
Chapter 5

Architecture

Noson S. Yanofsky
c©March 24, 2007
noson@sci.brooklyn.cuny.edu

From the intrinsic evidence of his creation, the Great Architect of the Universe
now begins to appear as a pure mathematician.

Sir James Jeans
Mysterious Universe

Now that we have the mathematical and physical preliminaries under our belt,
we can move on to the nuts and bolts of quantum computing. At the heart of
a computer is the notion of a bit. Quantum computers use a generalization of
the concept of a bit called a qubit which shall be discussed in section 5.1. Bits
are manipulated by classical (logical) gates. In section 5.2, classical gates are
presented from a new and different perspective. From this angle, it is easy to
formulate the notion of quantum gates which manipulate qubits. As mentioned
in chapters 3 and 4, the evolution of a quantum system is reversible, i.e., ma-
nipulations that can be done must also be able to be undone. This “undoing”
translates into reversible gates. In section 5.3, we deal with reversible gates and
then move on to conclude with quantum gates in section 5.4.

. .
Reader’s Tip. Discussion of actual physical implementation of qubits and
quantum gates will be dealt with in chapter 11. �

. .

1

2 CHAPTER 5. ARCHITECTURE

5.1 Bits and Qubits

What is a bit? A bit is an atom of information that represents one of two
disjoint situations. There are many examples of bits:

• A bit is electricity traveling through a circuit or not (or high and low.)

• A bit is a switch turned on or off.

• A bit is a way of denoting “true” or “false.”

All these examples are saying the same thing: a bit is a way of describing a
system whose set of states is of size two. We usually write these two possible
states as 0 and 1, or

or F and T, etc.
Since we have become adept at matrices, let us use them as a way of rep-

resenting a bit. We shall represent 0–or better the state |0〉–as a two by one
matrix with a 1 in the 0’s row and a 0 in the 1’s row:

|0〉 =
[

0 1
1 0

]
(5.1)

We shall represent a 1, or state |1〉 as:

|1〉 =
[

0 0
1 1

]
(5.2)

Since these are two different representations (indeed orthogonal), we have an
honest-to-goodness bit. We will explore how to manipulate these bits in section
5.2.

5.1. BITS AND QUBITS 3

A bit is either in state |0〉 or in state |1〉, which was sufficient for the classical
world. Either electricity is running through a circuit or it is not. Either a switch
is on or it is off. Either a proposition is true or it is false. But either/or is not
sufficient in the quantum world. In that world, there are situations where we
are in one state and in the other simultaneously. In the realm of the quantum
world, there are systems where a switch is both on and off. One quantum
system can be in state |0〉 and in state |1〉. Hence we are led to the definition
of a qubit:

Definition 5.1.1 A quantum bit or a qubit is a way of describing a quantum
system of dimension two.

We shall represent a qubit as a two by one matrix with complex numbers

[
0 c0
1 c1

]
, (5.3)

where |c0|2 + |c1|2 = 1. Notice that a classical bit is a special type of qubit.
|c0|2 is to be interpreted as the probability that after measuring the qubit, it
will be found in state |0〉. |c1|2 is to be interpreted as the probability that
after measuring the qubit it will be found in state |1〉. Whenever we measure a
qubit, it automatically becomes a bit. So we shall never “see” a general qubit.
Nevertheless, they do exist and are the main characters in our tale. We might
visualize this “collapsing” of a qubit to a bit as

[1, 0]T

[c0, c1]T

666v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v6v

(((h(h(h(h(h(h(h(h(h(h(h(h(h(h(h(h(h

[0, 1].T

(5.4)

Following the normalization procedures that we learned in chapter 4 on page
???, any element of C2 can be converted into a qubit. For example, the vector

V =

5 + 3i

6i

 (5.5)

4 CHAPTER 5. ARCHITECTURE

has norm

|V | =
√
〈V, V 〉 =

√√√√√[5− 3i,−6i]

5 + 3i

6i

 =
√

34 + 36 =
√

70. (5.6)

So V describes the same physical state as the qubit

V√
70

=

5 + 3i√
70

6i√
70

 . (5.7)

After measuring the qubit V√
70

, the probability of it’s being found in state |0〉

is 34
70 , and the probability of it’s being found in state |1〉 is 36

70 .

Exercise 5.1.1 Normalize V =

15− 3.4i

2.1− 16i

.

It is easy to see that the bits |0〉 and |1〉 are the canonical basis of C2. So
any qubit can be written asc0

c1

 = c0 ·

1

0

 + c1 ·

0

1

 = c0|0〉+ c1|1〉. (5.8)

Exercise 5.1.2 Write V =

5 + 3i

6i

 as a sum of |0〉 and |1〉.

Let us look at several ways of writing different qubits. 1√
2

1

1

 can be

written as  1√
2

1√
2

 =
1√
2
|0〉+

1√
2
|1〉 =

|0〉+ |1〉√
2

. (5.9)

Similarly 1√
2

 1

−1

 can be written as

 1√
2

−1√
2

 =
1√
2
|0〉 − 1√

2
|1〉 =

|0〉 − |1〉√
2

. (5.10)

5.1. BITS AND QUBITS 5

It is important to realize that

|0〉+ |1〉√
2

=
|1〉+ |0〉√

2
. (5.11)

These are both ways of writing

 1√
2

1√
2

. In contrast,

|0〉 − |1〉√
2

6= |1〉 − |0〉√
2

(5.12)

The first ket is the vector

 1√
2

− 1√
2

 and the second ket is the vector

 − 1√
2

1√
2

.

