We are showing the beauty
of category theory but only revealing the tip of the iceberg.

Most of the examples can be loosely split into three broad groupings: mathematics,
physics, and computers. The problem is that the boundaries between these different
areas are hazy. For example, is quantum computing a part of computer science, physics
or abstract mathematics? Is knot theory a part of mathematics or physics? There are
no firm boundaries.

Since most readers are familiar with sets and functions between sets, we usually try
to first show an idea or definition in terms of sets. In later chapters, it will become ap-
parent that sets and functions between sets are not the right context to examine certain
phenomena. This is where category theory really gets interesting.

The examples are spread throughout the book. To illustrate, in Chapter 2, a category
will be introduced. In Chapter 3, some properties of this category will be described.
This category will be related to other categories in Chapter 4. In Chapter 5 we will
show that the category has a monoidal structure, and we will see how that monoidal
structure relates to the monoidal structure of other categories in Chapter 6. This same
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category and variations of this category will be shown to have even more structure in
Chapter 7. We will also see how this category arises in various mini-courses. By the
time the reader finishes the book, the category will be an old friend.

Not all categories are introduced early on. In order not to overwhelm the reader in
the beginning, we will introduce many categories in later chapters as well. Our aim is
readability and understanding.

These examples will take the reader rather far. In mathematics, the reader will
meet lots of algebra and topology. In physics we will see the basics of quantum theory.
In computers we will see how categories are good for describing certain models of
computation and some advanced logic.

Due to space limitations and by concentrating on examples, we are going to omit
some results in pure category theory. We only describe the category theory required to
understand the examples. In Appendix C, we point out various places where one can
learn more (pure) category theory.

Category theory is a language that can deal with many different areas of science.
The really fun part of category theory is that once one has this language in their toolbox,
one can easily pick up whole new branches of science. We show this flexibility with
little mini-courses. At the end of every chapter is a little self-contained section that
describes a whole field with the category theory already learned. Mini-courses in later
chapters depend on the knowledge of earlier mini-courses. In Chapter 10, we offer
several other mini-courses.

One of the intended mini-courses for this book was on the topic of theoretical com-
puter science. Within that mini-course there were sections on models of computation,
computability theory, complexity theory, and several other topics. Some of the deep-
est ideas and theorems of modern computers and mathematics, e.g., Turing machines,
unsolvable problems, the P=NP question, Kurt Gödel’s incompleteness theorem, in-
tractable problems, Turing’s Halting problem, etc.,were met and explained using sim-
ple categorical language. While writing about these topics, I was surprised at the ease in
which complicated ideas of theoretical computer science can be expressed and proved
using category theory. That mini-course took on a life of its own and grew out of this
book and it became its own book, Theoretical Computer Science for the Working Cat-
egory Theorist [274]. Consider that book a companion volume of this text for readers
interested in those fascinating topics.

This book owes a tremendous debt to previous works.

• I “cut my teeth” learning category theory from Saunders Mac Lane’s Categories
for the Working Mathematician [180]. This is the classic text by one of the
founders of category theory. It influenced my thinking and this book in the most
profound way. As the title implies, Mac Lane assumed that the reader knows
large parts of mathematics before opening his book. My goal with this book is
to give to a larger audience the beauty of category theory as Mac Lane did.
• John Baez and Michael Stay wrote a wonderful paper “Physics, Topology, Logic

and Computation: A Rosetta Stone” [24] that highlights connections between
many different fields. I would like to think of this book as an explanation and an
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expansion of that paper.
• I learned much from Christian Kassel’s textbook Quantum Groups [134]. His

clarity and exactness is an inspiration.
• This book attempts to be as readable as Michael Barr and Charles Wells’ text-

book Category Theory for Computing Science [33]. Their work goes through
large segments of category theory with many examples along the way. We try to
do the same but with examples from physics and mathematics as well.

It must be noted that this is not a history book. We are not going to say who
thought of some particular construction or example first. Some of the examples in this
book came from other books and papers. Some examples are just known in the folklore
of category theory. And we made up some examples. The history is too complicated
for us to disentangle and is of absolutely no pedagogical use to the novice. We name
some places to learn about the history of category theory in Appendix C.

There are many potential topics that could have gone into this book. Painful choices
had to be made. In the end, topics were chosen based on a desire to provide as diverse
a set of examples as possible to satisfy a broad readership, with a natural bias to those
areas which the author feels more confident to address. I would like to believe that the
topics chosen will be important as we march into the unfathomable future.

Finally, I would like to apologize to all my friends in the category theory commu-
nity if I neglected their favorite example or did not discuss an area in which they did
great work. It was not my intention to omit anyone’s work.

In order to improve readability, for the most part, we keep to the following notation.

• Categories are in blackboard bold font: A,B,C,D,Circuit,Set, . . .
• Objects in general categories are the first few lowercase Latin letters: a, b, c, d, a′, b′, a′′ . . .
• Morphisms in general categories are lowercase Latin letters: f , g, h, i, j, k, f ′, g′′, . . .
• Functors are capital Latin letters: F,G,H, I, J, . . .
• Natural transformations are lowercase Greek letters: α, β, γ, δ, η, κ, . . .
• Higher-dimensional morphisms will be capital Greek letters: Γ,∆,Θ,Φ,Ψ, . . .
• Sets of numbers: N,Z,Q,R,C.
• 2-Categories are in blackboard bold font with a line above: A,B,C,D,Cat . . .

• 3-Categories are in blackboard bold font with a two lines above: A,B,C,D, 2Cat . . .

There are several different types of arrows in this book.

• Morphism, map or functor: //

• The input and output of a function or a functor: � // or � //

• Inclusion or injection: �
�

//

• Surjection or full functor: // //

• Natural transformation: +3
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1.4 Mini-course: Sets and Categorical Thinking
Category theory is not just a language that is capable of describing an immense amount
of science and mathematics. Rather, it is a new and innovative way of thinking. One
of the central ideas is that we define properties of objects by the way they interact with
other objects.

Important Categorical Idea 1.4.1. Morphisms Are Central. Properties and
structures in a category can be described by the morphisms of the category. That
is, the objects do not stand alone. One must see how the objects relate to each
other with morphisms. The objects have to be seen in context of the morphisms.

In particular, many properties of an object b can be understood by looking
at the collections of morphisms a −! b for various simple objects a. Similarly,
many properties of b are described by looking at collections of morphisms b −!
c for various simple objects c. ⃝

In order to get a feel for this, we take an in-depth look at the familiar world of sets
and functions between sets. We show that many of the usual ideas and constructions
about sets can be described with functions between sets. This mini-course will also be
a gentle reminder of many concepts that are needed in the rest of the text. Throughout
this book, we will point back to equations, diagrams, and ideas found in this section.

Sets and Operations

Definition 1.4.2. A set is a collection of elements. If S is a set and x is an element
of S , we write x ∈ S . If x is not an element of S we write x < S .

Example 1.4.3. We will deal with both infinite sets and finite sets. Some of the most
important infinite sets of numbers are

• The natural numbers, N = {0, 1, 2, 3, . . .}.
• The integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
• The rational numbers, Q = {mn : m and n in Z and n , 0}.
• The real numbers, R, that is, all numbers on the real number line.
• The complex numbers, C = {a + bi : a and b in R}.

