
THEORETICAL
COMPUTER SCIENCE

for the
WORKING CATEGORY THEORIST

NOSON S. YANOFSKY

ii

Blurb for back of the book:
Using basic category theory (category, functor, natural transformation,
etc.), this short book describes all the central concepts and proves the
main theorems of theoretical computer science. Category theory, which
works with functions, processes, and structures, is uniquely qualified to
present the fundamental results of theoretical computer science. In this
text, we meet some of the deepest ideas and theorems of modern com-
puters and mathematics, e.g., Turing machines, unsolvable problems, the
P=NP question, Kurt Gödel’s incompleteness theorem, intractable prob-
lems, cryptographic protocols, Alan Turing’s Halting proble, and much
more. The concepts come alive with many examples and exercises. This
short text covers the usual material taught in a year-long course.

Three sentence blurb:
With just the basics of category theory, this text presents the usual mate-
rial taught in a year-long course of theoretical computer science. We cover
models of computation, computability theory, and complexity theory. We
also describe the essentials of formal language theory, cryptography, Kol-
mogorov complexity theory, and much more.

iii

Dedicated to the memory
of my brother

Eli

iv

Every language is a world. Without translation, we would inhabit
parishes bordering on silence.

George Steiner

It is a deep result in the sense that it provides a method for handling,
with elegance and intellectual economy, constructions that would

otherwise require extensive, complex treatment.
Hartley Rogers, Jr.

Page 179 of [64]

It appeared to me that the time is ripe to try to give the subject a coherent
mathematical presentation that will bring out its intrinsic aesthetic

qualities and bring to the surface many deep results which merit
becoming part of mathematics, regardless of any external motivation.

Samuel Eilenberg
Page xiii of [23]

Noson S. Yanofsky
© August 2019

Preface

When I was studying for my PhD, I took something called “the theory
qualifier,” which I can now definitively say was the second worst thing in

my life after chemotherapy.
Randy Pausch

The Last Lecture [58], Page 24.

“Unsolvable problems,” “The P=NP question,” “Alan Turing’s Halting
proble,” “Kurt Gödel’s incompleteness theorem,” “Intractable problems,”
etc. These are just some of the many buzzwords that one hears about
in the current technology media. These concepts are all associated with
theoretical computer science. This field touches on some of the deepest
and most profound parts of contemporary science and mathematics. The
issues discussed in this book emerge in almost every area of computers,
theoretical physics, and mathematics. In this short text you will learn the
main ideas and theorems of theoretical computer science.

While there are many textbooks to study theoretical computer science,
this book is unique. This is the first text that translates the ideas of theo-
retical computer science into the basic language of category theory. With
some of the simple concepts of category theory in hand, the reader will
be able to understand all the ideas and theorems that are taught in a
year-long course of theoretical computer science.

Why is it better to learn theoretical computer science with category
theory?

• It is easy! Most of the ideas and theorems of theoretical computer
science are consequences of the categorical definitions. Once the cat-
egories and functors of the different models of computation are set up,

v

vi Preface

the concepts of theoretical computer science simply emerge. Many the-
orems are a straightforward consequence of composition and functori-
ality.

• It is short! The powerful language of category theory ensures us that
what can usually be taught in a huge textbook can be taught in these
few pages.

• It gives you the right perspective! Anyone who has ever experienced
any category theory knows that it makes you “zoom out” and see things
from a “bird’s-eye view.” Rather than getting overwhelmed by all the
little details so that you cannot “see the forest for the trees,” category
theory gets you to see the big picture.

• It gets to the core of the issues! Category theory distills the important
aspects of a subject and leaves one with the main structures needed to
understand what is going on.

• It connects better with other areas of science and math! Category the-
ory has become the lingua franca of numerous areas of mathematics,
and theoretical physics (e.g., [5, 14]). By putting the ideas of theoret-
ical computer science in the language of category theory, connections
are made to these other areas.

There are several texts and papers for the computer scientist to learn
category theory [7, 77, 60, 4, 67, 75, 61]. This book is totally different.
Our intended audience here is someone who already knows the basics of
category theory and who wants to learn theoretical computer science.

One does not need to be a category theory expert to read this book. We
do not assume that the reader knows much more than the notion of cat-
egory, functor, and equivalence. Any more advanced categorical concepts
are taught in Chapter 2 or “on the fly” when needed.

Organization

The book starts with a quick introduction to the major themes of the-
oretical computer science and explains why category theory is uniquely
qualified to describe those ideas and theorems. The next chapter is a short
teaching aid of some categorical structures that arise in the text and that
might be unknown to the category theory novice

Since we will be discussing computation, we must fix our ideas and
deal with various models of computation. What do we mean by a com-
putation? The literature is full of such models. Chapter 3 classifies and

Preface vii

categorizes these various models while showing how they are all linked
together. With the definitions and notation given in Sections 3.1 and 3.2,
one can safely move on to almost any other Section of the book.

Chapters 4 and 5 are the core of the book. Chapter 4 describes which
functions can be executed by a computer — and more importantly —
which functions cannot be executed by a computer. This is called com-
putability theory. We give many examples of functions that no com-
puter can perform. Along the way, we meet Alan Turing’s Halting prob-
lem and Kurt Gödel’s famous incompleteness theorem. We also discuss a
classification and hierarchy of all the functions that cannot be computed
by computers.

We go on to discuss complexity theory in Chapter 5. This is where we
ask and answer what is efficiently computable. Every computable func-
tion demands a certain amount of time or space to compute. We discuss
how long and how complicated certain computations are. Along the way
we meet the famous NP-complete problems and the P=NP question.

Chapter 6 is about a special type of proof that arises in many parts of
theoretical computer science (and many areas of mathematics) called a
diagonal argument. Although the diagonal arguments come in many
different forms, we show that they are all instances of a single simple
theorem of category theory. Along the way we meet Stephen Kleene’s re-
cursion theorem, Georg Cantor’s different levels of infinity, and John von
Neumann’s Self-Reproducing Automata.