However, the two kets are related:

|0〉 − |1〉√
2

= (−1)
|1〉 − |0〉√

2
. (5.13)

How are qubits to be implemented? In chapter 11, several different methods
will be explored. We might simply state some examples of qubit implementa-
tions for the time being:

• An electron might be in one of two different orbits around a nucleus of an
atom (ground state and excited state).

• A photon might be in one of two polarized states.

• A subatomic particle might have one of two spin directions.

There will be enough quantum indeterminacy and quantum superposition effects
within all these systems to represent a qubit.

Computers with only one bit of storage are not very interesting. Similarly,
we will need quantum devices with more than one qubit. Consider a byte, or
eight bits. A typical byte can look like

01101011. (5.14)

If we were to follow the way of describing bits as we did above, we would
represent the bits as follows:1

0

 ,
0

1

 ,
0

1

 ,
1

0

 ,
0

1

 ,
1

0

 ,
0

1

 ,
0

1

 . (5.15)

6 CHAPTER 5. ARCHITECTURE

We learned previously, that in order to combine systems, one should use the
tensor product and so we can describe the above byte as

|0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉. (5.16)

As a qubit, this is an element of

C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2. (5.17)

This can be written as a vector space in shorthand as (C2)⊗8. This is a complex
vector space of dimension 28 = 256. Since there is only one complex vector
space (up to isomorphism) of this dimension, this vector space is isomorphic to
C256.

We can describe our byte in yet another way: As a 28 = 256 row vector



00000000 0
00000001 0
...

...
01101010 0
01101011 1
01101100 0
...

...
11111110 0
11111111 0


. (5.18)

Exercise 5.1.3 Express the three bits 101 or |1〉 ⊗ |0〉 ⊗ |1〉 ∈ C2 ⊗C2 ⊗C2 as
a vector in (C2)⊗3 = C8. Do the same for 011 and 111.

This is fine for the classical world. However, for the quantum world, a
generalization is needed: every eight qubits can be written as



00000000 c0
00000001 c1
...

...
01101010 c106
01101011 c107
01101100 c108
...

...
11111110 c254

11111111 c255


(5.19)

where
∑255

i=0 |ci|2 = 1.

5.1. BITS AND QUBITS 7

In the classical world, you need to write the state of each bit of a byte
which amounts to writing eight bits. In the quantum world, a state of eight
qubits is given by writing 256 complex numbers. As we stated in section 3.4,
this exponential growth was one of the reasons why researchers started thinking
about quantum computing. If one wanted to emulate a quantum computer with
a 64 qubit register, one would need to store 264 = 18, 446, 744, 073, 709, 551, 616
complex numbers. This is beyond our current ability.

Let us practice writing two qubits in ket notation. The qubit pair can be
written as

|0〉 ⊗ |1〉. (5.20)

Since the tensor product is understood, we might also write these qubits as |0, 1〉
or |01〉. We might also look at these qubits as the four by one matrix


00 0
01 1
10 0
11 0

. (5.21)

Exercise 5.1.4 What vector corresponds to the state 3|01〉+ 2|11〉?

The qubit corresponding to

1√
3


1

0

−1

1

 (5.22)

can be written as

1√
3
|00〉 − 1√

3
|10〉+

1√
3
|11〉 =

|00〉 − |10〉+ |11〉√
3

. (5.23)

The tensor product of two states is not commutative.

|0〉 ⊗ |1〉 = |0, 1〉 = |01〉 6= |10〉 = |1, 0〉 = |1〉 ⊗ |0〉. (5.24)

The first ket describes the state where the first qubit is in state 0 and the second
qubit is in state 1. The second ket says that first qubit is in state 1 and the
second state is in state 0.

8 CHAPTER 5. ARCHITECTURE

5.2 Classical Gates

Classical logical gates are ways of manipulating bits. Bits enter and exit logical
gates. We shall need ways of manipulating qubits and will therefore study
classical gates from the point of view of matrices. As stated in section 5.1, we
represent n input bits as a 2n by 1 matrix and m output bits as a 2m by 1
matrix. How should we represent our logical gates? When one multiplies a 2m

by 2n matrix with a 2n by 1 matrix, the result is a 2m by 1 matrix. In symbols:

(2m by 2n) ? (2n by 1) = (2m by 1). (5.25)

So bits will be represented by column vectors and logic gates by matrices.
Let us try a simple example. Consider the NOT gate

NOT takes as input one bit, or a 2 by 1 matrix, and outputs one bit, or a
2 by 1 matrix. NOT of |0〉 equals |1〉 and NOT of |1〉 equals |0〉. Consider the
matrix

NOT =

0 1

1 0

 . (5.26)

This matrix satisfies0 1

1 0

1

0

 =

0

1

 0 1

1 0

0

1

 =

1

0

 , (5.27)

which is exactly what we want.
What about the other gates? Consider the AND gate. The AND gate is

different from the NOT gate because AND accepts two bits and outputs one
bit.

Since there are two inputs and one output, we will need a 21 by 22 matrix.
Consider the matrix

AND =

1 1 1 0

0 0 0 1

 . (5.28)

5.2. CLASSICAL GATES 9

This matrix satisfies

1 1 1 0

0 0 0 1




0

0

0

1

 =

0

1

 . (5.29)

We can write this as
AND|11〉 = |1〉. (5.30)

In contrast, consider another 4 by 1 matrix:

1 1 1 0

0 0 0 1




0

1

0

0

 =

1

0

 . (5.31)

We can write this as
AND|01〉 = |0〉. (5.32)

Exercise 5.2.1 Calculate AND|10〉.

What would happen if we put an arbitrary 4 by 1 matrix to the right of
AND?