□

We begin by discussing several operations on sets. Let S and T be sets. If s is in S
and t is in T , we write an ordered pair of the elements as (s, t). The set of all ordered
pairs is called the Cartesian product of sets S and T

S × T = {(s, t) : s ∈ S , t ∈ T }. (1.4)
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Example 1.4.4. If Pants = {black, blue1, blue2, gray} is the set of pants that you own,
and S hirts = {white, blue, orange} is the set of shirts that you own, then the set of
Outfits is

Pants × S hirts =



(black, white), (black, blue), (black, orange),

(blue1, white), (blue1, blue), (blue1, orange),

(blue2, white), (blue2, blue), (blue2, orange),

(gray, white), (gray, blue), (gray, orange)


(1.5)

(True scholarly category theorists do not care if their clothes fail to match!) □

Technical Point 1.4.5. The most important aspect of an ordered pair is its order. In
contrast, sets are just collections, and as such, do not have a preferred order. The set
{s, t} is considered to be the same set as {t, s}. In contrast, the pair (s, t) is not considered
the same as (t, s). Hence, we cannot simply use two curly brackets to describe ordered
pairs. There are other ways of describing an ordered pair of elements from S and T .
For example, we could write them as ⟨s, t⟩ or {s, t, {s}} (where we collect the elements
but indicate the first element by putting it into a set by itself), or even {s, t, {t}} (where
we indicate the second element by putting it into a set by itself). There is nothing
special about the notation (s, t). (We will see this again in the beginning of Section 3.1)

♡

The most interesting property about a finite set is the number of elements in such a
set. For every finite set S , we write |S | to denote the number of elements in S .If there
are m elements in S and n elements in T , then there are mn elements in S × T . In
symbols we write this as

|S × T | = |S | · |T |. (1.6)

Exercise 1.4.6. How many elements are in Pants? How many elements are in S hirts?
How many elements in Outfits? Show that the above formula works.

1.4.6 4, 3, 12 = 4 · 3.

■

We can generalize the notion of ordered pairs to ordered triples, ordered 4-tuples,
ordered 5-tuples, etc. If there are n sets, S 1, S 2, . . . , S n, then an ordered n-tuple is
written as (s1, s2, . . . , sn) where si is in S i. The set of all n-tuples is S 1 × S 2 × · · · × S n.
The number of n-tuples follows a generalization of Equation (1.6):

|S 1 × S 2 × · · · × S n| = |S 1| · |S 2| · · · |S n|. (1.7)

Exercise 1.4.7. In addition to pants and shirts, an outfit might consist of a hat, socks,
and shoes. How many outfits are there if there are m hats, n pairs of socks, p pairs of
shoes, q pants and r shirts?
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1.4.7 m · n · p · q · r.

■

Another operation performed on sets is the union. Let S and T be sets. The union
of S and T is the set S

⋃
T which contains those elements that are in S or in T .

S
⋃

T = {x : x ∈ S or x ∈ T }. (1.8)

It is important to notice that if there is some element that is in both S and in T then it
will occur only once in S

⋃
T . This is because when dealing with a set, repetition does

not matter. The set {a, b, c, b} is considered the same set as {a, b, c}.
A related operation is the disjoint union. Given sets S and T , one forms the disjoint

union S ⨿ T which contains the elements from S and T but considers elements that
are in both sets as different elements. One way this is done is by tagging every element
with extra information that says which set it comes from. This way an element that
is both in S and in T would be considered two different elements. For example, if
S = {a, b, c, x, y} and T = {q,w, b, x, e, r}, then

S ⨿ T = {(a, 0), (b, 0), (c, 0), (x, 0), (y, 0), (q, 1), (w, 1), (b, 1), (x, 1), (e, 1), (r, 1)}, (1.9)

where the elements of S are tagged with a 0 and the elements of T are tagged with a 1.
In general for sets S and T , we have

S ⨿ T = (S × {0})
⋃

(T × {1}). (1.10)

The formula for the number of elements in the disjoint union is |S ⨿ T | = |S | + |T |.

Exercise 1.4.8. When does the union of two sets have the same number of elements
as the disjoint union of those same sets?

1.4.8 When the two sets have nothing in common, i.e., when the intersection of the
two sets is empty.

■

Functions
The central idea of this mini-course is the notion of functions between sets and how
they determine properties of sets.

Important Categorical Idea 1.4.9. Not Things, But Morphisms Between
Things. In category theory, whenever we have a notion (for example, a set),
the immediate next task is to consider how these notions relate to each other (for
example, functions are ways for sets to relate to each other.) As we have stated,
category theory is not about “things,” but about how “things” relate to “things.”
Relations between objects are usually described by morphisms or functions be-
tween the objects.
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Following this rule, once we describe the morphisms between the objects
we must immediately ask what is between the morphisms. Usually the answer
will be other morphisms. The computer scientist might protest that this recursive
procedure will lead into an infinite loop. It will! We will see this in Section 9.4
when we describe infinite levels of morphisms in higher-dimensional category
theory. Such structures are a reflection of this important idea that is at the center
of category theory. ⃝

Definition 1.4.10. Let S and T be sets. A function f from S to T , written
f : S −! T is an assignment to every element of S an element of T . The value
of f on the element s is written as f (s) (“ f of s”). If f (s) = t we write s 7! t (“s
maps to t”).

It is important to understand the difference between the symbol−! and the symbol
7!. The symbol −! goes between two sets. It describes a function from one set to
another. In contrast, the symbol 7! goes from an element in the first set to an element
in the second set. It describes how the function is defined.

Example 1.4.11. For every set S , there is an identity function idS : S −! S which
takes every element to itself. In symbols it is defined as idS (s) = s or s 7! s. □

Following Important Categorical Idea 1.4.1, let us look at how morphisms to a set,
determine properties of a set. Functions can be used as a way of describing or choosing
elements of a set. Consider a one-element set, {∗}. (There are many one-element sets
such as {a}, {b}, {Bill}, etc.) For a set S , a function f : {∗} −! S picks out one element
of S . The single element ∗ goes to the selected element s in S . In symbols, f (∗) = s or
∗ 7! s.

Example 1.4.12. Let S be the set {Jack, Jill, Joane, June, Joe, John}. The element Joe
in S can be described as a function f : {∗} −! S where f (∗) = Joe. We might want to
distinguish this function by calling it fJoe : {∗} −! S . There will be other functions
like fJill : {∗} −! S where fJill(∗) = Jill. For this set of six elements, there are six
different functions from {∗} to S . □

If we are interested in choosing two elements of S , we can look at functions from
a two-element set to S . So f : {0, 1} −! S will choose two elements of S . The first
element is f (0) and the second element is f (1). If f (0) , f (1) then f will choose two
different elements of S . Every such function chooses two elements of S . Functions
from {a, b, c} to S will choose three elements of S . This can go on: if we wanted to
choose n elements of a set, we would look at functions of the form

{1, 2, . . . , n} −! S . (1.11)
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Definition 1.4.13. A set T is a subset of S if every element of T is an element
of S . We write this as T ⊆ S . If T is a subset of S but not equal to S , we call
T a proper subset and write T ⊊ S or T ⊂ S . This is the case when there is at
least one element in S that is not in T . If T is a subset of S , there is an inclusion
function that takes every element of T to its corresponding element of S which
is written as inc : T ↪−! S . There is a special set that has no elements called the
empty set and denoted ∅. Since it is true that whatever is in ∅ (nothing) is in any
other set, we have that the empty set is a subset of every set. Furthermore, for
every set S , there is a unique function from the empty set to S . We sometimes
denote this function as ! : ∅ −! S .

Subsets of a set are of fundamental importance. We shall be interested in the collection
of all subsets of a particular set.

Definition 1.4.14. For a set S , the set of all subsets of S is called the powerset
of S and is denoted P(S ). In other words,

P(S ) = {T : T is a subset of S }. (1.12)

Example 1.4.15. For the set {a}, the powerset is P({a}) = {∅, {a}}. The powerset of a
two element set {a, b} is P({a, b}) = {∅, {a}, {b}, {a, b}}. The powerset of a three-element
set {a, b, c} is P({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Whenever we
add an element to a set, we double the number of elements in the powerset. We have
following rule: if S has n elements, then P(S ) has 2n elements. In symbols, |S | = n
implies |P(S )| = 2n. We can also write this as |P(S )| = 2|S |. □

Functions can be used to describe subsets.

Definition 1.4.16. For any set S and subset T ⊆ S , there is an associated char-
acteristic function χT : S −! {0, 1}. This function assigns either 1 or 0 to every
element s of S . If s is in T , the characteristic function assigns a 1 to s, and if s is
not in T , it assigns a 0 to s, i.e.,

χT (s) =


1 : s ∈ T

0 : s < T.
(1.13)

(The Greek letter χ is pronounced “chi” and is supposed to remind you of the
first syllable of “characteristic”.) The function χT tells which elements of S are
in T and which elements of S are not in T . Characteristic functions establish a
correspondence between subsets of S and functions from S to {0, 1}.