While computability theory and complexity theory are the main topics
taught in a typical theoretical computer science class, there are many
other topics that are either touched on or are taught in more advanced
courses. Chapter 7 is a series of short introductions for several exciting
topics:

• Formal language theory describes the relationship between comput-
ers and languages. The more complicated a computer is, the more com-
plicated is the language it understands. Along the way we meet the
Chomsky hierarchy and many of the important theorems of finite au-
tomata.

• Cryptography is about encoding and decoding secret messages. We
give a simple categorical description of a structure and show that ev-
ery major cryptographic protocol is an instance of this categorical struc-
ture.

• Kolmogorov complexity theory discusses the complexity of strings

viii Preface

of symbols. We talk about the compressability of strings. Along the way,
we meditate on the nature of randomness.

• Algorithms are the core of computer science. This short section uses
categories to provide a formal definition of an algorithm. This def-
inition highlights the intimate relationship between programs, algo-
rithms, and functions.

The last section of Chapter 7 summarizes what was learned about theo-
retical computer science from the categorical perspective. It lists off some
common themes that were seen throughout the text. It also has a guide
for readers who wish to continue on with their studies. The book ends
with an Appendix that has answers to selected exercises.

Throughout the text, there are many examples and exercises. The reader
is strongly urged to work on the exercises. In addition, the book is sprin-
kled with short “Advanced Topics” paragraphs that point out certain ad-
vanced theorems or ideas. We also direct the reader to where they can
learn more about the topic.

At the end of every Chapter, the reader is directed to places where
they can learn more about the topic from sources in classical theoretical
computer science and in category theory.

There are, however, omissions:
We do not cover every part of theoretical computer science. For exam-

ple, we will not deal with program semantics and verification, analysis of
algorithms, data structures, and information theory. While all these are
interesting and can be treated with a categorical perspective, we have
omitted these topics because of space considerations. Even the topics that
we do cover, we invariably must miss certain theorems and ideas.

This is not a textbook about the relationship between category theory
and computer science. Over the past half century, category theorists have
made tremendous advances in computer science by applying categorical
concepts and constructions to the structures and processes of computa-
tion. The literature in this area is immense. Section 7.5 gives some texts
and papers to look for more in this direction. This text will not present all
these areas. Rather, it is focused on the task at hand. Here we use a novel
presentation to understand all the classic parts of theoretical computer
science.

This text does not stand alone. I maintain a web page for the text at

Preface ix

www.sci.brooklyn.cuny.edu/noson/tcstext
The web page will contain links to interesting books and articles on cate-
gory theory and theoretical computer science, some solutions to exercises
not solved in the text, and an erratum. The reader is encouraged to send
any and all corrections and suggestions to noson@sci.brooklyn.cuny.edu.

Acknowledgment

There are many people who made this book possible. In 1989, as an un-
dergraduate at Brooklyn College, I had the privilege of taking a mas-
ter’s level course in theoretical computer science with Rohit Parikh. This
world-class expert made the entire subject come alive, and I have been
hooked ever since. I have stayed by his side ever since. Although thirty
years has passed, I am still amazed at how much he knows and — more
importantly — how much he understands on a deeper level. He was my
teacher, and now he is a colleague and a friend. I am forever grateful to
him.

One of the founders of category theory was Saunders Mac Lane (1909
– 2005). Whenever we met at a conference, he was always warm and
friendly. He wrote one of the “bibles” of the field, Categories for the Work-
ing Mathematician [51]. As the title implies, the book teaches category
theory to someone who is well-grounded in mathematics. In 1999, I wrote
him a letter about a book I wanted to write. The book was supposed to
teach much advanced mathematics to someone who is well-grounded in
basic category theory. I asked him for permission to call the book Mathe-
matics for the Working Category Theorist. Saunders was encouraging and
gave his imprimatur. The book you are holding in your hand is a first step
towards that dream.

I would like to thank John Baez for taking an interest in this work and
for his support. Over the years, I gained so much from John’s amazing
papers and posts. His clarity and lucidity are an inspiration. More than
anyone else, John has shown how the language of category theory can be
applied in so many different areas. In addition, Yuri Manin’s paper [53]
and book [52] have been an inspiration for this book. He put all computa-
tional processes into one category called a “computational universe.” Here
we take these ideas further. I thank him for his ideas and for taking an
interest in my work.

Ted Brown, the former chair of the computer science department at The
Graduate Center of the City University of New York, has been very kind

x Preface

to me. He asked me to teach the PhD level theoretical computer science
course every year from 2003 through 2013. I also taught several other
advanced courses in those years. That experience has been tremendously
helpful. My thanks also go out to the next chair of the department, Prof.
Robert M Haralick. Their kindness is appreciated.

Brooklyn College has been my intellectual home since 1985. The en-
tire administration, faculty, staff, and students have been encouraging
and have made the environment conducive to such projects. Dean Klean-
this Psarris, Chairman Yedidyah Langsam, and former Chairman Aaron
Tenenbaum were all very helpful. Over the years I also gained much from
David M. Arnow, Eva Cogan, Lawrence Goetz, Ira Rudowsky, and Joseph
Thurm. I thank them all.

Sergei Artemov, Gershom Bazerman, Chris Calude, John Connor, James
L. Cox, Walter Dean, Scott D. Dexter, Mel Fitting, Grant Roy, Tzipora
Halevi, Joel David Hamkins, Keith Harrow, Pieter Hofstra, Karen Klet-
ter, Roman Kossak, Deric Kwok, Moshe Lach, Florian Lengyel, Armando
Matos, Michael Mandel, Yuri Manin, Jean-Pierre Marquis, Robert Paré,
Rohit Parikh,Vaughn Pratt, Avi Rabinowitz, Phil Scott, Robert Seely, Mor-
gan Sinclaire, David Spivak, Alexander Sverdlov, Gerald Weiss, Paula
Whitlock, Mark Zelcer, and all the members of The New York City Cat-
egory Theory Seminar were very helpful with discussions and editing. I
am also grateful to two anonymous reviewers for their many comments
and helpful suggestions. Thank you!

