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Abstract

Abstract: This talk is a preview of a forthcoming book in the
Applied Category Theory series of Cambridge University Press.
The book uses basic category theory to describe all the central
concepts and prove the main theorems of theoretical computer
science. Category theory, which works with functions, processes,
and structures, is uniquely qualified to present the fundamental
results of theoretical computer science. We will meet some of the
deepest ideas and theorems of modern computers and
mathematics, e.g., Turing machines, unsolvable problems, the
P=NP question, Kurt Gödel’s incompleteness theorem,
intractable problems, cryptographic protocols, Alan Turing’s
Halting problem, and much more. I will report on new things I
learned about theoretical computer science and category theory
while working on this project.
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“The Big Picture” of models of computation
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Categories of functions

TotCompFunc CompFunc Func

Objects all types all types all types

Morphisms total
computable
functions

computable
functions

all
functions

Structure symmetric
monoidal
category

symmetric
monoidal
category

symmetric
monoidal
category
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Categories of functions
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Categories of functions
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Morphisms total
computable
functions
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functions
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Categories of functions

TotCompBool CompBool

Objects powers of Bool∗ powers of Bool∗

Morphisms total
computable
functions

computable
functions

Structure symmetric
monoidal
category

symmetric
monoidal
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Turing Machines



Overview Models of Computation Computability Complexity Diagonal Supplementary Lessons

Categories of Turing Machines

TotTuring Turing

Objects N N

Morphisms total
Turing
machines

Turing
machines

Structure symmetric
monoidal
bicategory

symmetric
monoidal
bicategory
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Register Machines
Register machines are methods for manipulating natural
numbers. These machines are basically programs in a very
simple programming language where variables can only hold
natural numbers. The programs use three different types of
variables, namely: X1,X2,X3, . . . called “input variables;” Y1, Y2,
Y3, . . . called “output variables;” and W1, W2, W3, . . . called “work
variables.” Register machines employ only the following types of
operations on any variable Z:

Z=Z+1 Z=Z−1 If Z 6= 0 goto L, (1)

where L is some line number. A program is a list of such
statements for various variables. The values in the output
variables at the end of an execution are the output of the
function. There exist certain register machines for which some of
the input causes the machine to go into an infinite loop and have
no output values. Other register machines halt for any input.
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Categories of Register Machines

TotRegMach RegMach

Objects N N

Morphisms total
register
machines

register
machines

Structure symmetric
monoidal
bicategory

symmetric
monoidal
bicategory
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Circuits

These gates generate all logical circuits such as

••

•

••

•

•A
B

C

D
E

F

•

A∧B

¬(C∧E)

D∧E

¬F

(A∧B)∨(¬(C∧E))

•
(D∧E)∧(¬F)

((A∧B)∨(¬(C∧E)))∧(D∧E)

A∨((D∧E)∧(¬F))

This circuit has six inputs and two outputs.
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Categories of circuits

TotCircuit Circuit

Objects N N

Morphisms total
circuit
families

circuit
families

Structure braided
monoidal
bicategory

braided
monoidal
bicategory

Conclusion:
The more “physical” your models are, the less structure there is
in the collection of all such models.
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Functors between models of computation
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Functors between models of computation and logical
formulas

TotTuring

Lt

��

!!��

Logic

TotCircuit

Lc

88

DD

00 TotRegMach

Lr

ff
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pp
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Enumerations

∐
Seq,Seq′

HomCompFunc(Seq,Seq′))

'' ''

∐
m,n

HomRegMach(m,n))

∼
yy∐

m,n
HomTuring(m,n)∼ // d(N)

∐
m,n

HomLogic(m,n))
∼oo

∐
m,n

HomPRCompN(Natm,Natn))

77 77

∐
m,n

HomCircuit(m,n))
∼

ee
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Computability Theory: what can and cannot be
computed.

TotTuring

����

� � // Turing

����
TotCompString� _
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� � // CompString� _

��
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Computability Theory: what can and cannot be
computed.

TotTuring

��

� � // Turing

��
TotCompFunc

� � // CompFunc �
� // Func

Computability theory determines if a given morphism in Func is
in CompFunc or in TotCompFunc. Another way of looking
at this is to consider the following functors

TotTuring

D ''

� � // Turing

Qyy
Func

and ask if a particular morphism in Func is in the image of Q,
or in the image of D, or neither.
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The Halting Problem

There is a total morphism in Func

Halt : Nat×Nat−!Bool

defined as

Halt(x,y)=

 1 : if Turing machine y on input x halts.