1 1 1 0

0 0 0 1




3.5

2

0

−4.1

 =

 5.5

−4.1

 (5.33)

This is clearly nonsense. We are only permitted to multiply these classical gates
with vectors that represent classical states, i.e., column matrices with a single
1 entry and all the other entries must be 0. In the classical world, the bits are
only one state and are described by such vectors. Only later, when we delve
into quantum gates will we have more room (and more fun).

The OR gate

can be represented by the matrix

OR =

1 0 0 0

0 1 1 1

 . (5.34)

10 CHAPTER 5. ARCHITECTURE

Exercise 5.2.2 Show that this matrix performs the OR operation.

The NAND gate

is of special importance because every logical gate can be made out of NAND
gates. Let us try to work out which matrix would correspond to NAND. One
way is to sit down and consider for which of the four possible input states of
two bits (00,01,10,11) does NAND output a 1 (answer: 00,01,10) and in which
states does NAND output a 0 (answer: 11). From this we realize that NAND
can be written as

NAND =
[00 01 10 11

0 0 0 0 1
1 1 1 1 0

]
. (5.35)

Notice that the column names correspond to the inputs and the row names
correspond to the outputs. 1 in the jth column and ith row means that on
entry j the matrix/gate will output i.

There is, however, another way in which one can determine the NAND gate.
The NAND gate is really the AND gate followed by the NOT gate.

In other words, we can perform the NAND operation by first performing the
AND operation and then the NOT operation. In terms of matrices we can write
this as

NOT ? AND =

0 1

1 0

 ?
1 1 1 0

0 0 0 1

 =

0 0 0 1

1 1 1 0

 = NAND. (5.36)

Exercise 5.2.3 Find a matrix that corresponds to NOR.

This way of thinking of NAND rings to light a general situation. When we
perform a computation, often we have to carry out one operation followed by
another.

5.2. CLASSICAL GATES 11

// A // B // (5.37)

We call this performing sequential operations. If matrix A corresponds
to performing an operation and matrix B corresponds to performing another
operation, then the multiplication matrix B ? A corresponds to performing the
operation sequentially. Notice that B ? A looks like the reverse of our picture
which has, from left to right, A and then B. Do not be alarmed by this. The
reason for this is because we read from left to right and hence we depict processes
as going from left to right. We could have easily drawn the above figure as

Boo Aoo oo (5.38)

with no confusion. 1 We shall follow the convention that computation flows
from left to right and leave out the arrows. And so a computation of A followed
by B shall be denoted

A B (5.39)

1If this text were written in Arabic or Hebrew, this problem would not even arise.

12 CHAPTER 5. ARCHITECTURE

Let us be formal with the number of inputs and the number of outputs. If
A is an operation with m input bits and n output bits, then we shall draw this
as

/m A /n (5.40)

The matrix A will be of size 2n by 2m. Say B takes the n outputs of A as
input and outputs p bits, i.e.,

/m A /n B /p (5.41)

Then B is represented by 2p by 2n matrix B, and performing one operation
sequentially followed by another operations corresponds to B ? A which is a
(2p by 2n) ? (2n by 2m) = (2p by 2m) matrix.

Besides sequential operations, there are parallel operations:

5.2. CLASSICAL GATES 13

A

B

(5.42)

Here we are doing A to some bits and B to other bits. This will be repre-
sented by A ⊗ B (see section 2.7). Let us be exact with the number of inputs
and the number of outputs.

/m A /n

/m′
B /n′

(5.43)

A will be of size 2n by 2m. B will be of size 2n′
by 2m′

. Following equation
[CITE EQUATION] in section 2.7, A⊗B is of size 2n2n′

= 2n+n′
by 2m2m′

=
2m+m′

.

Exercise 5.2.4 In Exercise CITE EXERCISE we proved that A ⊗ B ∼= B ⊗
A. What does this fact correspond to in terms of doing parallel operations to
different bits?

14 CHAPTER 5. ARCHITECTURE

Combination of sequential and parallel operations gates/matrices will be
circuits. We will, of course, construct some really complicated matrices, but
they will all be decomposable into the sequential and parallel composition of
simple gates.

Exercise 5.2.5 In Exercise CITE EXERCISE, we proved that for matrices of
the appropriate sizes A,A′, B and B′ we have the following equation

(B ⊗B′) ? (A⊗A′) = (B ? A)⊗ (B′ ? A′). (5.44)

What does this correspond to in terms of performing different operations to
different (qu)bits? Hint: Consider the following figure

A B

A′ B′

(5.45)

Example 5.2.1 Let A be an operation that takes n inputs and gives m outputs.
Let B take p < m of these outputs and leave the other m− p outputs alone. B
outputs q bits

/n

A

/p B /q

/m−p

(5.46)

5.2. CLASSICAL GATES 15

A is a 2m by 2n matrix. B is a 2m−p by 2q matrix. Since nothing should be
done to the m − p bits, we might represent this as the 2m−p by 2m−p identity
matrix Im−p. We do not draw any gate for the identity matrix. The entire
circuit can be represented by the following matrix

(B ⊗ Im−p) ? A. (5.47)

Example 5.2.2 Consider the circuit

This is represented by

OR ? (NOT⊗AND). (5.48)

Let us see how the operations look like as matrices. Calculating, we get:

NOT⊗AND =

0 1

1 0

⊗
1 1 1 0

0 0 0 1

 =


0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

 .
(5.49)

And so we get

OR ? (NOT⊗AND) =

0 0 0 0 1 1 1 0

1 1 1 1 0 0 0 1

 . (5.50)

Let us see if we can formulate DeMorgan’s laws in terms of matrices. One
of DeMorgan’s law states that ¬(¬P

∧
¬Q) = P

∨
Q. In pictures this looks like

In terms of matrices this corresponds to

NOT ?AND ? (NOT⊗NOT) = OR. (5.51)

16 CHAPTER 5. ARCHITECTURE

First, let’s calculate the tensor product:

NOT⊗NOT =

0 1

1 0

⊗
0 1

1 0

 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 . (5.52)

This DeMorgan’s law corresponds to the following identity of matrices:

0 1

1 0

 ?
1 1 1 0

0 0 0 1

 ?