This work was done with the benefit of the generous support of PSC-
CUNY Award 61522-00 49.

Neither this book nor anything else could have been done without my
wife Shayna Leah. Her loving help in every aspect of my life is deeply
appreciated. I am grateful to my children, Hadassah, Rivka, Boruch, and
Miriam for all the joy they bring me.

This book is dedicated to the memory of my brother Rabbi Eliyahu
Mordechai Yanofsky Z"TL (February 19, 1964 - March 12, 2018). He was a
brilliant scholar who spent his entire life studying Jewish texts and help-
ing others. Eli had a warm personality and a clever wit that endeared him
to many. He was an inspiration to hundreds of friends and students. As
an older brother, he was a paragon of excellence. He left behind parents,
a wife, siblings, and ten wonderful children. His loss was terribly painful.
He is sorely missed.

Contents

Preface page v

1 Introduction 1

2 Aide-Mémoire for Category Theory 7
2.1 Slice Categories and Comma Categories 7
2.2 Symmetric Monoidal Categories 11

3 Models of Computation 15
3.1 The Big Picture 15
3.2 Manipulating Strings 22
3.3 Manipulating Natural Numbers 32
3.4 Manipulating Bits 44
3.5 Logic and Computation 52
3.6 Numbering Machines and Computable Functions 57

4 Computability Theory 63
4.1 Turing’s Halting Problem 64
4.2 Other Unsolvable Problems 69
4.3 Classifying Unsolvable Problems 78

5 Complexity Theory 82
5.1 Measuring Complexity 82
5.2 Decision Problems 96
5.3 Space Complexity 106

6 Diagonal Arguments 110
6.1 Cantor’s Theorem 111
6.2 Applications in Computability Theory 117
6.3 Applications in Complexity Theory 125

xi

xii Contents

7 Other Fields of Theoretical Computer Science 132
7.1 Formal Language Theory 132
7.2 Cryptography 144
7.3 Kolmogorov Complexity Theory 154
7.4 Algorithms 159
7.5 Looking Back and Moving Forward 164
Appendix: Answers to Selected Problems 169

Appendix: Answers to Selected Problems 169
References 170
Index 175

1

Introduction

If you talk to a man in a language he understands, that goes to his head.
If you talk to him in his language, that goes to his heart.

Nelson Mandela

Theoretical computer science started before large-scale electronic com-
puters actually existed. In the 1930’s, when engineers were just begin-
ning to work out the problems of making viable computers, Alan Tur-
ing was already exploring the limits of computation. Before physicists
and engineers began struggling to create quantum computers, theoreti-
cal computer scientists designed algorithms for quantum computers and
described their limitations. Even today, before there are any large-scale
quantum computers, theoretical computer science is working on “post-
quantum cryptography.” The prescient nature of this field is a conse-
quence of the fact that it studies only the important and foundational
issues about computation. It asks and answers questions such as “What is
a computation?” “What is computable?” “What is efficiently computable?”
“What is information?” “What is random?” “What is an algorithm?” etc.

For us, the central role of a computer is to calculate functions. They
input data of a certain type, manipulate the data, and have outputs of a
certain type. In order to study computation we must look at the collection
of all such functions. We must also look at all methods of computation and
see how they describe functions. To every computational method, there is
an associated function. What will be important is to study which func-
tions are computed by a computational method and which are not. Which
functions are easily computed and which functions need more resources?
All these issues — and many more — will be dealt with in these pages.

Category theory is uniquely qualified to present the ideas of theoretical
computer science. The basic language of category theory was formulated

1

2 Introduction

by Samuel Eilenberg and Saunders Mac Lane in the 1940s. They wanted
to classify and categorize topological objects by associating them to al-
gebraic objects. In order to compare topological objects and algebraic ob-
jects, Eilenberg and Mac Lane had to formulate a language that was not
specifically related to topology or algebra. It was abstract enough to deal
with both types of objects. This is where category theory gets its power.
By being about nothing in particular, or “general abstract nonsense,” it is
about everything. In this text, we will see categories containing various
types of functions and different models of computation. There are then
functors comparing these functions and computational methods.

When categories first started, the morphisms in a category were thought
of as homomorphisms between algebraic structures or continuous maps
between topological spaces. The morphism

X
f // Y (1.1)

might be a homomorphism f from group X to group Y or it might be a
continuous map from topological space X to topological space Y . However,
as time progressed, researchers realized that they might look at f as a
process of going from X to Y . An algebraic example is when X and Y are
vector spaces and f is a linear transformation, a way of going from X to
Y . In logic, X and Y can be propositions and f is a way of showing that
after assuming X one can imply Y . Or for logicians interested in proofs,
again X and Y were propositions and f represented a proof (or a formal
way of showing) that with X as an assumption, one can conclude with Y .
Physicists also got into the action. For them, X and Y were states of a
system and f represented a dynamic or a process of going from state X to
state Y . Geometers and physicists considered X and Y to be manifolds of
a certain type and f to be a larger shape whose boundaries were X and
Y . Computer scientists consider X and Y to be types of data and f is a
function or a computational process that takes inputs of type X to output
of type Y . In this text, many of our categories will be of this form. (See
[5, 14] for comparisons of many different types of processes.)

It pays to reexamine the definition of a category with the notion of a
morphism as a process. When there are two composable maps

X
f // Y

g // Z (1.2)

their composition g◦ f is to be thought of as sequential processing, i.e.,
first performing the f process and then performing the g process. If X
is any object, then there is an identity process IdX : X −! X which does

Introduction 3

nothing to X . No change is made. When any process is composed with the
identity process, it is essentially the same as the original process. When
there are three composable maps,

X
f // Y

g // Z
h // W (1.3)

the associativity (h◦g)◦ f = h◦(g◦ f) essentially follows from the fact that
we are doing these processes in order: first f , then g, and finally h.

