

Theoretical Computer Science for the Working Category Theorist

Noson S. Yanofsky Brooklyn College, CUNY

Applied Category Theory Seminar University of Maryland May 7, 2020

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Lessons

Abstract

Abstract: This talk is a preview of a forthcoming book in the Applied Category Theory series of Cambridge University Press. The book uses basic category theory to describe all the central concepts and prove the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. We will meet some of the deepest ideas and theorems of modern computers and mathematics, e.g., Turing machines, unsolvable problems, the P=NP question, Kurt Gödel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. I will report on new things I learned about theoretical computer science and category theory while working on this project.

Diagonal

Supplementary

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Lessons

Outline of Talk

Overview

Models of Computation

Computability Theory

Complexity Theory

The Diagonal Theorem

Supplementary Chapters

Lessons Learned

Lessons

Diagonal

Supplementary

Lessons

"The Big Picture" of models of computation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Diagonal

Supplementary

Lessons

	TotCompFunc	CompFunc	Func
Objects	all types	all types	all types
Morphisms	total computable functions	computable functions	all functions
Structure	symmetric monoidal category	symmetric monoidal category	symmetric monoidal category

ヘロト ヘヨト ヘヨト

3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Lessons

	TotCompString	CompString
Objects	powers of String	powers of String
Morphisms	total computable functions	computable functions
Structure	symmetric monoidal category	symmetric monoidal category

Diagonal

Supplementary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Lessons

	TotComp N	CompN
Objects	powers of Nat	powers of Nat
Morphisms	total computable functions	computable functions
Structure	symmetric monoidal category	symmetric monoidal category

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

	TotCompBool	CompBool
Objects	powers of Bool*	powers of <i>Bool</i> *
Morphisms	total computable functions	computable functions
Structure	symmetric monoidal category	symmetric monoidal category

Diagonal

Supplementary

Lessons

"The Big Picture" of models of computation

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Supplementary

Lessons

Turing Machines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

ヘロン 人間 とくほとく ほとう

€ 990

Categories of Turing Machines

	TotTuring	Turing
Objects	Ν	Ν
Morphisms	total Turing machines	Turing machines
Structure	symmetric monoidal bicategory	symmetric monoidal bicategory

Overview

Lessons

Register Machines

Register machines are methods for manipulating natural numbers. These machines are basically programs in a very simple programming language where variables can only hold natural numbers. The programs use three different types of variables, namely: X_1, X_2, X_3, \ldots called "input variables;" Y_1, Y_2, Y_3, \ldots called "output variables;" and W_1, W_2, W_3, \ldots called "work variables." Register machines employ only the following types of operations on any variable Z:

$$Z = Z + 1 \qquad Z = Z - 1 \qquad \text{If } Z \neq 0 \text{ goto } L, \tag{1}$$

where L is some line number. A program is a list of such statements for various variables. The values in the output variables at the end of an execution are the output of the function. There exist certain register machines for which some of the input causes the machine to go into an infinite loop and have no output values. Other register machines halt for any input.

200

ヘロン 人間 とくほとく ほとう

Lessons

€ 990

Categories of Register Machines

	TotRegMach	RegMach
Objects	Ν	Ν
Morphisms	total register machines	register machines
Structure	symmetric monoidal bicategory	symmetric monoidal bicategory

These gates generate all logical circuits such as

・ロ ・ ・ 同 ・ ・ ヨ ・ ・ 日 ・

э.

This circuit has six inputs and two outputs.

Categories of circuits

	TotCircuit	Circuit
Objects	Ν	Ν
Morphisms	total circuit families	circuit families
Structure	braided monoidal bicategory	braided monoidal bicategory

Conclusion:

The more "physical" your models are, the less structure there is in the collection of all such models.

Diagonal

Supplementary

Lessons

Functors between models of computation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Diagonal

Lessons

Functors between models of computation and logical formulas

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

(日)

Diagonal

Supplementary

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Lessons

Computability Theory: what can and cannot be computed.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Computability Theory: what can and cannot be computed.

Computability Theory: what can and cannot be computed.

Computability theory determines if a given morphism in $\mathbb{F}unc$ is in $\mathbb{C}omp\mathbb{F}unc$ or in $\mathbb{T}ot\mathbb{C}omp\mathbb{F}unc$. Another way of looking at this is to consider the following functors

and ask if a particular morphism in $\mathbb{F}unc$ is in the image of Q, or in the image of D, or neither.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Lessons

The Halting Problem

There is a total morphism in $\mathbb{F}um\mathbb{c}$

 $Halt \colon Nat \times Nat \longrightarrow Bool$

defined as

$$Halt(x,y) = \begin{cases} 1 & : \text{ if Turing machine } y \text{ on input } x \text{ halts.} \\ 0 & : \text{ if Turing machine } y \text{ on input } x \text{ does not halt.} \end{cases}$$

Theorem

Halt is not a morphism in TotCompFunc.