0 : if Turing machine y on input x does not halt.

Theorem
Halt is not a morphism in TotCompFunc.
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Proving the undecidability of the Halting problem

Figure: (i) a decider, (ii) a recognizer, and (iii) a decider built out of two
recognizers

Seq ∆ // Seq×Seq
f×f //

f×f c

((
Bool×Bool

id×NOT// Bool×Bool
Parallel // Bool .
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Other Undecidable Problems
The Nonempty domain problem asks if a given (number of a)
Turing machine will have a nonempty domain. There is a total
morphism in Func called Nonempty : Nat−!Bool which is
defined as follows

Nonempty(y)=

 1 : if Turing machine y has a nonempty domain

0 : if Turing machine y has an empty domain.

We show that the Halting problem reduces to the Nonempty
domain problem as in

Nat×Nat
h //

Halt &&

Nat

Nonempty{{
Bool.

h is in TotCompFunc. If Nonempty was also in that category,
then so would Halt. Conclusion: Nonempty is not in
TotCompFunc.
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Other Undecidable Problems
A reduction is a way of discussing the relation between two
decision problems. Let f : Seq−!Bool and g : Seq′−!Bool be
two functions in Func. We say that f is reducible to g or f
reduces to g if there exists an h : Seq−!Seq′ in
TotCompFunc such that

Seq h //

f ""

Seq′

g
{{

Bool

commutes. We write this as f ≤ g. .
A categorical way to view reducibility is to form the comma
category of the following two functors

TotCompFunc
� � Inc // Func 1.

ConstBooloo
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Other Undecidable Problems

(i) The nonempty domain problem.

(ii) The empty domain problem.

(iii) The equivalent program problem.

(iv) The printing 42 problem.

(v) Rice’s theorem. Any nontrivial, semantic property of Turing
machines is undecidable.

(vi) Gödel’s Incompleteness Theorem. For any consistent logical
system which is powerful enough to deal with basic
arithmetic, there are statements that are true but
unprovable. That is, the logical system is incomplete.

(vii) The Entscheidungsproblem is unsolvable.
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Complexity Theory

Complexity theory studies what can be computed efficiently.
First we have to see how to measure computable functions.

(i) TotCompFunc
µD,Time // HomSet(N,R∗).

(ii) TotCompFunc
µD,Space // HomSet(N,R∗).

(iii) TotCompFunc
µN,Time // HomSet(N,R∗).

(iv) TotCompFunc
µN,Space // HomSet(N,R∗).
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Complexity Classes

We use the measures to find complexity classes.
For every subset S of HomSet(N,R∗), there is a pullback.

DTIME(S) �
� //

��

TotCompFunc

µD,Time

��
S �
� // HomSet(N,R∗).

Similar pullbacks with the other measures form DSPACE(S),
NTIME(S), and NSPACE(S) subcategories.
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Complexity Classes

There are relations between the complexity measures.

(i) Space vs Time.

TotCompFunc

µD,Time

77

µD,Space

''
⇓ HomSet(N,R∗) .

(ii) Deterministic vs Nondeterministic

(iii) Subsets vs Sets.
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Complexity classes and their inclusion functors.

We can see all three of these “dimensions” in one diagram. Given
T ⊆S⊆HomSet(N,R∗) we have

DSPACE(S) �
� // NSPACE(S)

DTIME(S)
) 	

66

� � // NTIME(S)
) 	

66

DSPACE(T)
?�

OO

� � // NSPACE(T)
?�

OO

DTIME(T)
) 	

66

?�

OO

� � // NTIME(T).
) 	

66

?�

OO
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Complexity classes and their inclusion functors.

Some common subsets of HomSet(N,R∗) that are closed under
addition are Poly consisting of all functions that are polynomial
or less, Const consisting of all constant functions, Exp consisting
of all functions that are exponential or less, Log consisting of all
functions that are logarithmic or less. These subsets are included
in each other as

Const ,−!Log ,−!Poly ,−!Exp ,−!HomSet(N,R∗).
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Complexity classes and their inclusion functors.