In the 1960s, with the development of monoidal categories, it was real-
ized that not only do categories contain structures, but sometimes cate-
gories themselves have structure. In certain cases objects and morphisms
of categories can be “tensored” or “multiplied.” For example, given X and
X ′ in the category of groups, one can form their tensor product X ⊗ X ′

as an object of the category of groups. Or, if X and X ′ are objects in the
category of sets, then their Cartesian product, X × X ′, is a also an object
in the category of sets. As usual in category theory, we are concerned with
morphisms. If f : X −! Y and f ′ : X ′ −! Y ′ are morphisms then we can
not only form X ⊗ X ′ and Y ⊗Y ′ but also f ⊗ f ′ which we can write as

X
f // Y
⊗ or X ⊗ X ′ f⊗ f ′ // Y ⊗Y ′.

X ′
f ′

// Y ′

(1.4)

This should be considered as modeling parallel processing, i.e., per-
forming the f and f ′ process independently and at the same time. When
a category has this ability to tensor its objects and morphisms, the cate-
gory and the extra structure form a monidal category. When the f ⊗ f ′

process is essentially the same as the f ′ ⊗ f process, we formalize that
and come to the notion of a symmetric monoidal category. Most of
the categories we will meet in these pages will be symmetric monoidal
categories.

Let us summarize. The categories we will use have objects that are
types of data that describe the inputs and outputs of functions and pro-
cesses, while the morphisms are the functions or the processes. There will
be two ways of composing the morphisms: (i) regular composition within
the category will correspond to function composition or sequential pro-
cessing, and (ii) the monoidal structure of the categories will correspond
to parallel processing of functions or processes. There will be various
functors between such categories which take computational procedures to
functions or other computational procedures. We will ask questions such

4 Introduction

as: when are these functors surjective? What is in their image? What is
not in their image? When are they equivalences? etc.

This book will not only use the language of categories, it will also use
the mindset of categories. As anyone who has studied a topic in category
theory knows, this language has a unique way of seeing things. Rather
than jumping in to the nitty-gritty details, categorists insist on setting
up what they are talking about first. They like to examine the larger
picture before getting into the details. Also, category theory has a knack
for getting to the essence of a problem while leaving out all the dross that
is related to a subject. Theoretical computer science stands to gain from
this mindset.

Here are some of the topics that we will meet in these pages. We start
off by considering different models of computation. These are formal,
virtual machines that perform computations. We classify them into three
different groupings. There are models, such as Turing machines, that
perform symbol manipulations. Historically, this is one of the first com-
putational models. There are models called register machines that per-
form computations through manipulating whole numbers. A hand-held
calculator is a type of computer that manipulates numbers. And finally
there are models that perform bit manipulations called circuits. Every
modern electronic computer works by manipulating bits. Yet another way
of describing computation is with logical formulas. For each of these
types of computational models, there is a symmetric monoidal category
that contains the models. There are functors from the categories of mod-
els to the categories of functions. There also exist functors between the
categories of models. For example, your hand-held calculator appears to
manipulate whole numbers. In fact, what is really happening is that there
is a circuit which manipulates bits that performs the calculations. This
is the essence behind a functor from the category of register machines to
the category of circuits.

computability theory and complexity theory study the relationship be-
tween the syntax and the semantics of functions.

Let us look at theoretical computer science from a broadly philosoph-
ical perspective. By the “syntax” of a function we mean a description of
the function such as a program that implements the function, a computer
that runs the function, a logical formula that characterizes the function,
a circuit that executes the function, etc. By the “semantics” of a function
we mean the rule that assigns to every input an output. Computability

Introduction 5

theory and complexity theory study the relationship between the syntax
and the semantics of functions. There are many aspects to this relation-
ship. Computability theory asks what functions are defined by syntax,
and — more interestingly — what functions are not defined by syntax.
Complexity theory asks how can we classify and characterize functions
by examining their syntax.

In a categorical setting, the relationship between the syntax and se-
mantics of functions is described by a functor from a category of syntax
to a category of semantics. The functor takes a description of a function
to the function it describes. Computability theory then asks what is in
the image of this functor and — more interestingly — what is not in the
image of the functor. Complexity theory tries to classify and character-
ize what is in the image of the functor by examining the preimage of the
functor.

Let us look at some of the other topics we meet on these pages. Diag-
onal arguments are related to self-reference. About two and a half thou-
sand years ago, Epimenides (a cantankerous Cretan philosopher who pro-
claimed Cretans always lie) taught us that language can talk about itself
and is self-referential. He showed that because of this self-reference there
is a certain limitation of language (some sentences are true if and only if
they are false.) In the late nineteenth century, the German mathemati-
cian Georg Cantor showed that sets can be self referential and Bertrand
Russell showed that one must restrict this ability or set theory will be
inconsistent. In the 1930s, Kurt Gödel showed that mathematical state-
ments can refer to themselves (“I am unprovable”) and hence there is a
limitation to the power of proofs. We are chiefly interested in Alan Turing
showing that computers can reference themselves (after all, an operating
system is a program dealing with programs). This entails a limitation of
computers. Diagonal arguments are used in systems with self reference
to find some limitation of the system. We describe a simple categorical
theorem that models all these different examples of self-reference. Many
results of theoretical computer science are shown to be instances of this
theorem.

Formal language theory deals with the interplay between machines
and languages. The more complicated a machine, the more complicated
is the language it understands. With categories, we actually describe a
functor from a category of machines to a category of languages. Machines
that are weaker than Turing machines and their associated languages
are explored.

Modern cryptography is about using computers to encrypt messages.