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 =

1 0 0 0

0 1 1 1

 . (5.53)

Exercise 5.2.6 Multiply out these matrices and confirm the identity.

There is one last piece of notation that must be included. Usually at the end
of a computation a measurement will be performed. A measurement of qubit(s)
shall be denoted with

FE

 (5.54)

Exercise 5.2.7 Formulate the other DeMorgan’s law ¬(¬P
∨
¬Q) = P

∧
Q in

terms of matrices

Exercise 5.2.8 Write the matrix that would correspond to a one-bit adder. A
one-bit adder adds the bits x, y and c (a carry-bit from an earlier adder) and
outputs the bits z and c′(a carry-bit for the next adder). There are three inputs
and two outputs, so the matrix will be of dimension 22 by 23. Hint: Mark
the columns as 000, 001, 010, . . . , 110, 111 where column, say, 101 corresponds
to x = 1, y = 0, c = 1. Mark the rows as 00, 01, 10, 11 where row, say, 10,
corresponds to z = 1, c′ = 0. When x = 1, y = 0, c = 1, the output should be
z = 0 and c′ = 1. So place a 1 in the row marked 01 and a 0 in all other rows.

5.3. REVERSIBLE GATES 17

Exercise 5.2.9 In Exercise CITE EXERCISE, you wrote the matrix that cor-
responds to a one-bit adder. Check that your results are correct by writing the
circuit in terms of classical gates and then converting the circuit to a big matrix.

5.3 Reversible Gates

Not all of the logical gates that we dealt with in section 5.2 will work in quantum
computers. In the quantum world, all operations that are not measurements
are reversible and are represented by a unitary matrix. The AND operation is
not reversible. Given an output of |0〉 from AND, one cannot determine if the
input was |00〉, |01〉 or |10〉. So from an output of the AND gate, one cannot
determine the input and hence AND is not reversible. In contrast, the NOT
gate and the Identity gates are reversible. In fact, they are their own inverses.

I ? I = I NOT ?NOT = I2. (5.55)

Reversible gates have a history that predates quantum computing. Our
everyday computers lose energy and generate a tremendous amount of heat. In
the 1960’s Rolf Landauer analyzed computational processes and showed that
erasing information is what causes energy loss and heat. This notion has come
to be known as the Landauer Principle.

In order to gain a real-life intuition of why erasing information dissipates
energy, consider a tub of water with a wall separating the two sides as in Figure
(5.1).

Figure 5.1: Tub with water in no state

This can be used as a way of storing a bit of information. If all the water is
pushed to the left, then the system is in state |0〉 and if all the water is pushed
to the right, then the system is in state |1〉 as in Figure (5.2).

What would correspond to erasing information in such a system system?
If there were a hole in the wall separating the 0 and 1 region, then the water
could seep out and we would not know what state the system would be in. One
can easily place a turbine where the water is seeping out (see Figure (5.3)) and
generate energy. Hence loosing information means energy is being dissipating.

Notice also that writing information is a reversible procedure. If the tub is
in no state and we push all the water to the right and set the water to state |0〉,
all one needs to do is remove the wall and the water will go into both regions
resulting in no state. This is shown in Figure (5.4).

18 CHAPTER 5. ARCHITECTURE

Figure 5.2: Tub with water in state |0〉 and state |1〉

Figure 5.3: State |0〉 dissipating and creating energy.

Figure 5.4: Reversibility of writing.

So we have reversed the fact that information was written. In contrast,
erasing information is not reversible. Start at state |0〉, then remove the wall
that separates the two parts of the tub. That is erasing the information. How
should we go back to the original state? There are two possible states to return
to as in Figure(5.5).

The obvious answer is that we should push all the water back to state |0〉.
But the only way we know that |0〉 is the original state is if that information is
copied into your brain. In that case, the system is both the tub and the brain
and we did not really erase the fact that state |0〉 was the original state. Our
brain is storing the information.

We can get another intuition of this by considering two people, Alice and
Bob. If Alice writes a letter on an empty blackboard and Bob walks into the
room, then Bob can erase the letter that Alice wrote on the board and return
the blackboard into its original pristine state. Thus, writing is reversible. In
contrast, if there is a board with writing on it and Alice erases the board, then
when Bob walks into the room he cannot write what Alice had on the board.

5.3. REVERSIBLE GATES 19

Figure 5.5: Irreversibility of erasing.

Bob does not know what was on the board before Alice erased it (it was not
copied to his brain.) So Alice’s erasing was not reversible. 2

We have found that erasing information is an irreversible, energy-dissipating
operation. In the 1970’s, Charles H. Bennett continued along these lines of
thought. If erasing information is the only operation that uses energy, then
a computer that does not erase or lose information would be reversible and
would not use any energy. Bennett started working on reversible circuits and
programs.

What examples of reversible gates are there? We have already seen that the
identity gate and NOT gates are reversible. What else is there? Consider the
following controlled-not gate .

|x〉
•

|x〉

|y〉 �������� |x⊕ y〉

(5.56)

This gate has two inputs and two outputs. The top input is the control bit.
It controls what the output will be. If |x〉 = |0〉, then the bottom output of |y〉

2We shall revisit some of these mind-bending ideas in chapter 10.

