1. Rearrange the following 20 functions in a decreasing order of their growth:

<table>
<thead>
<tr>
<th>Function</th>
<th>1</th>
<th>3^n</th>
<th>n^2</th>
<th>\sqrt{n}</th>
<th>$\frac{n}{\log_2(n)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_2(n)$</td>
<td>1</td>
<td>3^n</td>
<td>n^2</td>
<td>\sqrt{n}</td>
<td>$\frac{n}{\log_2(n)}$</td>
</tr>
<tr>
<td>n^3</td>
<td></td>
<td>$n!$</td>
<td>n</td>
<td>1000^n</td>
<td>$n(\log_2(n))^2$</td>
</tr>
<tr>
<td>n^{1000}</td>
<td></td>
<td>n^n</td>
<td>$n^{1/1000}$</td>
<td>2^n</td>
<td>$(\log_3(n))^3$</td>
</tr>
<tr>
<td>$n^{1/3}$</td>
<td></td>
<td>$n\log_2(n)$</td>
<td>1</td>
<td>$(\log_2(n))^2$</td>
<td>$\log_2 \log_2(n)$</td>
</tr>
</tbody>
</table>

Solution:

\[1 = o(\log_2 \log_2(n)) = o(\log_2(n)) = o((\log_2(n))^2) = o((\log_3(n))^3) = o(n^{1/1000}) = o(n^{1/3}) = o(\sqrt{n}) = o(n/\log_2(n)) = o(n) = o(n \log_2(n)) = o(n(\log_2(n))^2) = o(n^2) = o(n^3) = o(n^{1000}) = o(2^n) = o(3^n) = o(1000^n) = o(n!) = o(n^n) \]
2. (a) Prove by induction on \(n \) that for any integer \(n \geq 1 \):

\[
1 + 4 + 9 + 16 + \cdots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}.
\]

Proof: Define

\[
L(n) = 1 + 4 + 9 + \cdots + n^2
\]

\[
R(n) = \frac{n(n+1)(2n+1)}{6}
\]

\(L(1) = R(1) \), because \(L(1) = 1 \) and \(R(1) = \frac{1 \cdot 2 \cdot 3}{6} = 1 \).

For \(n \geq 1 \), assume that \(L(n) = R(n) \) and prove that \(L(n+1) = R(n+1) \).

\[
L(n+1) = 1 + 4 + \cdots + n^2 + (n+1)^2
\]

\[
= L(n) + (n+1)^2
\]

\[
= R(n) + (n+1)^2
\]

\[
= \frac{n(n+1)(2n+1)}{6} + (n+1)^2
\]

\[
= (n+1)n(2n+1) + 6(n+1)^2
\]

\[
= \frac{(n+1)(2n^2 + n) + (n+1)(6n + 6)}{6}
\]

\[
= \frac{(n+1)(2n^2 + 7n + 6)}{6}
\]

\[
= \frac{(n+1)(n+2)(2n+3)}{6}
\]

\[
= \frac{(n+1)((n+1) + 1)(2(n+1) + 1)}{6}
\]

\[
= R(n+1)
\]
(b) Prove by induction on n that for any real number $q > 1$ and integer $n \geq 0$:

$$1 + q + q^2 + q^3 + \cdots + q^{n-1} + q^n = \frac{q^{n+1} - 1}{q - 1}.$$

Proof: Define

$$L(n) = 1 + q + \cdots + q^{n-1} + q^n$$

$$R(n) = \frac{q^{n+1} - 1}{q - 1}$$

$L(0) = 1$ and $R(0) = \frac{q^1 - 1}{q - 1} = 1$. Therefore, $L(0) = R(0)$.

For $n \geq 0$, assume that $L(n) = R(n)$ and prove that $L(n+1) = R(n+1)$.

$$L(n+1) = 1 + q + \cdots + q^{n} + q^{n+1}$$

$$= L(n) + q^{n+1}$$

$$= R(n) + q^{n+1}$$

$$= \frac{q^{n+1} - 1}{q - 1} + q^{n+1}$$

$$= \frac{(q^{n+1} - 1) + ((q - 1)q^{n+1})}{q - 1}$$

$$= \frac{q^{n+1} - 1 + (q^{n+2} - q^{n+1})}{q - 1}$$

$$= \frac{q^{n+2} - 1}{q - 1}$$

$$= R(n+1)$$

Another proof:

$$L(n) = 1 + q + q^2 + \cdots + q^{n-1} + q^n$$

$$qL(n) = q + q^2 + \cdots + q^{n-1} + q^n + q^{n+1}$$

$$qL(n) - L(n) = q^{n+1} - 1$$

$$L(n)(q - 1) = q^{n+1} - 1$$

$$L(n) = \frac{q^{n+1} - 1}{q - 1}$$

$$L(n) = R(n)$$
3. (a) A bag contains \(n \) white socks and \(n \) black socks. You take socks out of the bag one at a time until you have two socks of the same color (a matching pair).