Example 1.4.17. Let S be the set {Jack, Jill, Joane, June, Joe, John}. Consider the
subset T = {Jack, Joe, John} of S that contains all the boys in S . This subset can be
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described by the function χT : S −! {0, 1} which can be visualized as

Jack �

++

Jill �

##

Joane �

++

June �

))

1

Joe
'

33

John
+

55

0

(1.14)

□

Exercise 1.4.18. For the sets of numbers, we know that N ⊊ Z ⊊ Q ⊊ R ⊊ C. Give
the characteristic function for each of these proper subsets.

1.4.18 Let us just focus on the subset Q ⊊ R. The characteristic function χQ : R −!
{0, 1} is defined as follows:

χQ(r) =


1 : r is rational

0 : r is not rational.

The others are done similarly.

■

A characteristic function assigns the elements of S to one of two possible values.
There might be a need to assign one of many values to every element of S . For example,
a function S −! {a, b, c, d} assigns to every element of S one of these letters which
can stand for different ideas. In general, a function

S −! {1, 2, . . . , n} (1.15)

assigns every element of S one of n numbers. We can also assign to every element of S
an element of [0, 1], the real interval between 0 and 1. Such a function may correspond
to assigning a probability to every element.

Example 1.4.19. In school, every student usually has an associated grade point average
(GPA). This is written as a function S tudents −! [0, 4]. □

If S is a set, then there is a function called the diagonal function ∆ : S −! S × S
which takes every element to an ordered pair of the same element. In symbols, for s in
S we have

∆(s) = (s, s). (1.16)

If f : S −! S ′ and g : T −! T ′ are functions then there exists a function f ×
g : S × T −! S ′ × T ′ that takes an ordered pair of elements and applies f to the first
element and g to the second. In symbols, the function is defined for elements s of S
and t of T as

( f × g)((s, t)) = ( f (s), g(t)) ∈ S ′ × T ′. (1.17)
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In a sense, this process is a parallel process. The function f processes s while the
function g processes t.

Exercise 1.4.20. Let f : N −! R be defined by f (n) =
√

n and g : R −! Z be the
ceiling function denoted as g(r) = ⌈r⌉. (The ceiling functions outputs the least integer
greater than or equal to the input.) What is ( f × g)((5,−5.1))?

1.4.20 (
√

5,−5).

■

Definition 1.4.21. There are some special types of functions. We say f : S −! T
is

• one-to-one or injective if different elements in S go to different elements
in T . That is, for all s and s′ in S , if s , s′ then f (s) , f (s′). Another way
to say this is that if f (s) = f (s′), then it must be that s = s′. This means
that if the function takes elements to the same output, the elements must
have started off equal.
• onto or surjective if for every element t in T , there is an s in S such that

f (s) = t.
• an isomorphism or a one-to-one correspondence or a bijection if f is

one-to-one and onto. That is, for every element s of S there is a unique
element t of T so that f (s) = t and for every element t of T there is a
unique element s of S so that f (s) = t. When there are sets S and T with
an isomorphism between them, we say the sets are isomorphic and write
this as S � T .

Isomorphism of sets is not the same idea as equality of sets. Consider a simple
example: the set {x} and the set {y}. Although these two sets have exactly the same
number of elements, they are not equal. They are only isomorphic.

Exercise 1.4.22. Explain why two finite sets that have the same number of elements
are isomorphic. ■

Exercise 1.4.23. Show that the Cartesian plane, R × R, is isomorphic to the plane of
complex numbers, C.

1.4.23 The isomorphism will take a pair of real numbers (r1, r2) ∈ R×R to the complex
number r1 + ir2 ∈ C where i =

√
−1.

■

One of the central ideas about sets is that given sets S and T we can form a set which
consists of all functions from S to T . So while we looked at examples of particular
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functions, we will also be interested in the collection of all functions from one set to
another set. This collection will have interesting structure. We call this collection a set
of functions or a function set or a Hom set and we denote it as Hom(S ,T ) or T S . (The
notation Hom(S ,T ) comes from the word “homomorphism” which is a vestige of the
algebraic origins of the idea. The notation T S is similar to exponentiation because the
function set has similar properties to exponentiation.)

Exercise 1.4.24. Write down the set of all the functions from the set {a, b, c} to the set
{0, 1}.

1.4.24 Each of the following lines is a function.

f (a) = 0 f (b) = 0 f (c) = 0

f (a) = 0 f (b) = 0 f (c) = 1

f (a) = 0 f (b) = 1 f (c) = 0

f (a) = 0 f (b) = 1 f (c) = 1

f (a) = 1 f (b) = 0 f (c) = 0

f (a) = 1 f (b) = 0 f (c) = 1

f (a) = 1 f (b) = 1 f (c) = 0

f (a) = 1 f (b) = 1 f (c) = 1

■

We saw that every element in a set S can be described as a function {∗} −! S . This
correspondence between elements of S and functions from {∗} to S shows that

S � S {∗} = Hom({∗}, S ). (1.18)

Using characteristic functions, we saw in Definition 1.4.16 that there is a corre-
spondence between subsets of S and functions from S to {0, 1}. This correspondence
can be stated as

P(S ) � {0, 1}S = Hom(S , {0, 1}). (1.19)

We will denote the set {0, 1} as 2 and then write this as

P(S ) � 2S = Hom(S , 2). (1.20)

Example 1.4.25. Consider the simple binary addition operation + : N × N −! N. Let
us write this function with its inputs clearly marked as follows

( ) + ( ) : N × N −! N. (1.21)

Now consider the function ( ) + 5: N −! N. This is a function with only one input.
We could also make another function of one variable ( ) + 7: N −! N. In fact we can
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do this for any natural number. We can define a function that inputs a natural number
and outputs a function from natural numbers to natural numbers. That is, there is a
function Φ : N −! Hom(N,N) which is defined as Φ(n) = ( ) + n. The information
described by the ( ) + ( ) function is the same as the information described by the Φ
function.

Notice that what we said about + really applies to every function with two inputs.
If f : S × T −! U is a function from S × T , then for every t ∈ T there is a function
f ( , t) : S −! U. This shows that there is a function f ′ : T −! Hom(S ,U). It is easy
to see that the assignment described by any function f has the same information as the
assignment described by the function f ′. That is, f and f ′ relay the same information.

□

This example brings to light the following important theorem about sets.

Theorem 1.4.26. For sets S , T and U there is an isomorphism

Hom(S × T,U) � Hom(T,Hom(S ,U)) or US×T � (US )T (1.22)

⋆

Proof. To show that these two sets are isomorphic, consider f : S × T −! U. From
this function let us define an f ′ : T −! Hom(S ,U). For a t in T we have the function
f ′(t) : S −! U which is defined as follows: for s in S , let f ′(t)(s) = f (s, t). This
function has the same information as f . Constructing f from f ′ is left to the reader. ♣

Let us count how many functions there are between two finite sets. Consider S with
|S | = m and T with |T | = n, and a function f : S −! T . For each element s in S there
are n possible values of f (s) in T . For two elements in S there are n · n possibilities of
choices in T . In total, there are n · n · · · · · n (m times) possible maps. So

|Hom(S ,T )| = |T S | = nm = |T ||S |. (1.23)

Remark 1.4.27. For three sets S , T , and U, we have

|Hom(S × T,U)| = |US×T | by definition or notation

= |U ||S×T | by Equation (1.23)

= |U ||S |·|T | by Equation (1.6)

= (|U ||S |)|T | by arithmetic

= |Hom(S ,U)||T | by Equation (1.23)
= |Hom(T,Hom(S ,U))| by definition.