20 CHAPTER 5. ARCHITECTURE

will be the same as the input. If |x〉 = |1〉 then the bottom output will be the
opposite. If we write the top qubit first and then the bottom qubit, then the
controlled-not gate takes |x, y〉 to |x, x ⊕ y〉 where ⊕ is the binary exclusive or
operation.

The matrix that corresponds to this reversible gate is


00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

. (5.57)

The controlled-not gate can be reversed by itself. Consider the following
figure

|x〉
•

|x〉
•

|x〉

|y〉 �������� |x⊕ y〉 �������� |x⊕ x⊕ y〉

(5.58)

State |x, y〉 goes to |x, x⊕ y〉 which further goes to |x, x⊕ (x⊕ y)〉. This last
state is equal to |x, (x⊕ x)⊕ y〉 because ⊕ is associative. Since x⊕ x is always
equal to 0, this state reduces to the original |x, y〉.

Exercise 5.3.1 Show that the controlled-NOT gate is its own inverse by mul-
tiplying the corresponding matrix by itself and getting the identity.

An interesting reversible gate is the Toffoli gate:

5.3. REVERSIBLE GATES 21

|x〉
•

|x〉

|y〉
•

|y〉

|z〉 �������� |z ⊕ (x ∧ y)〉

(5.59)

This is similar to the controlled-NOT gate but with two controlling bits.
The bottom bit flips only when the top two bits are in state |1〉. We can write
this operation as taking state |x, y, z〉 to |x, y, (x ∧ y)⊕ z〉.

Exercise 5.3.2 Show that the Toffoli gate is its own inverse.

The matrix that corresponds to this gate is



000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0


(5.60)

The NOT gate has no controlling bit, the controlled-not gate has one con-
trolling bit, and the Toffoli gate has two controlling bits. Can we go on with
this? Yes. A gate with three controlling bits can be constructed from three
Toffoli gates as follows.

22 CHAPTER 5. ARCHITECTURE

|x〉
• •

|x〉

|y〉
• •

|y〉

|0〉 �������� • �������� |0〉

|z〉
•

|z〉

|w〉 �������� |w ⊕ (x ∧ y ∧ z)〉

(5.61)

One reason why the Toffoli gate is interesting is that it is universal. In
other words, with copies of the Toffoli gate, you can make any logical gate. In
particular, you can make a reversible computer using only Toffoli gates. Such a
computer would, in theory, neither use any energy nor give off any heat.

In order to see that the Toffoli gate is universal, we shall show that you can
make the AND and the NOT gate with it. The AND gate is obtained by setting
the bottom z input to |0〉. The bottom output will then be |x ∧ y〉.

|x〉
•

|x〉

|y〉
•

|y〉

|0〉 �������� |x ∧ y〉

(5.62)

The NOT gate is obtained by setting the top two inputs to |1〉. The bottom

5.3. REVERSIBLE GATES 23

output will be |(1 ∧ 1)⊕ z〉 = |1⊕ z〉 = |¬z〉.

|1〉
•

|1〉

|1〉
•

|1〉

|z〉 �������� |¬z〉

(5.63)

In order to get all gates, we also must have a way of producing a fanout of
values. In other words, a gate is needed that inputs a value and outputs two of
the same values. This can be obtained by setting x to |1〉 and z to |0〉. This
makes the output |1, y, y〉.

|1〉
•

|1〉

|y〉
•

|y〉

|0〉 �������� |y〉

(5.64)

Exercise 5.3.3 Construct the NAND with one Toffoli gate. Construct the
NOR and OR gates with two Toffoli gates.

Another interesting reversible gate is the Fredkin gate. The Fredkin gate

24 CHAPTER 5. ARCHITECTURE

also has three inputs and three outputs.

|x〉
•

|x〉

|y〉
×

|y′〉

|z〉
×

|z′〉

(5.65)

The top |x〉 input is the control input. The output is always the same |x〉. If
|x〉 is set to |0〉, then |y′〉 = |y〉 and |z′〉 = |z〉, i.e., the values stay the same. If,
on the other hand, the control |x〉 is set to |1〉, then the outputs are reversed:
|y′〉 = |z〉 and |z′〉 = |y〉. In short |0, y, z〉 7→ |0, y, z〉 and |1, y, z〉 7→ |1, z, y〉.

Exercise 5.3.4 Show that the Fredkin gate is its own inverse.

The matrix that corresponds to the Fredkin gate is



000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 0 0 1 0 0
111 0 0 0 0 0 0 0 1


. (5.66)

The Fredkin gate is also universal. By setting y to |0〉 we get the AND gate
as follows:

5.4. QUANTUM GATES 25

|x〉
•

|x〉

|0〉
×

|x ∧ z〉

|z〉
×

|(¬x) ∧ z〉

(5.67)

The NOT gate and the fanout gate can be obtained by setting |y〉 to |1〉 and
|z〉 to |0〉. This gives us

|x〉
•

|x〉

|1〉
×

|¬x〉

|0〉
×

|x〉

(5.68)

So both the Toffoli and the Fredkin gates are universal. Both are not only
reversible gates, but a look at their matrices show that they are also unitary.
In the next section we shall look at other unitary gates.

5.4 Quantum Gates

A quantum gate is simply any unitary matrix that manipulates qubits. We
have already worked with some quantum gates such as the Identity matrix, the
Hadamard gate, the NOT gate, the controlled-NOT gate, the Toffoli gate and
the Fredkin gate. What else is there?

Let us first concentrate on quantum gates that manipulate a single qubit.

26 CHAPTER 5. ARCHITECTURE

The following three matrices are called Pauli matrices and are very important.