- How many socks do you need to take out of the bag to guarantee that you will have one matching pair?

 Answer 3. After you take 2 socks, if both are of the same color then you are done. Otherwise one sock is white and one sock is black. With the third sock, you are guaranteed to have either a white pair or a black pair.

- How many socks do you need to take out of the bag to guarantee that you will have \(k \) (\(1 \leq k \leq n \)) matching pairs?

 Answer \(2k + 1 \). After you take \(2k \) socks, you will have \(w \) white socks and \(b \) black socks such that \(w + b = 2k \) and \(0 \leq w, b \leq n \). If both \(w \) and \(b \) are even then you have \(w/2 + b/2 = k \) matching pairs. Otherwise both \(w \) and \(b \) are odd. Assume \(w = 2w' + 1 \) and \(b = 2b' + 1 \). Therefore you have \(w' + b' = k - 1 \) matching pairs and one white sock and one black sock. With the last sock (number \(2k + 1 \)), you are guaranteed to have another matching pair either a white pair or a black pair for a total of \(k \) matching pairs.

 Pigeonhole intuition: Think of the colors as 2 holes and the socks as \(2k + 1 \) pigeons.

(b) A bag contains \(n \) left shoes and \(n \) right shoes. You take shoes out of the bag one at a time until you have at least one left shoe and one right shoe (a matching pair).

- How many shoes do you need to take out of the bag to guarantee that you will have one matching pair?

 Answer \(n + 1 \). The first \(n \) shoes could all be left shoes or could all be right shoes. The \(n + 1 \)st show must guarantee a matching pair.

- How many shoes do you need to take out of the bag to guarantee that you will have \(k \) (\(1 \leq k \leq n \)) matching pairs?

 Answer \(n + k \). The first \(n \) shoes could all be left shoes or could all be right shoes. The \(k \) shoes must guarantee \(k \) matching pairs.

 Pigeonhole intuition: Imagine \(n \) holes each may contain at most one right shoe and one left shoe where the shows are the pigeons.
4. Find the exact solution to the following recursive formulas.

(a) **Definition:**

\[
T(1) = 1 \\
T(n) = T(n-1) + 3
\]

Small values:

\[
T(1) = 1 \\
T(2) = T(1) + 3 = 4 \\
T(3) = T(2) + 3 = 7 \\
T(4) = T(3) + 3 = 10 \\
T(5) = T(4) + 3 = 13
\]

Guess: \(T(n) = 3n - 2. \)

Proof by induction:

\[
T(1) = 3 \cdot 1 - 2 = 1.
\]

For \(n \geq 1 \), assume \(T(n) = 3n - 2 \) and prove that \(T(n + 1) = 3(n + 1) - 2. \)

\[
T(n + 1) = T(n) + 3 \\
= (3n - 2) + 3 \\
= (3n + 3) - 2 \\
= 3(n + 1) - 2
\]

(b) **Definition:**

\[
T(1) = 1 \\
T(n) = T(n-1) + (2n - 1)
\]

Small values:

\[
T(1) = 1 \\
T(2) = T(1) + (2 \cdot 2 - 1) = 1 + 3 = 4 \\
T(3) = T(2) + (2 \cdot 3 - 1) = 4 + 5 = 9 \\
T(4) = T(3) + (2 \cdot 4 - 1) = 9 + 7 = 16 \\
T(5) = T(4) + (2 \cdot 5 - 1) = 16 + 9 = 25
\]

Guess: \(T(n) = n^2. \)

Proof by induction:

\[
T(1) = 1^2 = 1.
\]

For \(n \geq 1 \), assume \(T(n) = n^2 \) and prove that \(T(n + 1) = (n + 1)^2. \)

\[
T(n + 1) = T(n) + (2(n + 1) - 1) \\
= T(n) + (2n - 1) \\
= n^2 + 2n + 1 \\
= (n + 1)^2
\]
(c) Definition:

\[T(1) = 3 \]
\[T(n) = 3T(n-1) \]

Small values:

\[T(1) = 3 \]
\[T(2) = 3T(1) = 3 \cdot 3 = 9 \]
\[T(3) = 3T(2) = 3 \cdot 9 = 27 \]
\[T(4) = 3T(3) = 3 \cdot 27 = 81 \]
\[T(5) = 3T(4) = 3 \cdot 81 = 243 \]