Notice that the rule about exponentiation usually learned as children, m(n·p) = (mn)p is
expanded to a rule about sets and functions. ♠
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Operations on Functions

Often we are going to take two functions and perform an operation to get another
function. Three such operations are composition, extension, and lifting1 Remarkably,
many ideas about functions can be understood as operations in one of these three forms.

The simplest operation is composition. If there is a function f : S −! T and a
function g : T −! U, then the composite of them is a function h = g ◦ f : S −! U
that is defined on an s in S as h(s) = g( f (s)). We write these functions as

S
f

//

h=g◦ f

��

T

g

��

U.

(1.24)

We say that f and g are factors of h or h factors through T . This diagram is called
a commutative diagram. It means that if you start with any element s in S and you
apply the functions f followed by g to go from S to U, you will get to the same resulting
element as applying the function h to the element s. In detail, for all s, we have that
g( f (s)) = h(s). The diagram is “commutative” because we can go around the triangle
this way or that way. There will be many such diagrams in the coming pages. In all
the cases, start from any set and follow all the paths of composible functions to another
set, and you will get the same element. Throughout this text, unless otherwise stated,
all diagrams are commutative.

Example 1.4.28. Consider the set of real numbers, R. Let a and b be real numbers.
Consider the function ( ) · a : R −! R that takes any real number and multiplies it by
a. There is also a function ( ) · b : R −! R that takes any real number and multiplies
it by b. The composition of these two functions is the function ( ) · (a · b) : R −! R
that takes any real number and multiplies it by a · b as in the following commutative
diagram

R
( )·a

//

( )·(a·b)

��

R

( )·b

��

R.

(1.25)

One can make similar compositions with other arithmetic operations. □

1Technically, extension and lifting are not operations. Composition is an operation because if you take
two composable functions, you will get a unique composiiton function. In contrast, given two functions of a
certain type, their extension and their lifiting are not necessarily unique. There might be many extension and
many liftings for two function. But we will use the word “operation” for these cases also.
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Exercise 1.4.29. Show that function composition is associative. That is, let f : S −!
T , g : T −! U and h : U −! V , and show that h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

1.4.29 There are two ways of associating the functions: h◦ (g◦ f ) and (h◦g)◦ f . These
two function are the same. On input s of S , both functions have the value h(g( f (s))).

■

The fact that function composition is associative will be used many times through-
out this text.

When dealing with the identity function, the input is the same as the output. This
has an interesting consequence when dealing with composition. If you compose a func-
tion with an identity map, then you get the original function. In detail, for f : S −! T ,
idS : S −! S , and idT : T −! T , we have

f ◦ idS = f and idT ◦ f = f . (1.26)

We can see these equations as the following commutative diagram:

S
idS //

f= f◦idS

��

S

f

��

f=idT ◦ f

��

T
idT

// T.

(1.27)

Example 1.4.30. Evaluation of a function can be seen as composition. Let f : S −! T
be a function and let an element be described by the function g : {∗} −! S . Then the
value of f on the element that g chooses is the element that f ◦ g chooses, as in

{∗}
g

//

f◦g

��

S

f

��

T.

(1.28)

The function f ◦ g : {∗} −! T picks out the output of f . If g performs the assignment
∗ 7! s, then f ◦ g performs the assignment ∗ 7! f (s). □

Example 1.4.31. If f : S −! T and A is a subset of S with inclusion function
inc : A ↪−! S , then the restriction of f to A is the function f | : A −! T which is
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given as the composition

A �
� inc //

f |= f◦i

��

S

f

��

T.

(1.29)

□

Theorem 1.4.32. The three properties of functions that we saw in Definition 1.4.21
can be described with function composition. For non-empty sets S and T , the function
f : S −! T is

• one-to-one if and only if there exists a g : T −! S such that g ◦ f = idS

S
f

//

idS

��

T

g

��

S .

(1.30)

(Proof. The existence of a g such that the diagram commutes implies f is one-to-
one. If f (s) = f (s′) then apply g to both sides of the equation and get g( f (s)) =
g( f (s′)). But g ◦ f = idS implies s = s′.
If f is one-to one, then there exists a g such that the diagram commutes. Let
t ∈ T . Assign g(t) to be the unique s such that f (s) = t. If t is not an output of f
then it does not matter what value you give to g(t).)
• onto if and only if there exists a g : T −! S such that f ◦ g = idT

T
g

//

idT

��

S

f

��

T.

(1.31)

(Proof. The existence of a g implies f is onto. The function f is onto because
for any t ∈ T , the function g has g(t) = s for some s ∈ S . This s gives an input
to f whose output is t, i.e., f (s) = f (g(t)) = idT (t) = t.
Onto implies the existence of g such that the diagram commutes. Let g(t) equal
any s such that f (s) = t. There must be one such t because f is onto. This proof
assumes the axiom of choice which we will meet later.)
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• isomorphism or one-to-one correspondence if and only if there exists a
g : T −! S such that g ◦ f = idS and f ◦ g = idT . Or putting the previous
two triangles together, we have

S
f

//

idS

��

T

g

��

idT

��

S
f

// T.

(1.32)

Another way to express this is the following diagram.

S T

f

idSg◦ f =

g

idT f◦g= (1.33)

We will see variations of this diagram again and again.

⋆

A second operation of functions is an extension. In detail, if f : R −! T is a
function and R is a subset of S with the inclusion function inc : R ↪−! S , then an
extension of f along inc is a function f̂ : S −! T such that the following commutes

R �
� inc //

f

��

S

f̂

��

T.

(1.34)

In English, f̂ extends f to a larger domain.

Example 1.4.33. As a simple example, consider R to be a set of students and

f : R −! {A, B,C,D, F} (1.35)

assigns every student a grade. If some new students came into the class, the teacher
would have to extend f to give grades to all the students (including the new ones) as
f̂ : S −! {A, B,C,D, F}. We want f̂ to assign the same grades as f did for any of the
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original students. This is clear with the following commutative diagram:

{original students} �
� inc //

f

##

{original and new students}

f̂

yy

{A, B,C,D, F}

(1.36)

□

Example 1.4.34. Let {3, 5} be a set of two real numbers. There is an obvious inclusion
of the two real numbers into the set of all numbers inc : {3, 5} ↪−! R. Let f : {3, 5} −!
R be any function that picks two values. Then, there exists a function f̂ : R −! R that
extends f .

{3, 5} �
� inc //

f

��

R.

f̂

��

R

(1.37)

This extension is another way of describing the simple idea that given any two points
on the plane, there is a straight line that passes through both of them. This can be
visualized as

3 5

f̂

f (3)
f (5)

(1.38)

In detail, the extended line is given by the following formula

f̂ (x) = mx+b =
∆y
∆x

x+b =
f (5) − f (3)

5 − 3
x+

5 f (3) − 3 f (5)
5 − 3

=
f (5) − f (3)

2
x+

5 f (3) − 3 f (5)
2

.

(1.39)
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Be aware that this extension is one of many ways to extend f . There is nothing special
about this extension other than it is usually taught in the first year of high school. □

Thinking of a straight line as a function, the previous example of an extension can
be ... extended...

Example 1.4.35. Let {x0, x1, x2, . . . , xn} be a set of n + 1 different real num-
bers and let inc : {x0, x1, x2, . . . , xn} ↪−! R be the inclusion function. Every
f : {x0, x1, x2, . . . , xn} −! R has an extension called f̂ : R −! R along inc which
is a polynomial function of degree at most n.

{x0, x1, x2, . . . xn}
� � inc //

f

��

R

f̂

��

R

(1.40)

This can be visualized as

x0 x1 x2

(1.41)

The function f̂ is called the “Lagrange interpolating polynomial” of the points de-
scribed by f . (We will not use this in the text.) □

While extensions are usually about inclusion functions, we can also use the setup
of an extension for functions that are not inclusion functions.