Diagonal

ヘロト 人間 ト 人 ヨト 人 ヨト

Lessons

Proving the undecidability of the Halting problem

Figure: (i) a decider, (ii) a recognizer, and (iii) a decider built out of two recognizers

Diagonal

(日)

Lessons

Proving the undecidability of the Halting problem

Figure: (i) a decider, (ii) a recognizer, and (iii) a decider built out of two recognizers

Other Undecidable Problems

The **Nonempty domain problem** asks if a given (number of a) Turing machine will have a nonempty domain. There is a total morphism in Func called *Nonempty*: $Nat \longrightarrow Bool$ which is defined as follows

 $Nonempty(y) = \begin{cases} 1 & : \text{ if Turing machine } y \text{ has a nonempty domain} \\ 0 & : \text{ if Turing machine } y \text{ has an empty domain.} \end{cases}$

We show that the Halting problem reduces to the Nonempty domain problem as in

h is in TotCompFunc. If *Nonempty* was also in that category, then so would *Halt*. Conclusion: *Nonempty* is not in TotCompFunc. ・ロト・西ト・ヨト・ヨト・ 日・ のへの

Other Undecidable Problems

A **reduction** is a way of discussing the relation between two decision problems. Let $f: Seq \longrightarrow Bool$ and $g: Seq' \longrightarrow Bool$ be two functions in Func. We say that f is **reducible** to g or f **reduces** to g if there exists an $h: Seq \longrightarrow Seq'$ in TotCompFunc such that

commutes. We write this as $f \leq g$.

A categorical way to view reducibility is to form the comma category of the following two functors

$$TotCompFunc \xrightarrow{Inc} Func \xrightarrow{Const_{Bool}} 1.$$

Other Undecidable Problems

- (i) The nonempty domain problem.
- (ii) The empty domain problem.
- (iii) The equivalent program problem.
- (iv) The printing 42 problem.
- (v) Rice's theorem. Any nontrivial, semantic property of Turing machines is undecidable.
- (vi) Gödel's Incompleteness Theorem. For any consistent logical system which is powerful enough to deal with basic arithmetic, there are statements that are true but unprovable. That is, the logical system is incomplete.
- (vii) The Entscheidungsproblem is unsolvable.

Complexity Theory

Complexity theory studies what can be computed <u>efficiently</u>. First we have to see how to measure computable functions.

(i) $Tot CompFunc \xrightarrow{\mu_{D,Time}} Hom_{Set}(\mathbf{N}, \mathbf{R}^*).$

Complexity Theory

Complexity theory studies what can be computed <u>efficiently</u>. First we have to see how to measure computable functions.

(i) $TotCompFunc \xrightarrow{\mu_{D,Time}} Hom_{Set}(\mathbf{N}, \mathbf{R}^*).$

(ii) $TotCompFunc \xrightarrow{\mu_{D,Space}} Hom_{Set}(\mathbf{N}, \mathbf{R}^*).$

(iii) $\operatorname{TotCompFunc} \xrightarrow{\mu_{N,Time}} Hom_{\operatorname{Set}}(\mathbf{N}, \mathbf{R}^*).$

(iv) $\operatorname{Tot} \operatorname{CompFunc} \xrightarrow{\mu_{N,Space}} Hom_{\operatorname{Set}}(\mathbf{N}, \mathbf{R}^*).$

Complexity Classes

We use the measures to find complexity classes. For every subset S of $Hom_{Set}(\mathbf{N}, \mathbf{R}^*)$, there is a pullback.

Similar pullbacks with the other measures form $\mathbb{DSPACE}(S)$, $\mathbb{NTIME}(S)$, and $\mathbb{NSPACE}(S)$ subcategories.

ヘロト ヘヨト ヘヨト

3

Lessons

Complexity Classes

There are relations between the complexity measures.

(i) Space vs Time.

- (ii) Deterministic vs Nondeterministic
- (iii) Subsets vs Sets.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Lessor

Complexity classes and their inclusion functors.

We can see all three of these "dimensions" in one diagram. Given $T \subseteq S \subseteq Hom_{Set}(\mathbf{N}, \mathbf{R}^*)$ we have

Lessons

Complexity classes and their inclusion functors.