Guess: \(T(n) = 3^n \).
Proof by induction:
\(T(1) = 3^1 = 3 \).
For \(n \geq 1 \), assume \(T(n) = 3^n \) and prove that \(T(n+1) = 3^{n+1} \).

\[
T(n+1) = 3T(n)
= 3 \cdot 3^n
= 3^{n+1}
\]

(d) Definition:

\[T(1) = 1 \]
\[T(n) = nT(n-1) \]

Small values:

\[T(1) = 1 \]
\[T(2) = 2T(1) = 2 \cdot 1 = 2 \]
\[T(3) = 3T(2) = 3 \cdot 2 = 6 \]
\[T(4) = 4T(3) = 4 \cdot 6 = 24 \]
\[T(5) = 5T(4) = 5 \cdot 24 = 120 \]

Guess: \(T(n) = n! \).
Proof by induction:
\(T(1) = 1! = 1 \).
For \(n \geq 1 \), assume \(T(n) = n! \) and prove that \(T(n+1) = (n+1)! \).

\[
T(n+1) = (n+1)T(n)
= (n+1)n!
= (n+1)!
\]
5. Solve the following recursive formulas using the master theorem. Assume that \(n = 2^k \) for some integer \(k \) for parts (a) and (c) and that \(n = (4/3)^k \) for some integer \(k \) for part (b).

(a)

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 8T(n/2) + n^2
\end{align*}
\]

- \(a = 8 \)
- \(b = 2 \)
- \(d = 2 \)
- \(\log_b a = \log_2 8 = 3 > 2 = d \)

\[\Rightarrow \text{Master theorem Case I: } T(n) = \Theta(n^{\log_b a}) = \Theta(n^3).\]

(b)

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= T(3n/4) + 10
\end{align*}
\]

- \(a = 1 \)
- \(b = 4/3 \)
- \(d = 0 \)
- \(\log_b a = \log_{4/3} 1 = 0 = d \)

\[\Rightarrow \text{Master theorem Case II: } T(n) = \Theta(n^d \log n) = \Theta(\log n).\]

(c)

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= T(n/2) + \sqrt{n}
\end{align*}
\]

- \(a = 1 \)
- \(b = 2 \)
- \(d = 1/2 \)
- \(\log_b a = \log_2 1 = 0 < 1/2 = d \)

\[\Rightarrow \text{Master theorem Case III: } T(n) = \Theta(n^d) = \Theta(\sqrt{n}).\]
6. What is the Θ running time and the exact number of iterations of the following functions.

(a) $f(n)$ (* $n > 0$ is an integer number *)

\[
\begin{align*}
c & = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
& \quad \text{for } j = 1 \text{ to } n \text{ do} \\
& \quad \quad \text{for } k = 1 \text{ to } n \text{ do} \\
& \quad \quad \quad c := c + 1
\end{align*}
\]

Answer: The value of c at the end is the number of iterations as a function of n. Based on the three loops, it follows that at the end

\[
c = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} 1 = n^3
\]

Therefore, the running time is $\Theta(n^3)$.

(b) $f(n)$ (* $n > 0$ is an integer number *)

\[
\begin{align*}
c & = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
& \quad \text{for } j = 1 \text{ to } i \text{ do} \\
& \quad \quad \text{for } k = 1 \text{ to } j \text{ do} \\
& \quad \quad \quad c := c + 1
\end{align*}
\]

Answer: The value of c at the end is the number of iterations as a function of n. Based on the three loops, it follows that at the end

\[
c = \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1
\]

Since $\sum_{k=1}^{j} 1 = j$, it follows that

\[
c = \sum_{i=1}^{n} \sum_{j=1}^{i} j
\]

Since $\sum_{j=1}^{i} j = 1 + 2 + \cdots + i = i(i + 1)/2$, it follows that

\[
c = \sum_{i=1}^{n} \frac{i(i + 1)}{2}
\]

\[
= \frac{1}{2} \left(\sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} i \right)
\]

\[
= \frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right)
\]

\[
= \frac{(2n^3 + 3n^2 + n) + (3n^2 + 3n)}{12}
\]

\[
= \frac{2n(n^2 + 3n + 2)}{12}
\]

\[
= \frac{n(n+1)(n+2)}{6}
\]

Therefore, the running time is $\Theta(n^3)$.

(c) $g(x)$ (* $x > 1$ is a real number *)

\[
\text{while } x > 1 \text{ do} \\
\quad x := x/3
\]

Answer: The number of iterations as a function of x is $\lfloor \log_3 x \rfloor$. Therefore, the running time is $\Theta(\log n)$.

8