Example 1.4.36. A function f : S −! T is a constant function if it outputs the same
value for any input. That means there is some t0 ∈ T such that for all s ∈ S we
have f (s) = t0. We can describe a constant function by using the same notation of an
extension but without the inclusion function. In particular, f is a constant function if
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there exists an “extension” f̂ : {∗} −! T of f as in the diagram

S
! //

f

��

{∗}

f̂

��

T

(1.42)

where the function ! : S −! {∗} is the unique function that always outputs ∗, the only
element it can output. Another way of saying this, is that f is a constant function if it
can be written as a function that factors through {∗}. □

Exercise 1.4.37. Show that if idS : S −! S can be extended along the function
f : S −! T , then f is a one-to-one function.

1.4.37 This is essentially the content of Diagram (1.30).

■

The third operation of functions is a lifting. Consider an onto function p : T −!
T ′. Let f : S −! T ′ be any function. A lifting of f along p is a function f̂ : S −! T
that makes the following triangle commute

S
f̂

//

f

��

T

p

��

T ′.

(1.43)

In a sense, we “lift ” the map f from the target of p to the source of p. Here is the
simplest example of lifting.

Example 1.4.38. Consider the following commutative diagram:

{∗}
f̂

//

f

��

T

p

��

T ′.

(1.44)

Here a function f : {∗} −! T ′ picks out an element of T ′. A lifting of f is f̂ : {∗} −! T
which picks out an element of T . The fact that the diagram is commutative, means that
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p will take outputs of f̂ to outputs of f . In other words, if f picked out t0 ∈ T ′, then f̂
will pick an element in T that will map onto t0 under p. There might be many liftings.
The set of all possible elements that a lifting can pick is denoted p−1(t0) ⊆ T which is
called the “preimage” of p. □

Example 1.4.39. Here is a cute example of a lifting from the world of politics. Let
T be the set of 320 million American citizens and let T ′ be the set of 50 states. The
function p takes every citizen to the state they live in. Let S be a set of three elements
such as {a, b, c}. The function f : S −! T ′ chooses three states. A lifting of f along
p is a function f̂ : S −! T which will choose three citizens. Each of the three will be
from the states f chooses. There are obviously many such liftings. □

Example 1.4.40. Let us build on the last example. Let T , T ′ and p be as in the last
example. Let S be the set {a, b, c}×T ′, i.e., pairs of letters and states. The f : S −! T ′

function is defined as follows: f (b,New Jersey) = New Jersey, i.e., f takes a letter and
a state and outputs the same state. Notice that for each state, there are three elements
in S that go to that state. For example

f (a,New Jersey) = f (b,New Jersey) = f (c,New Jersey) = New Jersey.

A lifting of f along p is a function f̂ : S −! T which will choose three citizens from
each state. There are many such liftings. □

Exercise 1.4.41. Show that if idT : T −! T can be lifted along the function f : S −!
T , then f is an onto function. ■

One can see these three operations — composition, extension, and lifting — as
three sides of a triangle:

•
Lifting

//

Composition

��

•

Extension

��
•

(1.45)

Each side uses the other two sides as the input to the operation. Composition will
be used on every page of this text. We will see (especially in Section 9.2) that the
extension and lifting operations are very important in many contexts besides sets and
functions.

The rest of this mini-course will be concerned with equivalence relations, graphs,
and groups. These three subjects are structures based on sets. The eager reader might
want to skip these pages and go directly to the beginning of the next chapter.



1.4. MINI-COURSE: SETS AND CATEGORICAL THINKING 25

Equivalence Relations
We are not only interested in how a set is related to other sets. Sometimes the elements
of a set are related to each other in interesting ways.

Definition 1.4.42. Let S be a set. A relation on S is a subset R of the set S × S .
The ordered pair (s1, s2) in R means s1 is related to s2.

Example 1.4.43. Let S be the set of citizens of the United States. Consider the follow-
ing relations on this set.

• R1 consists of those (s, t) where s and t are cousins.
• R2 consists of those (s, t) where s is the same age or older than t.
• R3 consists of those (s, t) where s and t live in the same state.
• R4 consists of those (s, t) where s and t belong to the same political party.

□

The following three properties of a relation will characterize the notion of “same-
ness.”

Definition 1.4.44. The relation R ⊆ S × S on a set S is

• reflexive if every element is related to itself: for all s in S , (s, s) is in R.
• symmetric whenever one element is related to another, then the other is

related to the first: for all s and t in S , if (s, t) is in R, then (t, s) is in R.
• transitive whenever s is related to t and t is related to u, then s is related to

u: for all s, t and u in S , if (s, t) is in R and (t, u) is in R, then (s, u) is in R.

Example 1.4.45. Let us look which properties are satisfied from the relations of Ex-
ample 1.4.43.

• The cousin relation R1 is not reflexive (no one is their own cousin); it is symmet-
ric; but it is not transitive (x can be a cousin to y through y’s mother’s side and y
can be a cousin to z through y’s father’s side. In this case x will, in general, not
be cousins to z.)
• The older relation R2 is reflexive (everyone is the same age as themselves), not

symmetric (if x is older than y then y is not older than or the same age as x), and
it is transitive.
• The state relation R3 is reflexive, symmetric, and transitive.
• The political party relation R4 is reflexive, symmetric, and transitive.

□

Many times a set of elements can be split up or partitioned into different subsets
where each subset will have all the elements with a particular property. For example,
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the set of cars can be split up by color. So there will be the subset of blue cars, the
subset of red cars, the subset of green cars, etc. The collection of all such subsets will
form a set itself. Formally this can be said as follows.

Definition 1.4.46. A relation on a set is an equivalence relation if it is reflex-
ive, symmetric, and transitive. We write such relations as ∼⊆ S × S and write
r ∼ s for (r, s) ∈∼. With an equivalence relation on the set S , we can describe
disjoint subsets of S called equivalence classes. If s is an element of S , then the
equivalence class of s is the set of all elements that are related to it:

[s] = {r ∈ S : r ∼ s} (1.46)

That is, [s] is the set of all elements that are “the same” as s. For a given set S
and an equivalence relation ∼ on S , we form a quotient set denoted S/ ∼. The
elements of S/ ∼ are all the equivalence classes of elements in S . There is an
obvious quotient function from S to S/ ∼ that takes s to [s].

Example 1.4.47. Let us examine the equivalence classes for the equivalence relations
of Example 1.4.43.

• Each equivalence class for the relation R3 consists of all the residents of a partic-
ular state. The quotient set contains the 50 equivalence classes corresponding to
the 50 States (we are ignoring abnormalities like Guam and Washington D.C.).
The quotient function takes every citizen to the state in which they reside.
• Each equivalence class for the relation R4 consists of all the people belonging to

a particular political party. The quotient set is a set whose elements correspond
to political parties. The quotient function takes every citizen to the political party
to which they belong (we are ignoring independents.)

□

Graphs
A directed graph is a common structure (based on sets) that has applications every-
where. Directed graphs also have many similarities to categories.

Definition 1.4.48. A directed graph G = (V(G), A(G), srcG, trgG) is

• a set of vertices, V(G), and
• a set of arrows, A(G).

Furthermore,

• every arrow has a source: there is a function srcG : A(G) −! V(G), and
• every arrow has a target: there is a function trgG : A(G) −! V(G).
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Figure 1.3: An example of a directed graph.

If f is an element of A(G) with srcG( f ) = x and trgG( f ) = y, we draw this arrow
as

x
f

// y . (1.47)

An example of a graph is Figure 1.3.

Example 1.4.49. Graphs are everywhere.