Some common subsets of $Hom_{Set}(\mathbf{N}, \mathbf{R}^*)$ that are closed under addition are *Poly* consisting of all functions that are polynomial or less, *Const* consisting of all constant functions, *Exp* consisting of all functions that are exponential or less, *Log* consisting of all functions that are logarithmic or less. These subsets are included in each other as

 $Const \hookrightarrow Log \hookrightarrow Poly \hookrightarrow Exp \hookrightarrow Hom_{\mathbb{S}\, \mathrm{et}}(\mathbf{N}, \mathbf{R}^*).$

Complexity classes and their inclusion functors.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Lessons

Decision Problems

The reductions used in basic complexity theory are called **polynomial reduction**. Let $f: Seq \longrightarrow Bool$ and $g: Seq' \longrightarrow Bool$ be two decision problems in TotCompFunc. We say that f is **polynomial reducible** to g if there is an $h: Seq \longrightarrow Seq'$ in DTIME(Poly) such that

commutes. We write this as $f \leq_p g$. To form the category \mathbb{D} ecision of decision problems and polynomial reductions, consider the comma category of

$$\mathbb{DTIME}(Poly) \xrightarrow{Inc} \mathbb{TotCompFunc} \xrightarrow{Const_{Bool}} \mathbb{1}$$

(日)

Lessons

Decision Problems

There are two subcategories of TotCompFunc that are of interest: DTIME(Poly) and NTIME(Poly). These are all deterministic polynomial computable functions, and all nondeterminisitic polynomial functions, respectively. They sit in the diagram

These inclusions induce:

$$\mathbb{P} \longrightarrow \mathbb{NP} \longrightarrow \mathbb{D}ecision.$$

Complexity

Diagonal

Supplementary

Lessons

Decision Problems

A morphism from one decision problem f to another decision problem g means g is as hard or harder than f. The hardest problems in a complexity class is a problem that every problem maps to it. Such problems are called **complete**. The collection of all complete problems in a complexity class is the subcategory of weak terminal objects of that category.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Lessons

Lawvere-Cantor Diagonalization Theorem

Theorem

Let A be a category with a terminal object and binary products. Let y be an object in A. If $\alpha: y \longrightarrow y$ is a morphism in A and α does not have a fixed point, then for every object a and for every $f: a \times a \longrightarrow y$, there exists a morphism $g: a \longrightarrow y$ such that g is not representable in f.

Lessons

Lawvere-Cantor Diagonalization Theorem

The contrapositive is also important.

Theorem

Let \mathbb{A} be a category with a terminal object and binary products. Let y be an object in \mathbb{A} . If there exists an object a, and a morphism $f: a \times a \longrightarrow y$ such that every morphism $g: a \longrightarrow y$ is representable in f, then every $\alpha: y \longrightarrow y$ has a fixed point.

Conclusion:

Almost every instance of self reference and diagonalization proof falls into this simple format.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Applications

- (i) There does not exist an onto function from the set of natural numbers, \mathbf{N} , to the powerset of natural numbers, $\mathscr{P}(\mathbf{N})$.
- (ii) The unsolvability of the Halting problem (again).
- (iii) There is a computable function that is not primitive recursive.
- (iv) There is a total unary function that is not computable.
- (v) The recursion theorem.

Lessons

Applications

- (i) There does not exist an onto function from the set of natural numbers, \mathbf{N} , to the powerset of natural numbers, $\mathscr{P}(\mathbf{N})$.
- (ii) The unsolvability of the Halting problem (again).
- (iii) There is a computable function that is not primitive recursive.
- (iv) There is a total unary function that is not computable.
- (v) The recursion theorem.
- (vi) The space hierarchy theorem: There are computable functions which can be computed in Space(h) but not in less space.
- (vii) The time hierarchy theorem: There are computable functions which can be computed in Time(h) but not in much less time.
- (viii) The Baker-Gill-Solovay theorem: There exists oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
 - (ix) (Ladner's Theorem: If $P \neq NP$ then there are an infinite number of complexity classes between them.)

Complexity

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Lessons

Other Fields of Theoretical Computer Science

- (i) Formal Language Theory
- (ii) Cryptography
- (iii) Kolmogorov Complexity Theory
- (iv) Algorithms

Cryptography

Alice wants to communicate with Bob. The encoders and the decoders must be total and computabile, i.e., morphisms in TotCompFunc. We shall work with some subcategory with the same objects called Easy. Any morphism not in Easy will be in **Hard**. Encoders $e: SeqA \longrightarrow SeqB$ are in Easy. The intended receiver of the secret message should be able to easily decode the message. In other words, the decoders $d: SeqB \longrightarrow SeqA$ are also in Easy. It should not be hard to decode, rather, it should be hard to find the right decoder. The notion of a trapdoor function will be helpful. It is hard to find the right decoder. However, with the right key, it will be easy to find the right decoder.