DSPACE(Exp)
� � // NSPACE(Exp)

DTIME(Exp)
& �

44

� � // NTIME(Exp)
& �

33

DSPACE(Poly)
?�

OO

� � // NSPACE(Poly)
?�

OO

DTIME(Poly)
& �

44

?�

OO

� � // NTIME(Poly)
& �

33

?�

OO

DSPACE(Log)
?�

OO

� � // NSPACE(Log)
?�

OO

DTIME(Log)
& �

44

?�

OO

� � // NTIME(Log)
& �

33

?�

OO

DSPACE(Const)
?�

OO

� � // NSPACE(Const)
?�

OO

DTIME(Const)
& �

33

?�

OO

� � // NTIME(Const).
& �

33

?�

OO
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Decision Problems
The reductions used in basic complexity theory are called
polynomial reduction. Let f : Seq−!Bool and
g : Seq′−!Bool be two decision problems in TotCompFunc.
We say that f is polynomial reducible to g if there is an
h : Seq−!Seq′ in DTIME(Poly) such that

Seq h //

f ""

Seq′

g
{{

Bool

commutes. We write this as f ≤p g.
To form the category Decision of decision problems and
polynomial reductions, consider the comma category of

DTIME(Poly) �
� Inc // TotCompFunc 1

ConstBooloo
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Decision Problems
There are two subcategories of TotCompFunc that are of
interest: DTIME(Poly) and NTIME(Poly). These are all
deterministic polynomial computable functions, and all
nondeterminisitic polynomial functions, respectively. They sit in
the diagram

TotCompFunc

DTIME(Poly) �
� DInc //

& �

Inc
44

� x

Id **

NTIME(Poly)
?�

OO

1
ConstBooloo

ConstBool
ii

ConstBooluu
DTIME(Poly).

?�

OO

These inclusions induce:

P ,−!NP ,−!Decision.
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Decision Problems

A morphism from one decision problem f to another decision
problem g means g is as hard or harder than f . The hardest
problems in a complexity class is a problem that every problem
maps to it. Such problems are called complete. The collection of
all complete problems in a complexity class is the subcategory of
weak terminal objects of that category.
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Lawvere-Cantor Diagonalization Theorem

Theorem
Let A be a category with a terminal object and binary products.
Let y be an object in A. If α : y−! y is a morphism in A and α

does not have a fixed point, then for every object a and for every
f : a×a−! y, there exists a morphism g : a−! y such that g is not
representable in f .

a×a
f // y

α

��
a

∆

==

g
// y.



Overview Models of Computation Computability Complexity Diagonal Supplementary Lessons

Lawvere-Cantor Diagonalization Theorem
The contrapositive is also important.

Theorem
Let A be a category with a terminal object and binary products.
Let y be an object in A. If there exists an object a, and a
morphism f : a×a−! y such that every morphism g : a−! y is
representable in f , then every α : y−! y has a fixed point.

a×a
f // y

α

��
a

∆

==

g
// y.

Conclusion:
Almost every instance of self reference and diagonalization proof
falls into this simple format.



Overview Models of Computation Computability Complexity Diagonal Supplementary Lessons

Applications
(i) There does not exist an onto function from the set of natural

numbers, N, to the powerset of natural numbers, P (N).
(ii) The unsolvability of the Halting problem (again).

(iii) There is a computable function that is not primitive
recursive.

(iv) There is a total unary function that is not computable.
(v) The recursion theorem.

(vi) The space hierarchy theorem: There are computable
functions which can be computed in Space(h) but not in less
space.

(vii) The time hierarchy theorem: There are computable
functions which can be computed in Time(h) but not in much
less time.

(viii) The Baker-Gill-Solovay theorem: There exists oracles A and
B such that PA =NPA and PB 6=NPB.