X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 . (5.69)

They occur everywhere in quantum mechanics and quantum computing.3 Notice
that the X matrix is nothing more than our NOT matrix. Other important
matrices that will be used are

S =

 1 0

0 i

 , T =

 1 0

0 eiπ/4

 . (5.70)

There are other quantum gates on single qubits. However these will be enough
to tell our tale.

Exercise 5.4.1 Show that each of these matrices are unitary.

Exercise 5.4.2 Show the action of each of these matrices on an arbitrary qubit c0

c1

.

Exercise 5.4.3 These operations are intimately related to each other. Prove
the following relationships between the operations:

1. H = 1√
2
(X + Z)

2. X = HZH

3. Z = HXH

4. −1Y = HYH

5. S = T 2

6. −1Y = XYX

There is a beautiful geometric way of representing one-qubit operations.
Remember from chapter 1, page CITE PAGE, that for a given complex number
c = x+ yi whose modulus is 1, there is a nice way of visualizing c as an arrow
of length 1 from the origin to the circle of radius 1.

|c|2 = c× c = (x+ yi)× (x− yi) = x2 + y2 = 1 = r (5.71)
3Sometimes the notation σx, σy and σz is used for these matrices.

5.4. QUANTUM GATES 27

In other words, every complex number of radius 1 can be identified by the angle
φ that the vector makes with the x axis.

There is an analogous representation of a qubit as an arrow in three dimen-
sions: let us see how it works. A generic qubit is of the form

|ϕ〉 = c0|0〉+ c1|1〉 (5.72)

where |c0|2+|c1|2 = 1 Although at first sight there are four real numbers involved
in the definition above, it turns out that there are only two actual degrees of
freedom. Let us see why. To begin with, let us rewrite our qubit in polar form:

c0 = r0e
iφ0 (5.73)

and
c1 = r1e

iφ1 (5.74)

and so
|ϕ〉 = r0e

iφ0 |0〉+ r1e
iφ1 |1〉 (5.75)

still four real parameters: r0, r1, φ0, φ1. However, a quantum physical state
does not change if we multiply its corresponding vector by an arbitrary complex
number of norm 1 (see chapter 4, page ???), thus we can obtain an equivalent
expression for our qubit, where the amplitude for |0〉 is real, by ”killing” its
phase:

e−iφ0 |ϕ〉 = e−iφ0(r0eiφ0 |0〉+ r1e
iφ1 |1〉 = (5.76)

r0|0〉+ r1e
i(φ1−φ0)|1〉 (5.77)

now we only have three real parameters, namely r0, r1 and φ = φ1 − φ0. But
we can do better: using the constraint above, we have

r20 + r21 = 1 (5.78)

so we can rename them as
r0 = cos(θ) (5.79)

and
r1 = sin(θ) (5.80)

summing up, our qubit is now in the canonical representation

(♥) |ϕ〉 = cos(θ)|0〉+ sin(θ)eiφ|1〉 (5.81)

with only two real parameters left!
What is the range of the two angles θ and φ? We invite you to show that

0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π
2 are enough to cover all possible qubits:

Exercise 5.4.4 Prove that every qubit in the canonical representation (♥) with
θ > π

2 is equivalent to another one where θ lies in the first quadrant of the plane.
Hint: use a bit of trigonometry and change φ according to your needs.

28 CHAPTER 5. ARCHITECTURE

As only two real numbers are necessary to identify a qubit, we can map it
to an arrow from the origin to the three-dimensional sphere of R3 of radius 1,
known as the Bloch Sphere.

Every qubit can be represented by two angles that describe such an arrow
(think of the Bloch sphere as the earth. You just need to specify only two
numbers, the latitude and the longitude, to know where you are on the planet).
The standard parametrization of the unit sphere is

x = sin θ cos θ (5.82)

y = sin θ sin θ (5.83)

z = cos θ (5.84)

However, there is yet another final caveat: suppose we use the representation
above to map our qubit on the sphere. Then, the points (θ, φ) and (π−θ, φ+π)
represent the same qubit, up to the factor −1!

Exercise 5.4.5 Verify this last statement.

Conclusion: the parametrization would map the same qubit twice, on the
upper hemisphere and on the lower one. To mitigate this problem, we simply
double the ”latitude” to cover the entire sphere at ”half speed”:

x = sin 2θ cos θ (5.85)

y = sin 2θ sin θ (5.86)

z = cos 2θ (5.87)

Now we have it!

Figure 5.6: Bloch Sphere.

5.4. QUANTUM GATES 29

Let us spend a few moments familiarizing ourselves with the Bloch Sphere
and its geometry. The north pole corresponds to the state |0〉 and the south pole
corresponds to the state |1〉. These two points can be taken as the geometrical
image of the good ol’-fashioned bit. But there are many more qubits out there,
and the Bloch sphere clearly shows it.

Example 5.4.1 Let us find out which point of the sphere corresponds to the
qubit

|q〉 = cos(π)|0〉+ sin(π)ei π
2 |1〉 (5.88)

Using the map we get.....

It is your turn now:

Exercise 5.4.6 Start from |q〉 = − 1√
2
i|0〉+ 1√

2
|1〉. Convert it to the canonical

representation and then determine where it goes on the sphere.

The precise meaning of the two angles in ♥ is the following: ϕ is half the
angle that |ψ〉 makes from x along the equator and θ is the angle that |ψ〉 makes
with the y axis.

When a qubit is measured in the standard basis it collapses to a bit, or
equivalently, to the north or south pole of the Bloch sphere. The probability
of which pole the qubit will collapse to depends exclusively on how high or low
the qubit is pointing, in other words, to its latitude. In particular, if the qubit
happens to be on the equator, there is a 50− 50 chance of collapsing to |0〉 and
|1〉. As the angle θ expresses the qubit’s latitude, it does control its chance of
collapsing north or south.