• A street map can be thought of as a directed graph where the vertices are street
corners and there is an arrow from one corner to the other if there is a one-way
street between them. When there is a two-way street, we might write it like this

∗
//

∗
oo

or ∗ ∗. (1.48)

Such an arrow is called a “symmetric edge.”
• An electrical circuit can be viewed as a directed graph. The vertices are the

branching points and edges might have resistors, batteries, capacitors, diodes,
etc. The arrows describe the direction of the flow of electricity.
• Computer networks can be seen as directed graphs where the vertices are com-

puters and there is an arrow from one computer to another if there is a way for
the first computer to communicate with the second.
• The billions of web pages in the World Wide Web form a directed graph. The

vertices are the web pages and there is an arrow if there is a link from one web
page to another.
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• Facebook can be seen as a directed graph. Every personal Facebook account is a
vertex, and there are arrows between two Facebook accounts if they are friends.
Notice that if x is friends with y then y must be friends with x. So all the arrows
are symmetric edges and the graph is called symmetric.
• All the people on Earth form a graph. The vertices are the people. There is an

arrow from x to y if x knows y. (We are not being specific as to what it means
to “know” someone.) There is an idea called “six degrees of separation,” which
says that in this graph, you never need to traverse more than six arrows to get
from any person to any other person. We are all connected!
• The collection of all sets and functions form a giant graph. In detail, the vertices

are all sets. The arrows are functions from a set to another set. (This will be a
motivating example of a category.)

□

A graph homomorphism is a way of mapping one graph to another. This will be
similar to what happens when we talk about mapping one category to another category.
Basically the vertices map to the vertices and the arrows map to the arrows but we insist
that they match up well.

Definition 1.4.50. Let G = (V(G), A(G), srcG, trgG) and G′ = (V(G′), A(G′), srcG′ , trgG′ )
be graphs. A graph homomorphism H : G −! G′ consists of

• A function that assigns vertices to vertices, HV : V(G) −! V(G′).
• A function that assigns arrows to arrows, HA : A(G) −! A(G′).

These two maps must respect the source and target of each arrow. That means:

• For all f in A(G), HV (srcG( f )) = srcG′ (HA( f )).
• For all f in A(G), HV (trgG( f )) = trgG′ (HA( f )).

Saying that these axioms are satisfied is the same as saying that the following two
squares commute:

A(G)
HA //

srcG

��

A(G′)

srcG′

��

A(G)
HA //

trgG

��

A(G′)

trgG′

��

V(G)
HV

// V(G′) V(G)
HV

// V(G′).

(1.49)

Another way to understand these requirements is to see what the maps HV and
HA do to a single arrow f (that is, f � // HA( f ) . We use the wavy arrow so
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that the reader can see what is going on easier.)

Graph G Graph G′

srcG( f )

f

��

� HV // HV (srcG( f )) = srcG′ (HA( f ))

HA( f )

��

� HA //

trgG( f ) �
HV // HV (trgG( f )) = trgG′ (HA( f ))

(1.50)

Just as we can determine many properties of sets by examining functions, we can
also determine many properties of graphs by examining graph homomorphisms from
simple graphs.

Example 1.4.51.

• A vertex of a graph G can be described by a graph homomorphism from the
one-vertex graph (∗) (no arrows) as follows H : ∗ −! G.
• A directed edge of a graph can be determined by a graph homomorphism from

the graph ∗ −! ∗ to G.
• A triangle in a graph G can be determined by a graph homomorphism from the

graph
∗ //

��

∗

��
∗

(1.51)

to the graph G.
• A path of length n in a graph G can be determined by a graph homomorphism

from the “snake” graph

∗ // ∗ // ∗ // · · · // ∗ (1.52)

of length n to G.

□

Exercise 1.4.52. Prove the following fact about a graph G. If there does not exist a
graph homomorphism that is surjective on vertices from G to the graph

a

fa

��

b

fb

��

(1.53)
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then G is weakly connected (for any two vertices, there is a sequence of edges in either
direction between them.)

1.4.52 We prove the contrapositive. If G is not weakly connected, then G will be able
to split the graph into two parts with no arrow from one part to the other part. There is
then a function from the graph to this two-vertex graph, where the nodes of one part of
the graph go to a, and all the arrows of that part go to the single arrow fa. The nodes
of the other part go to b and all the arrows of that part go to fb. If the graph is weakly
connected, then this partitioning would not be possible.

■

Exercise 1.4.53. Use graph homomorphisms to determine different types of paths in
a graph.

• How do you describe a simple path in a graph (a simple path is a path that does
not have repeated vertices)?
• What about a cycle of length n (a cycle is a path that starts and ends at the same

vertex)?
• Do the same for a simple cycle of length n (a simple cycle is a cycle in which the

only repeating vertex is the starting point which is the ending point).

1.4.53 • One-to-one graph homomorphisms from the “snake” graph, Diagram
(1.52), to any graph will correspond to simple paths.
• A cycle can be described as a graph homomorphisms from “ring” graphs. These

are graphs of the form
•

��
•

??

•

��
•

OO

•

��
•

__

where the dashed arrow is an ellipsis that possibly denotes many more arrows.
• One-to-one graph homomorphisms from the “ring” graphs will correspond to

simple cycles.

■

Exercise 1.4.54. Show that the composite of graph homomorphisms is a graph homo-
morphism. Also show that the composition is an associative operation.

1.4.54 Let H : G −! G′ and H′ : G′ −! G′′ be graph homomorphisms. Then H′◦H :
G −! G′′ is a graph homomorphism. The fact that H′ ◦ H preserves the sources of
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arrows amounts to the commutativity of the following diagram

A(G)
HA //

srcG

��

A(G′)

srcG′

��

H′A // A(G′′)

srcG′′

��

V(G)
HV

// V(G′)
H′V

// V(G′′),

which is assured because each square commutes. A similar argument must be made to
show that H′ ◦H preserves targets. The proof of the associativity of the composition of
graph homomorphisms comes from the fact that graph homomorphisms are functions
and is similar to the solution to Exercise 1.4.29.

■

Exercise 1.4.55. Define the identity graph homomorphism, IG, for any graph G.
Show that if H : G −! G′ is a graph homomorphism then H ◦ IG = H and IG′ ◦H = H.

1.4.55 The identity graph homomorphism is defined as IG,A(x) = x and IG,V ( f ) = f .
This graph homomorphism preserves the sources and targets of the arrows for trivial
reasons. The fact that it acts like a unit to composition is because it is essentially two
identity functions.

■

Groups
Another important structure that is based on sets and related to categories is a group. It
is nice to see the definition of a group from a function perspective.

First a discussion of operations. We all know what we mean by operations on
numbers. If you take numbers x and y, you can perform the addition operation, x + y.
You can also perform other operations like x − y or y · x. All of these are examples of
binary operations. Operations are really just functions. For a given set, S , a binary
operation is a function f : S × S −! S . For two elements s and s′, we write the
value of f as f (s, s′). A unary operation is a function that takes one element of S
and outputs one element of S , i.e., f : S −! S . An example of a unary operation is
the inverse operation that takes x and returns x−1. There are also ternary operations
f : S × S × S −! S and n-ary operations

f : S × S × · · · × S︸             ︷︷             ︸
n times

−! S (1.54)
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for all natural numbers n. If n = 0, then we write the 0-ary product as the set with one
element {∗} and a 0-ary operation is written as f : {∗} −! S which basically picks out
an element of S . Such an operation describes an element that does not change, i.e., a
constant.

Let us put this all together and give the formal definition of a group.

Definition 1.4.56. A group (G, ⋆, e, ( )−1) is a set G with the following three
operations:

• A binary operation: a function ⋆ : G ×G −! G.
• An identity: there is a special element e in G called the identity of the

group. This can be stated in a functional way: there is a 0-ary operation
u : {∗} −! G where u(∗) = e.
• An inverse operation: a unary operation ( )−1 : G −! G

These three operations satisfy the following axioms:

• The binary operation is associative: for all x, y and z, we have (x⋆ y)⋆ z =
x ⋆ (y ⋆ z).

• The identity acts like a unit of the binary operation (like when you multiply
a number with 1, the result does not change, i.e., 1 · n = n hence 1 is a
“unit”): for all x, x ⋆ e = x = e ⋆ x.
• Applying the binary operation to an element with its inverse gives the iden-

tity: for all x in G, x ⋆ x−1 = e = x−1 ⋆ x

Example 1.4.57. Here are some examples of groups.

• The additive integers: (Z,+, 0,−( )). Addition and negation are the usual opera-
tions.
• The additive real numbers: (R,+, 0,−( )). Addition and negation are the usual

operations.
• The multiplicative positive reals: (R+, ·, 1, ( )−1) where R+ are the positive real

numbers, the operation · is multiplication, and the function ( )−1 takes r to 1
r .