6 Introduction

While it should be computationaly easy to encode these messages, only
the intended receiver of the message should be able to decode the mes-
sage with ease. Categorically, we will use some of the ideas we learned in
complexity theory to discuss a subcategory of computable functions con-
taining easily computable functions. In contradistinction, the other com-
putable functions can be thought of as hard. A good cryptographic pro-
tocol is when the encoding and decoding are easy to compute and where
the decoder is hard to find. The power of category theory will become ap-
parent when we make a simple categorical definition and show that many
modern cryptographic protocols can be seen an instance of this definition.

Kolmogorov complexity theory is a discussion about the complexity of
strings. We use the Turing machines that we discussed earlier to clas-
sify how complicated strings of characters are. The section ends with a
discussion of the notion of randomness.

Algorithms are at the core of computer science. From our broad prospec-
tive, algorithms are on the thin line between the syntax and semantics of
computable functions. The functor from syntax to semantics factors as

Syntax−! Al gorithms−! Semantics. (1.5)

Or we can see it as,

Programs−! Al gorithms−! Functions. (1.6)

This view affords us a deeper understanding of the relationship between
programming, computer science, and mathematics.

The last section of Chapter 7 is a continuation of this Introduction.
It summarizes what was done in this text using technical language. We
show that there are certain unifying themes and categorical structures
that make theoretical computer science more understandable. We also
close that section with a reader’s guide on going further with their stud-
ies.

Let’s roll up our sleeves and get to work!

2

Aide-Mémoire for Category Theory

He who is ignorant of foreign languages knows not his own.
Johann Wolfgang von Goethe1

We assume the basics of category theory. The reader is expected to know
the concept of a category, functor, natural transformation, equivalence,
limit, etc. There are, however, some category theory concepts employed
that might not be so well known. We review these concepts here. Any
other required categorical constructions will be reviewed along the way.
Feel free to skip this Chapter and return as needed.

2.1 Slice Categories and Comma Categories

The slice and coslice constructions make the morphisms of one category
into the objects of another category.

Definition 2.1.1. Given a category A and an object a of A, the slice
category,A/a, is a category whose objects are pairs (b, f : b−! a) where
b is an object of A and f is a morphism of A whose codomain is a. A
morphism of A/a from (b, f : b −! a) to (b′, f ′ : b′ −! a) is a morphism
g : b−! b′ of A that makes the following triangle commute

b
g //

f ��

b′

f ′��
a

(2.1)

1 “Wer fremde Sprachen nicht kennt, weiss nichts von seiner eigenen.” Über Kunst und
Altertum, 1821.

7

8 Aide-Mémoire for Category Theory

Composition of morphisms comes from the composition in A, and the
identity morphism for the object (b, f : b−! a) is idb. ^

Example 2.1.2. Some examples of a slice category:

• Consider the category Set. Let R be the set of all real numbers. The
category Set/R is the collection of all R-valued functions.

• Let us foreshadow by showing an example that we will see in our
text. Let Func be the category whose objects are different types and
whose morphisms are all functions between types. One of the given
types is Boolean, Bool, which has the possible values of 0 and 1. Then
Func/Bool is the category whose objects are functions from any type
to Bool. Such functions are called decision problems and they will
play a major role in the coming pages. We also have a notion of a mor-
phism between decision problems:

T ype1
g //

f $$

T ype2

f ′zz
Bool

(2.2)

where f and f ′ are decision problems and g is a morphism from f to
f ′. Such a morphism of decision problems will be called a “reduction.”
g is a reduction of f to f ′. The idea behind a reduction is that if we
know the answer to f ′ then we can also find the answer to f . Since the
triangle commutes, to find the answer to f on an input, simply evaluate
the input using g and then find the answer using f ′. In other words,
solving f reduces to solving f ′.

ä
Exercise 2.1.3. Show that ida : a−! a is the terminal object in A/a.

Solution: For any object f : b−! a of A/a, f is the unique morphism to
the identity that makes the triangle commute.

■
Exercise 2.1.4. Prove that any f : a −! a′ in A induces a functor
f∗ : A/a −! A/a′ that takes any object g : b −! a of A/a to f ◦ g is in
A/a′. ■

The dual notion of a slice category is a coslice category:

Definition 2.1.5. Given a category A and an object a of A, the coslice
category, a/A is a category whose objects are pairs (b, f : a−! b) where

2.1 Slice Categories and Comma Categories 9

b is an object of A and f is a morphism of A with domain a. A morphism
of a/A from (b, f : a−! b) to (b′, f ′ : a−! b′) is a morphism g : b−! b′ of
A that makes the following triangle commute

a
f ′

f

��
b g

// b′.

(2.3)

Composition of morphisms comes from the composition in A, and the
identity morphism for the object (b, f : b−! a) is idb. ^

Example 2.1.6. Some examples of a coslice category:

• Consider the one element set {∗}. The category {∗}/Set has objects that
are sets with a function that picks out a distinguished element of the
set. An object is a pair (S, s0) where S is a set and s0 is a distinguished
element of that set. The morphisms from (S, s0) to (T, t0) are set func-
tions that preserve the distinguished element. That is, f : S−! T such
that f (s0)= t0. This is the category of pointed sets.

• When we talk about finite automata, we will generalize the above ex-
ample. Let FinGraph be the category of finite graphs and graph ho-
momorphisms. Let 20 be the graph with just two vertices (named s and
t for “source” and “target.”) Then 20/FinGraph is the category of finite
graphs with a distinguished vertex for s and a distinguished vertex for
t. (They might be the same vertex.)

• Let Prop be the category of propositions with at most one morphism
from a to b if a entails b. Let p ∈ Prop be a particular proposition.
Then p/Prop is the category of all propositions that are implied by p.

ä
Exercise 2.1.7. Show that ida : a−! a is the initial object in a/A.