Exercise 5.4.7 Consider the qubit in Example 5.4.1. Its θ is equal to π
4 .

Change it to π
3 and picture the result. Then compute its likelihood of collapsing

to the south pole after being observed.

Take an arbitrary arrow and rotate it around the z axis;in the geographical
metaphor, you are changing its longitude:

Notice that the probability of which classical state it will collapse to is not
affected. Such a state change is called a phase change. In the ♥ representation,
this corresponds to altering the phase parameter eiϕ.

Before we move on, one last important thing: just like |0〉 and |1〉 sit on
opposite sides of the sphere, an arbitrary pair of orthogonal qubits is mapped
to antipodal points of the Bloch Sphere.

Exercise 5.4.8 Show that if a qubit has latitude 2θ and longitude φ on the
sphere, its orthogonal lives in the antipode π − 2θ and π + φ.

Another reason why the Bloch sphere is interesting is that every unitary 2 by
2 matrix (i.e. a one-qubit operation) can be visualized as a way of manipulating
the sphere. We have seen in chapter 2, page ??? that every unitary matrix
is an isometry. This means that such a matrix maps qubits to qubits and the

30 CHAPTER 5. ARCHITECTURE

inner product is preserved. Geometrically, this corresponds to a rotation or an
inversion of the Bloch sphere.

The X, Y and Z matrices are ways of “flipping” the Bloch sphere 1800

along the x, y and z axes respectively. Remember that X is nothing other
the NOT gate and takes |0〉 to |1〉 and vice versa. But it does more, it takes
everything above the equator to below the equator. The other Pauli matrices
work similarly.

Figure 5.7: A Rotation of the Bloch Sphere at y.

There are times when we are not interested in performing a total flip but
just want to turn the Bloch sphere θ degrees along an axis. These three matrices

5.4. QUANTUM GATES 31

will work.

Rx(θ) = cos
θ

2
I − i sin

θ

2
X =

 cosθ2 −i sinθ2
−i sinθ2 cosθ2

 (5.89)

Ry(θ) = cos
θ

2
I − i sin

θ

2
Y =

 cosθ2 −sinθ2
sinθ2 cosθ2

 (5.90)

Rz(θ) = cos
θ

2
I − i sin

θ

2
Z =

 e−iθ/2 0

0 eiθ/2

 (5.91)

There are rotations around axis besides the x, y and z axis. Let D =
(Dx, Dy, Dz) be a 3-dimensional vector of size 1 from the origin. That de-
termines an axis of the Bloch sphere that we can spin around. The rotation
matrix is given as

RD(θ) = cos
θ

2
I − i sin

θ

2
(DxX +DyY +DzZ). (5.92)

Figure 5.8: A Rotation of the Bloch Sphere at D.

As we have just seen, the Bloch sphere is a very valuable tool when it comes
to understanding qubits and one-qubit operations. What about n-qubits? It
turns out there is a high-dimension analogue of the sphere, but it is not easy
to come to grip with. Indeed, it is a current research challenge to develop new
ways of visualizing what happens when we manipulate several qubits at once.
Entanglement, for instance, lies beyond the scope of the Bloch sphere (as it
involves at least two qubits).

32 CHAPTER 5. ARCHITECTURE

One of the central features of computer science is an operation that is done
only under certain conditions and not under others. This is equivalent to an IF-
THEN statement. If a certain (qu)bit is true, then a particular operation should
be performed, otherwise the operation is not performed. For every n-qubit
unitary operation U , we can create a unitary n+1-qubit operation Controlled-
U or CU .

|x〉
•

|x〉

/n U /n

(5.93)

This operation will perform the U operation if the top |x〉 input is a |1〉 and
will simply perform the identity operation if |x〉 is |0〉.

For the simple case of

U =

a b

c d

 (5.94)

the controlled-U operation can be seen to be

CU =


1 0 0 0

0 1 0 0

0 0 a b

0 0 c d

 . (5.95)

This same construction works for matrices larger than 2 by 2.

Exercise 5.4.9 Show that the constructed CU works as it should when the top
qubit is set to |0〉 or set to |1〉.

Exercise 5.4.10 Show that if U is unitary, then so is CU .

Exercise 5.4.11 Show that the Toffoli gate is nothing more than C(CNOT)

5.4. QUANTUM GATES 33

Throughout the rest of this text we shall demonstrate the many operations
that can be performed with quantum gates. However, there are limitations to
what can be done with a quantum gate. For one thing, every operation must
be reversible. Another limitation is a consequence of the The No-Cloning
Theorem. This theorem says that it is impossible to clone an exact quantum
state. In other words, it is impossible to make a copy of an arbitrary quantum
state without first destroying the original. In “computerese,” this says that we
can “cut” and “paste” a quantum state but we cannot “copy” and “paste” a
quantum state. “Move” is possible; “Copy” is imposable.

Why can’t we? What would such a cloning operation look like? There would
be two different places having the same vector space that describes a quantum
system, say V. Although these two systems would be apart, we are interested in
looking at the two systems as one, i.e., we are interested in V⊗ V. A potential
cloning operation would be a linear map

C : V⊗ V −→ V⊗ V (5.96)

that should take an arbitrary state |x〉 in the first system and, perhaps, nothing
in the second system and clone |x〉, i.e.,

C(|x〉 ⊗ 0) = (|x〉 ⊗ |x〉). (5.97)

This seems like a harmless enough operation, and there is no problem cloning
for an arbitrary classical state |x〉. In fact, every Xerox machine clones and
every time we copy a file, classical states of information are cloned. However,
this information is in a collapsed classical state. It is not in a superposition of
states.