• Clock arithmetic: ({0, 1, 2, 3, . . . , 11},+, 0,−) where addition and subtraction is
going around the clock. 0 is the unit because when you add 0 to any number you
get back to the original number. Notice that we could have used another number
besides 11. In fact, any non-negative integer would have worked.
• The trivial group: ({0},+, 0,−). This is the world’s smallest group. It has only

one element and the operations work as expected.

□

Parts of the three axioms of a group can be seen as commutative diagrams in Figure
1.4. Around each of the commutative diagrams are maps showing the values of the
functions on elements.
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Exercise 1.4.58. The second diagram in Figure 1.4 shows the x = x ⋆ e axiom. Give
a commutative diagram for the x = e ⋆ x axiom.

1.4.58 It is essentially the same diagram but change the G × {∗} to {∗} ×G.

■

Exercise 1.4.59. The third diagram in Figure 1.4 shows the e = x ⋆ x−1 axiom. Give
the commutative diagram for the e = x−1 ⋆ x axiom.

1.4.59 It is essentially the same diagram with the id× ( )−1 map switched to ( )−1 × id.

■

Important Categorical Idea 1.4.60. Descriptions Using Morphisms. Many
times, even when we have a nice, clear definition or description of a mathemati-
cal structure in terms of elements, we still desire a description in terms of func-
tions or morphisms. The reason that a description using functions or morphisms
is important is that once we have it, we can use it in many different categories.
Whereas a description in terms of elements is good only in one context, a descrip-
tion in terms of functions or morphisms can be used in many different categories
and contexts. For example, we will see this morphism definition of a group arise
in other contexts besides sets and functions. ⃝

Just as a function is a way of mapping one set to another, and a graph homomor-
phism is a way of mapping one graph to another, a group homomorphism is a way of
mapping one group to another.

Definition 1.4.61. Let (G, ⋆, e, ( )−1) and (G′, ⋆′, e′, ( )′−1) be groups. A group
homomorphism f : (G, ⋆, e, ( )−1) −! (G′, ⋆′, e′, ( )′−1) is a function f : G −!
G′ that satisfies the following two axioms

• The function respects the group operation: for all x, y ∈ G, f (x ⋆ y) =
f (x) ⋆′ f (y)

• The function respects the unit: f (e) = e′
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We can write these two requirements as the following two commutative diagrams.

G ×G
f× f

//

⋆

��

G′ ×G′

⋆′

��

{∗}

u

��

u′

��

G
f

// G′ G
f

// G′

(1.55)

Technical Point 1.4.62. We did not insist that f respect inverses. Do not worry about
it. It is true without saying it because it is a consequence of the other two axioms. First
notice that in any group, x−1 is the unique inverse of the element x. To see this, imagine
that x has two inverses y and y′. Consider the following sequence of equalities

y = y ⋆ e by the unit axiom
= y ⋆ (x ⋆ y′) because y′ is the inverse of x

= (y ⋆ x) ⋆ y′ by the associativity axiom
= e ⋆ y′ because y is the inverse of x

= y′ by the unit axiom

This shows that y = y′. Now let us use this fact to show that inverses are preserved by
group homomorphisms. First consider

e′ = f (e) = f (x ⋆ x−1) = f (x) ⋆′ f (x−1). (1.56)

This shows that the inverse of f (x) is f (x−1). Since inverses are unique, we proved
f (x)−1 = f (x−1). ♡

Example 1.4.63. Here are some examples of group homomorphisms.

• There is always a unique group homomorphism from any group to the trivial
group where every element of the group goes to 0 of the trivial group.
• There is always a unique group homomorphism from the trivial group to any

group in which the 0 of the trivial group goes to the identity of the group.
• There is an inclusion group homomorphism inc : Z −! R.
• There is a group homomorphism Z −! {0, 1, 2, 3, . . . , 11} that takes every whole

number x and sends it to the remainder when x is divided by 12.
• Let b be some positive real number called the “base”. There is a exponential

function
b( ) : (R,+, 0,−) −! (R+, ·, 1, ( )−1) (1.57)

that takes a real number r and sends it to br. The two requirements to be a
group homomorphism turn out to mean that br+r′ = br · br′ (b( ) takes addition to
multiplication) and b0 = 1.
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• There is a logarithm function (that is the inverse of the exponential function)

Logb : (R+, ·, 1, ( )−1) −! (R,+, 0,−). (1.58)

The function Logb takes a positive real number r to Logb(r). The requirements to
be a group homomorphism are the well-known facts that Logb(r · r′) = Logb(r)+
Logb(r′) (Logb takes multiplication to addition) and Logb(1) = 0.

□

Exercise 1.4.64. Show that the composite of group homomorphisms is a group homo-
morphism. Also show that the composition is an associative operation.

1.4.64 Let f : G −! G′ and f ′ : G′ −! G′′ be group homomorphisms. Then ( f ′ ◦
f )(x) = f ′( f (x)). To show that composition preserves the group operations: for x, y ∈
G

( f ′◦ f )(x⋆y) = f ′( f (x⋆y)) = f ′( f (x)⋆′ f (y)) = f ′( f (x))⋆′′ f ′( f (y)) = ( f ′◦ f )(x)⋆′′( f ′◦ f )(y)

and
( f ′ ◦ f )(e) = f ′( f (e)) = f ′(e′) = e′′.

■

Exercise 1.4.65. Define the identity group homomorphism, idG, for every group
(G, ⋆, 0, ( )−1). Show that if f : (G, ⋆, e, ( )−1) −! (G′, ⋆′, e′, ( )′−1) is a group
homomorphism then f ◦ idG = f and idG′ ◦ f = f .

1.4.65 The identity trivially respects the group operations. The last part follows from
the fact that group homomorphisms are simply functions (that satisfy certain proper-
ties.)

■

Suggestions for Further Study
Most of the material found in this section can be found in any discrete mathematics or
finite mathematics textbook e.g. [226, 225]. This material can also be found in many
pre-calculus textbooks.

The importance of looking at functions between sets is central to all of category
theory. This is also stressed by two books coauthored by F. William Lawvere, one of
the leaders of category theory. Together with Robert Rosebrugh, Lawvere wrote Sets
for Mathematics [165] and together with Stephen H. Schanuel he wrote Conceptual
Mathematics [166].

The novice can find basic group theory in any introduction to modern algebra or
abstract algebra, e.g., [15, 79].

This idea that most of the operations on functions can be seen as compositions,
extensions and liftings (as in Diagram (1.45)) was taken from [265] where much of
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category theory is built from these operations. We will see more of extensions and
liftings in Section 9.2.

If you really want to learn more about categorical thinking, roll up your sleeves and
let us get to the rest of this book!
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x, y, z � //
_

��

x ⋆ y, z_

��

G ×G ×G
⋆×id //

id×⋆

��

G ×G

⋆

��

G ×G
⋆

// G

x, y ⋆ z � // x ⋆ (y ⋆ z) (x ⋆ y) ⋆ z

x_

��

� // x, ∗_

��

G
� //

id

��

G × {∗}

id×u

��

G G ×G
⋆

oo

x x ⋆ e x, e�oo

x � //
_

��

x, x_

��

G
∆ //

��

G ×G

id×( )−1

��

G ×G

⋆

��

x, x−1
_

��

{∗} u
// G

∗
� // e x ⋆ x−1.

Figure 1.4: Commutative diagrams of some of the axioms of a group
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Chapter 2

Categories

A good stack of examples, as large as possible, is indispensable for a thorough
understanding of any concept, and when I want to learn something new, I make it my

first job to build one.
Paul Halmos

[100], page 63.

With the ideas of set and functions in hand, we move on to the world of categories.
Section 2.1 begins with a formal definition of categories. It then proceeds to form a
giant stack of examples of categories from all over. In Section 2.2 we discuss some
simple properties of morphisms in categories. We elaborate on some simple categories
related to a category in Section 2.3. The chapter ends with Section 2.4, which is a
mini-course that teaches the basics of linear algebra. The study of linear algebra is
essentially an in-depth exploration of the category of vector spaces.