Solution: This is similar to the solution to Exercise 2.1.3.
■

Definition 2.1.8. Given functors F : A−!C and G : B−!C, one can
form the comma category (F,G), sometimes written F #G. The objects
of this category are triples (a, f ,b) where a is an object of A, b is an
object of B and, f : F(a)−!G(b) is a morphism in C. A morphism from
(a, f ,b) to (a′, f ′,b′) in (F,G) consists of a pair of morphisms (g,h) where
g : a−! a′ is inA and h : b−! b′ is inB such that the following diagram

10 Aide-Mémoire for Category Theory

commutes:

F(a)
f //

F(g)
��

G(b)

G(h)
��

F(a′)
f ′

// G(b′)

. (2.4)

Composition of morphisms comes from the fact that one commuting
square on top of another ensures that the whole diagram commutes. The
identity morphisms are obvious. ^

Example 2.1.9. Some examples of comma categories are familiar already.

• If B = 1 and G : 1 −!C picks out the object c0 and A =C with F =
IdC, then the comma category (F,G) is the slice category C/c0.

• If A = 1 and F : 1 −!C picks out the object c0 and B =C with G =
IdC, then the comma category (F,G) is the coslice category c0/C.

• In this text, we will use a comma category construction with F being
an inclusion functor. In this case the comma category will have objects
of a certain type and morphisms from the subcategory. This will be
important for reductions of one problem to another.

ä
There are forgetful functors U1 : (F,G) −! A and U2 : (F,G) −! B

which are defined on objects as follows: U1 takes (a, f ,b) to a and U2

takes (a, f ,b) to b.

Exercise 2.1.10. Show that if the following two triangles of categories
and functors commute

C′

A

F ′
>>

F

B

G~~

G′
``

C,
?�

OO (2.5)

where C ,−!C′ is an inclusion functor, then (F,G) ,−! (F ′,G′). ■

2.2 Symmetric Monoidal Categories 11

2.2 Symmetric Monoidal Categories

Many of our categories are collections of processes, where besides sequen-
tially composing processes, we can compose processes in parallel. Such
categories are formulated as categories with extra structure.

Definition 2.2.1. A strictly associative monoidal category or a
strict monoidal category is a triple (A, I,⊗) where A is a category,
I is an object in A called a “unit,” and ⊗ is a bifunctor ⊗ : A×A−!A

called a “tensor” which satisfies the following axioms:

• ⊗ is strictly associative, i.e., for all objects a,b and c in A, (a⊗ b)⊗ c =
a⊗ (b⊗ c), and

• I acts like a unit, i.e., for all objects a, a⊗ I = a = I ⊗a.

^

Example 2.2.2. Any monoid (including N , the natural numbers) can be
thought of as a strictly associative monoidal category. The elements of
the monoid form a discrete category and the unit of the monoid becomes
the unit of the symmetric monoidal category. The multiplication in the
monoid becomes the tensor of the category. ä

In the literature, there is a weaker definition of a monoidal category.
This is a category where there is an isomorphism between(a⊗ b)⊗ c and
a⊗ (b ⊗ c). This isomorphism must satisfy a higher dimensional axiom
called a “coherence condition.” While this concept is very important in
many areas of mathematics, physics, and computer science, it will not
arise in our presentation. There is a theorem of Saunders Mac Lane that
says that every monoidal category is equivalent (in a very strong way)
to a strict monoidal category. The categories that we will be dealing with
will have the natural numbers or sequences of types as objects and will
be strict monoidal categories.

Before we go on to the structure, we need the following functor. For any
category A, there is a functor

tw : A×A−!A×A (2.6)

that is defined for two elements a and b as tw(a,b) = (b,a). tw is defined
similarly for morphisms.

Definition 2.2.3. A symmetric monoidal category is a quadruple
(A, I,⊗,γ) where (A, I,⊗) is a monoidal category and γ is a natural trans-
formation that is an isomorphism γ : ⊗−! (⊗◦ tw), that is, for all objects

12 Aide-Mémoire for Category Theory

a,b in A, there is an isomorphism

a⊗b
γa,b // b⊗a (2.7)

which is natural in a and b. This γ is called a “braiding” and must satisfy
the following axioms:

• the symmetry axiom,

γb,a ◦γa,b = Ida⊗b (2.8)

• the braiding axiom,

a⊗b⊗ c
γa,b⊗c //

γa,b⊗Idc))

b⊗ c⊗a

b⊗a⊗ c
Idb⊗γa,c

55 (2.9)

^

Of course we are not only interested in such symmetric monoidal cate-
gories, but in the way they relate to each other.

Definition 2.2.4. A strong symmetric monoidal functor from
(A, I,⊗,γ) to (A′, I ′,⊗′,γ′) is a triple (F, ι,∇) where F : A−!A′ is a func-
tor, ι : I ′−! F(I) is an isomorphism in A′, and

∇ : (⊗′ ◦ (F ×F))−! (F ◦⊗) (2.10)

is a natural transformation which is an isomorphism, that is, for every
a,a′ in A, there is an isomorphism

∇a,a′ : F(a)⊗′ F(a′)−! F(a⊗a′) (2.11)

natural in a and a′. These natural transformations must satisfy the fol-
lowing coherence rules.

• ∇ must cohere with the braidings

F(a)⊗′ F(a′)
∇a,a′ //

γ′
F(a),F(a′)

��

F(a⊗a′)

F(γa,a′)
��

F(a′)⊗′ F(a) ∇a′ ,a
// F(a′⊗a)

(2.12)

2.2 Symmetric Monoidal Categories 13

• ι must cohere with ∇

I ′⊗′ F(a)
ι⊗Id // F(I)⊗′ F(a)

∇I,a

��
F(a) F(I ⊗a).

(2.13)

(There is a similar coherence requirement with ι and ∇a,I .)
• ∇ must cohere with itself, i.e., it is associative

F(a)⊗′ F(a′)⊗′ F(a′′)
Id⊗′∇a′ ,a′′ //

∇a,a′⊗′ Id
��

F(a)⊗′ F(a′⊗a′′)

∇a,a′⊗a′′
��

F(a⊗a′)⊗′ F(a′′) ∇a⊗a′ ,a′′
// F(a⊗a′⊗a′′).