The problem is cloning a superposition of states, that is, an arbitrary quan-

tum state. Suppose we have a superposition of states |x〉+ |y〉√
2

. Cloning such a

state would mean that

C

(
|x〉+ |y〉√

2
⊗ 0

)
=

(
|x〉+ |y〉√

2
⊗ |x〉+ |y〉√

2

)
. (5.98)

However if we insist that C is a quantum operation, then C must be linear and
hence must respect the scalar multiplication and the addition in V ⊗ V. If C
was linear, then

C

(
|x〉+ |y〉√

2
⊗ 0

)
= C

(
1√
2
(|x〉+ |y〉)⊗ 0

)
=

1√
2
C((|x〉+ |y〉)⊗ 0) (5.99)

=
1√
2
(C(|x〉⊗0+|y〉⊗0)) =

1√
2
(C(|x〉⊗0)+C(|y〉⊗0)) =

1√
2
((|x〉⊗|x〉)+(|y〉⊗|y〉))

(5.100)

=
(|x〉 ⊗ |x〉) + (|y〉 ⊗ |y〉)√

2
. (5.101)

34 CHAPTER 5. ARCHITECTURE

But (
|x〉+ |y〉√

2
⊗ |x〉+ |y〉√

2

)
6= (|x〉 ⊗ |x〉) + (|y〉 ⊗ |y〉)√

2
. (5.102)

So C is not linear and hence no such map can exist.
In contrast to cloning, there is no problem transporting arbitrary quantum

states from one system to another. Such a transporting operation would be a
linear map

T : V⊗ V −→ V⊗ V (5.103)

that should take an arbitrary state |x〉 in the first system and, say, nothing in
the second system and transport |x〉 to the second system leaving nothing in
the first system, i.e.,

T (|x〉 ⊗ 0) = (0⊗ |x〉). (5.104)

We do not run into the same problem if we transport a superposition of states.
In detail,

T

(
|x〉+ |y〉√

2
⊗ 0

)
= T

(
1√
2
(|x〉+ |y〉)⊗ 0

)
=

1√
2
T ((|x〉+ |y〉)⊗ 0) (5.105)

=
1√
2
T ((|x〉⊗0)+(|y〉⊗0)) =

1√
2
(T (|x〉⊗0)+T (|y〉⊗0)) =

1√
2
((0⊗|x〉)+(0⊗|y〉))

(5.106)

=
(|0⊗ (|x〉+ |y〉)√

2
= 0⊗ (|x〉+ |y〉)√

2
. (5.107)

This is exactly what we would expect from a transporting operation.4

Fans of Star Trek have long known that when Scotty “beams” Captain Kirk
down from the Starship Enterprise to the planet Zygon, he is transporting Cap-
tain Kirk to Zygon. The Kirk of the Enterprise gets destroyed and only the
Zygon Kirk survives. Captain Kirk is not being cloned. (Would we really want
many copies of Captain Kirk all over the Universe?)

The reader might see an apparent contradiction in what we have stated. On
the one hand, we have stated that the Toffoli and Fredkin gates can mimic the
fanout gate. The matrices for the Toffoli and Fredkin gates are unitary, hence
they are quantum gates. On the other hand, the no-cloning theorem says that
no quantum gates can mimic the fanout operation. What is wrong here? Let us
carefully examine the Fredkin gate. We have seen how this gate performs the
cloning operation

(x, 1, 0) 7→ (x,¬x, x). (5.108)

However what would happen if the x input was in a superposition of states, say,
|0〉+ |1〉√

2
while leaving y = 1 and z = 0. This would correspond to the state

[000 001 010 011 100 101 110 111
0 0 1√

2
0 0 0 1√

2
0

]T

. (5.109)

4In fact, we shall show how to transport arbitrary quantum states at the end of chapter 9.

5.4. QUANTUM GATES 35

Multiplying this state with the Fredkin gate gives us



000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 0 0 1 0 0
111 0 0 0 0 0 0 0 1





0

0

1√
2

0

0

0

1√
2

0



=



0

0

1√
2

0

0

1√
2

0

0



. (5.110)

The resulting state is
|0, 1, 0〉+ |1, 0, 1〉√

2
. (5.111)

So, whereas on a classical bit x, the Fredkin gate performs the fanout operation
as

(x, 1, 0) 7→ (x,¬x, x) (5.112)
on a superposition of states, the Fredkin gate performs the following very strange
operation (

|0〉+ |1〉√
2

, 1, 0
)

7→ |0, 1, 0〉+ |1, 0, 1〉√
2

. (5.113)

This strange operation is not a fanout operation. And so the no-cloning theorem
safely stands.

Exercise 5.4.12 Do a similar analysis for the Toffoli gate. Show that the way
we set the Toffoli gate to perform the fanout operation does not clone a super-
position of states.

. .
Reader’s Tip. The no-cloning theorem will be of major importance in
chapters 9 and 10. �
. .

. .
References:

The basics of the qubits and quantum gates can be found in any textbook
on quantum computing.

The history of reverable computation can be found in [1]. This [3] readable
article by one of the forefathers of reversible computation is strongly recom-
mended.

The no-cloning theorem was first proved in [2] and [4].

36 CHAPTER 5. ARCHITECTURE

Bibliography

[1] Charles H. Bennett. Notes on the history of reversible computation. IBM
J. Res. Dev., 32(1):16–23, 1988.

[2] D. Dieks. Comunicating by epr devices. Phys. Letters A, 92(6):271–272,
1982.

[3] R. Landauer. Information is physical. Physics Today, 44:23–29, 1991.

[4] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.
Nature, 299(5886):802–803, October 1982.

37