2.1 Basic Definitions and Examples

Before formally defining a category, let us summarize what we saw in Section 1.4
concerning sets and functions. The collection of sets and functions form a category.
By carefully examining this collection, we will see what is needed in the definition of
a category.

Example 2.1.1. Consider the collection of all sets. There are functions between sets.
If f is a function from set S to set T , then we write it as f : S −! T . We call S
the domain of f and T the codomain of f . Certain functions can be composed: for
f : S −! T and g : T −! U, there exists a function g ◦ f : S −! U which is defined
for s in S as (g ◦ f )(s) = g( f (s)). This composition operation is associative, which
means that for f : S −! T , g : T −! U, and h : U −! V , both ways of associating
the functions h ◦ (g ◦ f ) and (h ◦ g) ◦ f are equal to the function described as follows

s 7! f (s) 7! g( f (s)) 7! h(g( f (s))). (2.1)

39
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That is, h ◦ (g ◦ f ) = (h ◦ g) ◦ f and on s of S this function has the value h(g( f (s))).
For every set S , there is a function idS : S −! S , which is called the identity function
and is defined for s in S as idS (s) = s. These identity functions have the following
properties: for all f : S −! T , it is true that f ◦ idS = f and idT ◦ f = f . The collection
of sets and functions form a category called Set. This category is easy to understand,
and we use it to hone our ideas about many structures of category theory. □

Now for the formal definition of a category.

Definition 2.1.2. A categoryA is a collection of objects Ob(A) and a collection
of morphisms Mor(A) which has the following structure:

• Every morphism has an object associated to it called its domain: there is a
function domA : Mor(A) −! Ob(A).
• Every morphism has an object associated to it called its codomain: there is

a function codA : Mor(A) −! Ob(A). We write

f : a −! b or a
f

// b (2.2)

for the fact that domA( f ) = a and codA( f ) = b.
• Adjoining morphisms can be composed: if f : a −! b and g : b −! c,

then there is an associated morphism g ◦ f : a −! c. We can write these
morphisms as

a
f

//

g◦ f

&&
b

g
// c. (2.3)

• Every object has an identity morphism: there is a function identA : Ob(A) −!
Mor(A). We denote the identity of a as ida : a −! a or

a.

ida

��
(2.4)

This structure must satisfy the following two axioms:

• Composition is associative: given f : a −! b, g : b −! c, and h : c −! d,
the two ways of composing these maps are equal:

h ◦ (g ◦ f ) = (h ◦ g) ◦ f , (2.5)

i.e., they are the same map from a to d.
• Composition with the identity does not change the morphism: for any

f : a −! b the composition with ida is f , i.e., f ◦ ida = f , and composition
with idb is also f , i.e., idb ◦ f = f .
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Basic Examples
We will go through many examples. One might feel overwhelmed by all the examples.
You do not have to “get it” at the first reading. The point is that all of the examples
have the same feel to them. There are objects, there are morphisms, and they have to
satisfy certain properties. Press on!

Example 2.1.3. Let us mention three examples of categories that we already saw in
this text. Although we did not call them categories, the text and exercises showed that
they each have the structure of a category.

• Sets and functions form the category Set.
• Directed graphs and graph homomorphisms give us Graph.
• Groups and group homomorphisms make up Group.

□

The definition of a category is a “mouthful” that has many parts to it. There are
several important comments concerning this definition.

• We called the elements of Mor(A) the “morphisms” of the category. We will
also interchangeably use the words maps and arrows.
• Ob(A) and Mor(A) are called “collections” rather than the more set-theoretical

“sets” or “classes”. The reason for this is because we do not want to get bogged
down in the language of set theory. If you know the language of set theory, then
realize that sometimes our objects and morphisms will be sets and sometimes
proper classes (classes that are not sets). Often we will not specify which and
just use the word “collection.”
• It is important to notice that, if we have morphisms f : a −! b and g : b −! c,

then we write the composition as g ◦ f rather than f ◦ g. We do this because
in many categories the morphisms will be types of functions. When we apply
the composition of functions, it looks like g( f ( )) which is notationally closer to
g ◦ f than f ◦ g. As we get more and more used to the language we will write g f
rather than g ◦ f .
• Another way of seeing the definition of a category is to discuss collections of

morphisms. In the previous chapter we saw that for sets S and T we can look
at the collection of all set functions from S to T . Now we look at the set of all
morphisms between two objects. For objects a and b in category A, there is a
collection of all the morphisms from a to b which we write HomA(a, b). The
name “Hom” comes from the word “homomorphism” which is a vestige of the
algebraic background of category theory. We call these collections Hom sets
even though the collections might not be sets. Composition in the category in
terms of the Hom sets becomes the operation

◦ : HomA(b, c) × HomA(a, b) // HomA(a, c)

(g, f ) � // g ◦ f .

(2.6)
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∅ ∗

id

��
a //

id

��

b

id

��

0 1 2

a

id

��

b

id

��

a //

id

��

b

id

��

oo a //

��

id

��

b

id

��

��
c

id

DD

2◦ 2I 3

Figure 2.1: Several finite categories.

This means that we take an f : a −! b and a g : b −! c, and return g◦ f : a −!
c.
We refer to mappings between Hom sets as functions even though the Hom sets
might be a proper class. The fact that every element a of A has an identity
element means that there is a special morphism in HomA(a, a) that satisfies the
properties stated. As time goes on, and it is obvious what category we mean, we
will drop the subscript and write Hom(a, b).

The categories Set, Graph, and Group each have collections of objects and
morphisms that are infinite. Let us, however, look at some examples of categories with
finite collections of objects and morphisms.

Example 2.1.4. These finite categories are depicted in Figure 2.1. In detail,

• 0, the empty category, has no objects and no morphisms. All the axioms of being
a category are trivially true.
• 1 has one object and the single identity morphism on that object.
• 2 has two objects and three morphisms. Two of the morphisms are identity mor-

phisms on the two objects and the third morphism goes from one object to the
other.
• 2◦ has the two objects and the two identity maps but does not have the non-
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identity morphism.
• 2I is like 2 but there are two non-identity morphisms, and their compositions are

the identity morphisms. In total, it has two objects and four morphisms.
• 3 is a category with three objects, three identity morphisms, and three non-

identity morphisms. The non-identity morphisms form a commutative triangle.

Although these categories may seem trivial, they will be very useful. They provide
easy examples to explore concepts and have important roles as we explore category
theory. □

Example 2.1.5. Not only does the collection of all sets form a category, but each
individual set can also be thought of as having the structure of a category. Let S be a
set (it can be finite, infinite, or even a proper class, if you understand the jargon of set
theory.) We form the category d(S ) where the objects are the elements of S , and the
only morphisms are identity morphisms. The composition operation can only compose
identity maps with themselves. We call a category with only identity morphisms a
discrete category. For example the set S = {a, b, c, d} becomes the category:

a

ida

��

b

idb

��

c

idc

��

d.

idd

��

(2.7)

□

Let us go through more examples of categories.

Example from Computers
Here is an example of a category for someone who appreciates computer science.

Example 2.1.6. The category of computable functions CompFunc is central for
computer science. A function is computable if there exists a computer program that
can tell a computer how to describe the function. That means, there is a computer
program (written in some programming language) and if f (x) = y then when x is
entered into the computer as input, the program will output y. Computable functions
take certain forms of data as input and return certain forms of data as output. The
kind of input and output is called a type. A type is a class of data. Computers deal
with types like Nat (natural numbers), Int (integers), Real, Bool (Boolean), S tring,
etc. The objects of CompFunc are sequences (or products) of types. For example,
Int × Bool × Bool × Real. Given two sequences of types, a morphism of this category
will be a computable function from the first sequence of types to the second sequence
of types. A typical computable function might look like

f : Int × S tring × Bool −! Bool × Real × Real × Nat. (2.8)