(2.14)

^

We will also need a stronger notion of a functor.

Definition 2.2.5. A symmetric monoidal strict functor from
(A, I,⊗,γ) to (A′, I ′,⊗′,γ′) is a functor F : A −!A′ where F(I) = I ′ and
F(a)⊗′ F(a′)= F(a⊗a′), i.e., the ι and ∇ are the identity. ^

Definition 2.2.6. A symmetric monoidal natural transformation
from (F, ι,∇) to (F ′, ι′,∇′) is a natural transformation µ : F −! F ′, i.e., for
every a in A, a natural morphism µa : F(a)−! F(a′) which must satisfy
the following coherence axioms

I ′

ι

}}

ι′

!!

F(a)⊗′ F(a′)
µa⊗′µa′ //

∇a,a′
��

F ′(a)⊗′ F ′(a′)

∇′
a,a′
��

F(I)
µI

// F ′(I) F(a⊗a′) µa⊗a′
// F ′(a⊗a′).

(2.15)
Some of these axioms will easily be satisfied because we are dealing with
strict functors. ^

Given the notion of a symmetric monoidal natural transformation, we
can easily describe what it means for two symmetric monoidal categories
to be equivalent.

Definition 2.2.7. A symmetric monoidal equivalence between
(A, I,⊗,γ) and (A′, I ′,⊗′,γ′) means there is a symmetric monoidal functor
(F, ι,∇) from A to A′ and a symmetric monoidal functor (F ′, ι′,∇′) from A′

14 Aide-Mémoire for Category Theory

to A with symmetric monoidal natural transformations which is an iso-
morphism µ : IdA−! F ′ ◦F and µ′ : F ◦F ′−! IdA′ . As usual, an equiva-
lence in this case means that the functor is full, faithful, and essentially
surjective. ^

Further Reading

The notions of a slice and comma categories can be found in Section II.6
of [51] and pages 3, 13, and 47 of [6]. Symmetric monoidal categories can
be found in Chapter XI of [51] and Chapters XI-XIV of [37].

3

Models of Computation

I’m just sitting here watching the wheels go round and round
I really love to watch them roll

No longer riding on the merry-go-round
I just had to let it go.

John Lennon
Watching the Wheels, 1981

Since we are going to deal with the questions “Which functions are
computable?” and “Which functions are efficiently computable?” we bet-
ter first deal with the question “What is a computation?” We all have a
pretty good intuition that a computation is a process that a computer per-
forms. Computer scientists have given other, more formal, definitions of a
computation. They have described different models where computations
occur. These models are virtual computers that are exact and have a few
simple rules. In most textbooks, one computational model is employed.
As category theorists, we have to look at several models and see how they
are related. This affords us a more global view of computation.

3.1 The Big Picture

We have united all the different models that we will deal with in Fig-
ure 3.1. Warning: Figure 3.1 can look quite intimidating the first time
your see it. Fear not dear reader! We will spend Sections 3.1, 3.2, 3.3,
and 3.4 explaining this diagram and making it digestible. We call the di-
agram “The Big Picture.” It has a center and three spokes coming out of
it. The spokes will correspond to different ways of viewing computations.
Some models perform computations by manipulating strings of charac-

15

16 Models of Computation

ters, while other models manipulate natural numbers, and still other
models work like real computers and manipulate bits. Most of the rest
of this text will concentrate on the top spoke which is concerned with
performing computations by manipulating strings.

Here is some orientation around The Big Picture so that it is less in-
timidating. All the categories are symmetric monoidal categories. All the
functors are symmetric monoidal functors. All the equivalences use sym-
metrical monoidal natural transformations. All horizontal lines are in-
clusion functors which are the identity on objects. Almost every category
comes in two forms: (i) all the possible morphisms which include mor-
phisms that represent partial functions, that is, functions that have in-
puts that do not have outputs, and (ii) the subcategory of total morphisms,
i.e., morphisms where every input has an output. The diagram has a cen-
tral line that consists of different types of functions that our models try
to compute. This line will be the central focus of this text. There are three
spokes pointing to that line. These correspond to three types of models
of computation: (i) the top spoke corresponds to models that manipulate
strings; (ii) the lower right spoke corresponds to models that manipulate
natural numbers; and (iii) the lower left spoke corresponds to models that
manipulate bits.

In all these categories, the composition corresponds to sequential pro-
cessing (that is, performing one process after another). The monoidal
structure corresponds to parallel processing. The symmetric monoidal
structure corresponds to the fact that the order of parallel processing is
easily interchanged.

We need a little discussion about types. Every function and every com-
putational device takes inputs and returns outputs. In order to keep track
of all the different functions we usually describe the input and output as
types. There are basic types such as Nat, Int, Real, Char, String,
and Bool which correspond to natural numbers, integers, real numbers1,
characters, strings of characters, and Booleans (0 and 1.) Using these we
can describe simple functions.

Example 3.1.1. Some examples of functions with basic types.

• d–e : Real −! Int is the ceiling function that takes a real number and
outputs the least integer equal or greater than it.

1 Finite computers with finite memory cannot deal with arbitrary large natural numbers
or integers. They also do not deal with arbitrary real numbers. We must put restrictions
on the size of whole numbers we use and only work with real numbers up to a certain
precision. However we will not discuss these issues here.

3.1 The Big Picture 17

TotTuring

����

� � // Turing

����
TotCompString� _

'

��

� � // CompString� _

'

��
TotCompFunc

� � // CompFunc �
� // Func

TotCompBool
-

'

<<

� � // CompBool
-

'

;;

TotCompN
1 Q

'

cc

� � // CompN
1 Q

'

bb

TotCircuit

OOOO

� � // Circuit

OOOO

TotRegMachine

OOOO

� � // RegMachine

OOOO

Figure 3.1 “The Big Picture” of models of computation

• Prime : Nat −! Bool is a function that takes a natural number and
outputs a 1 if the number is a prime and 0 otherwise.