(ix) (Ladner’s Theorem: If P 6=NP then there are an infinite
number of complexity classes between them.)
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Other Fields of Theoretical Computer Science

(i) Formal Language Theory

(ii) Cryptography

(iii) Kolmogorov Complexity Theory

(iv) Algorithms
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Cryptography

Alice wants to communicate with Bob. The encoders and the
decoders must be total and computabile, i.e., morphisms in
TotCompFunc. We shall work with some subcategory with
the same objects called Easy. Any morphism not in Easy will
be in Hard. Encoders e : SeqA−!SeqB are in Easy. The
intended receiver of the secret message should be able to easily
decode the message. In other words, the decoders
d : SeqB−!SeqA are also in Easy. It should not be hard to
decode, rather, it should be hard to find the right decoder.
The notion of a trapdoor function will be helpful. It is hard to
find the right decoder. However, with the right key, it will be easy
to find the right decoder.
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Cryptography

Definition
A cryptographic protocol that encodes data of type SeqA into
data of type SeqB consists of

(i) a set of “encoder” functions, Enc⊆HomEasy(SeqA,SeqB),

(ii) a set of “decoder” functions, Dec⊆HomEasy(SeqB,SeqA),

(iii) an “inverter” function INV : Enc−!Dec in Hard such that
for all e ∈Enc, there is a d= INV(e) that satisfies
d◦e= IdSeqA,

(iv) a “key” function KEY : Enc−!Seq in Hard such that for all
e ∈Enc, there is a ke =KEY(e), and

(v) a “trapdoor” function TRP : Seq−!Dec in Easy satisfying
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Cryptography

Seq
TRP

""
Enc INV

//

KEY
<<

Dec

i.e., for every e ∈Enc there is a “key” ke ∈Seq such that
TRP(ke)= INV(e).

Conclusion:
Almost every major cryptographic protocol falls into this simple
format.
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Algorithms

Program // // Algorithm // // CompFunc
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Lessons Learned
(i) Rather than considering the set of isolated decision

problems, we worked with the category of decision problems
and their reductions. They are comma categories. In
complexity theory, these categories form complexity classes.

(ii) Complete problems for a complexity class are weak terminal
objects in the category of decision problems. They form a
subcategory of the decision problems.

(iii) There are a few major results (e.g., Halting is undecidable,
SAT is NP-Complete, the recursion theorem, etc.) and many
corollaries are derived from those results. This follows from
the fact that decision problems are a comma category where
it is easy to express reductions.

(iv) Adjoint functors did not play a major role in the tale that we
told. In computer science, there are many equivalent ways of
making constructions. This is not conducive to universal
properties.
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Lessons Learned

(v) We, however, did use Kan extensions as ways of finding
complicated minimization and maximazation functors.

(vi) We defined a functor Lt from the symmetric monoidal
bicategory of total Turing machines to the symmetric
monoidal bicategory of families of sequences of logical
formula. This functor was used to describe the workings of a
Turing machine with logical formulas. The functor Lt and
extensions of the functor were used in the proofs of the
following theorems that relate computation and logic:

(i) Gödel’s Incompleteness Theorem.
(ii) The unsolvability of the Entscheidungsproblem.

(iii) The Cook-Levin Theorem.
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Lessons Learned

The following “density relation” arose many times.

A
� � Inc //

  

B

~~

F

xx

C.

where both triangles commute and F ◦ Inc= IdA but, in general
Inc◦F 6= IdB. What this means is that for every b in B, F(b) is
not the same as an a in A, but is the same in relation to the
functors to C.
Weakening of reflective equivalence.
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Lessons Learned
(i) Every Turing machine is equivalent to a Turing machine in

Turing(1,1).
(ii) Every logic circuit has an equivalent NAND logic circuit.

(iii) Every nondeterministic Turing machine has an equivalent
deterministic Turing machine.

(iv) Savitch’s theorem: Every NPSPACE computation has an
equivalent PSPACE computation.

(v) Every NPA computation is equivalent to a NPSPACE
computation where A is PSPACE-complete.

(vi) Every PSPACE computation is equivalent to a PA

computation where A is PSPACE-complete.
(vii) Every nondetermistic finite automaton has an equivalent

deterministic finite automaton1.
1This relationship between nondeterminism and determinism is not

universal. Here are two examples where it fails. (i) Not every nondeterministic
pushdown automaton is equivalent to a deterministic pushdown automaton.
(ii) If P 6=NP then not every nondeterministic polynomial algorithm has an
equivalent deterministic polynomial algorithm.
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Lessons Learned

While our aim was to be as categorical as possible, we found that
twice we had to go outside the bounds of categories:

(i) Enumerations of models of computation or of computable
functions are not functorial. They neither respect sequential
composition nor parallel composition.

(ii) Complexity measures of models of computation or of
computable functions are not functorial. They neither
respect sequential composition nor parallel composition.
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The End

Thank You!
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