Cryptography

Definition

A **cryptographic protocol** that encodes data of type SeqA into data of type SeqB consists of

- (i) a set of "encoder" functions, $Enc \subseteq Hom_{\mathbb{E}asy}(SeqA, SeqB)$,
- (ii) a set of "decoder" functions, $Dec \subseteq Hom_{Easy}(SeqB, SeqA)$,
- (iii) an "inverter" function INV: $Enc \longrightarrow Dec$ in **Hard** such that for all $e \in Enc$, there is a d = INV(e) that satisfies $d \circ e = Id_{SeqA}$,
- (iv) a "key" function KEY: $Enc \longrightarrow Seq$ in **Hard** such that for all $e \in Enc$, there is a $k_e = KEY(e)$, and
- (v) a "trapdoor" function TRP: Seq \longrightarrow Dec in \mathbb{E} asy satisfying

(日)

3

i.e., for every $e \in Enc$ there is a "key" $k_e \in Seq$ such that $TRP(k_e) = INV(e)$.

i.e., for every $e \in Enc$ there is a "key" $k_e \in Seq$ such that $TRP(k_e) = INV(e)$.

Conclusion:

Almost every major cryptographic protocol falls into this simple format.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Supplementary

Lessons

Algorithms

Program — » Algorithm — » CompFunc

Lessons

Lessons Learned

- (i) Rather than considering the set of isolated decision problems, we worked with the category of decision problems and their reductions. They are comma categories. In complexity theory, these categories form complexity classes.
- (ii) Complete problems for a complexity class are weak terminal objects in the category of decision problems. They form a subcategory of the decision problems.
- (iii) There are a few major results (e.g., Halting is undecidable, SAT is NP-Complete, the recursion theorem, etc.) and many corollaries are derived from those results. This follows from the fact that decision problems are a comma category where it is easy to express reductions.
- (iv) Adjoint functors <u>did not</u> play a major role in the tale that we told. In computer science, there are many equivalent ways of making constructions. This is not conducive to universal properties.

Lessons Learned

- (v) We, however, did use Kan extensions as ways of finding complicated minimization and maximazation functors.
- (vi) We defined a functor L_t from the symmetric monoidal bicategory of total Turing machines to the symmetric monoidal bicategory of families of sequences of logical formula. This functor was used to describe the workings of a Turing machine with logical formulas. The functor L_t and extensions of the functor were used in the proofs of the following theorems that relate computation and logic:
 - (i) Gödel's Incompleteness Theorem.
 - (ii) The unsolvability of the Entscheidungsproblem.
 - (iii) The Cook-Levin Theorem.

The following "density relation" arose many times.

where both triangles commute and $F \circ Inc = Id_{\mathbb{A}}$ but, in general $Inc \circ F \neq Id_{\mathbb{B}}$. What this means is that for every *b* in \mathbb{B} , F(b) is not the same as an *a* in \mathbb{A} , but is the same in relation to the functors to \mathbb{C} .

ヘロト ヘヨト ヘヨト

-

Weakening of reflective equivalence.

Lessons Learned

- (i) Every Turing machine is equivalent to a Turing machine in $\mathbb{T}uring(1,1)$.
- (ii) Every logic circuit has an equivalent NAND logic circuit.
- (iii) Every nondeterministic Turing machine has an equivalent deterministic Turing machine.
- (iv) Savitch's theorem: Every NPSPACE computation has an equivalent PSPACE computation.
- (v) Every \mathbb{NP}^A computation is equivalent to a $\mathbb{NPSPACE}$ computation where A is PSPACE-complete.
- (vi) Every \mathbb{PSPACE} computation is equivalent to a \mathbb{P}^A computation where A is PSPACE-complete.
- (vii) Every nondetermistic finite automaton has an equivalent $\underline{$ deterministic finite automaton¹.

¹This relationship between nondeterminism and determinism is not universal. Here are two examples where it fails. (i) Not every nondeterministic pushdown automaton is equivalent to a deterministic pushdown automaton. (ii) If $\mathbb{P} \neq \mathbb{NP}$ then not every nondeterministic polynomial algorithm has an equivalent deterministic polynomial algorithm.

While our aim was to be as categorical as possible, we found that twice we had to go outside the bounds of categories:

 (i) Enumerations of models of computation or of computable functions are not functorial. They neither respect sequential composition nor parallel composition.

 (ii) Complexity measures of models of computation or of computable functions are not functorial. They neither respect sequential composition nor parallel composition. Overview

Complexity

Diagonal

Supplementary

Lessons

The End

Thank You!

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□