• Beauti f ul : String −! Nat that takes a string of characters to be
thought of as a poem and outputs an integer from 1 to 10 depending
if the poem is beautiful. This is not objective (“Beauty is in the eye of
the beholder”) so it is not really a function. And even if you believe that
beauty is objective, it is probably not computable. You might get a com-
puter to imitate a belief that most humans have, but that does mean
the computer is judging it with a comparative aesthetic experience.

ä
Exercise 3.1.2. Describe the types of the inputs and outputs of the fol-
lowing functions.

• A function that determines the length of a string of characters.

18 Models of Computation

• A function that takes a natural number and outputs a written descrip-
tion of that number. For example 42 7−! “forty-two”.

• A function that takes a computer program and determines how many
lines of code there are in the program.

Solution:

• Length : String−!Nat.
• Desc : Nat−! String.
• Lines : String−!Nat.

■
Basic types are not enough. We need operations on types to form other

types.

• List types: Given a type T, we can form T∗ which corresponds to finite
lists of elements of type T. Bool∗ is the type of lists of Booleans and
Nat∗ corresponds to tuples of natural numbers.

• Function types: Given types T1 and T2, we form type Hom(T1,T2)=
TT1

2 . This type corresponds to functions that takes inputs of type T1

and output T2 types.
• Product types: Given types T1 and T2, we form type T1 ×T2. This

type will correspond to pairs of elements, the first of type T1 and the
second of type T2. When there is a tuple of types, we will call them a
sequence of types. For example Seq = Nat×String×Bool or Seq′ =
Float×CharNat × Nat∗ × Int. Given two sequences of types, we can
concatenate them. For example the concatenation of Seq and Seq′ is

Seq×Seq′ = (Nat×String×Bool)× (Float×CharNat ×Nat∗× Int)
(3.1)

= Nat×String×Bool×Float×CharNat ×Nat∗× Int
(3.2)

For a type T, we shorten T ×T as T2 and T ×T ×T as T3. In general
Tn will be a sequence of n Ts. T0 will correspond to ∗ which is called
the terminal type. It is used to pick out an element of another type. A
function f : ∗−! Seq picks out an element of type Seq.

Example 3.1.3. Here are a few functions that use compound types:

• DayO f Week : String×Nat×Nat−! Nat is a function that takes a
date as the name of the month, the day of the month, and the year. The
function returns the day of the week (1,2,...,7) for that date.

3.1 The Big Picture 19

• Comp : TT2
3 ×TT1

2 −! TT1
3 is a function that corresponds to function

composition. It takes an f : T1 −! T2 and a g : T2 −! T3 and outputs
g ◦ f : T1−! T3.

• Inverse : TT1
2 −! TT2

1 takes a function and returns the inverse of the
function (if it exists). This arises in our discussion of cryptography.

ä
Exercise 3.1.4. Describe the following as functions from sequences of
types to sequences of types.

• A function that takes a list of natural numbers and returns the max-
imum of the numbers, the mean of the numbers, and the minimum of
the numbers.

• A function that takes (i) a function from the natural numbers to the
natural numbers, and (ii) a natural number. The function should eval-
uate the given function on the number and determine what the output
is.

• A function that takes two natural numbers and determines if they are
the last twin primes. That is, (i) both numbers are prime, (ii) they are
of the form n and n+2, and (iii) and there are no greater twin primes.

Solution:

• MaxMeanMin : Nat∗−!Nat×Real×Nat.
• Eval : NatNat ×Nat−!Nat.
• LastTwinPrimes : Nat× Nat −! Bool. The interesting part of this

problem is that it is unknown if there is a last twin prime or if there
are an infinite number of them.

■
There are much more complicated types that are needed to describe all

types of functions. There are “coproduct types” and things called “depen-
dent types.” However, we will not use them in our presentation.

. .

Advanced Topic 3.1.5. These types are the beginning of several areas
of theoretical computer science. Type theory studies complicated types
and how they relate to computation. Category theorists have been mak-
ing categories of types and looking at all of their possible structures (see

20 Models of Computation

[4, 7].) This is also related to λ-calculus or lambda calculus which is
another way of describing computations (see [40].) The theory of types is
also the beginning of a current very hot area of research called homo-
topy type theory. This has all types of connections to foundations of
mathematics and proof checkers (see [62].) ©
. .

Now that we have the language of types down pat, let us move on to
the most important definition in this book.

Definition 3.1.6. The category Func consists of all functions. The ob-
jects are sequences of types. The morphisms in Func from Seq to
Seq′ are all functions that have inputs from type Seq and outputs of
type Seq′. We permit all functions including partial functions and func-
tions that computers cannot compute. The identity functions are obvious.
Composition in the category is simply function composition. For exam-
ple, if f : Seq1 −! Seq2 and g : Seq2 −! Seq3 are two functions, then
g◦ f : Seq1−! Seq3 is the usual composition. The monoidal structure on
objects is concatenation of sequences of types. Given f : Seq1 −! Seq2

and g : Seq3−! Seq4, their tensor product is

f ⊗ g : (Seq1 ×Seq3)−! (Seq2 ×Seq4) (3.3)

which corresponds to performing both functions in parallel. The symmet-
ric monoidal structure comes from the trivial function that swaps se-
quences of types, i.e., tw : Seq×Seq′−! Seq′×Seq. We leave the details
for the reader. ^

Exercise 3.1.7. What is the unit of the symmetric monoidal category
structure?

Solution: The terminal type ∗ because T ×∗= T =∗×T.
■

Exercise 3.1.8. Show that the function tw satisfies the axioms making
Func into a symmetric monoidal category. ■
Definition 3.1.9. The category CompFunc is a subcategory of Func
which has the same objects. The morphisms of this subcategory are func-
tions (including partial functions) that a computer can compute. A com-
puter can compute a partial function if for any input for which there is an

