Matrix multiplication:

- With the direct method, it is possible to multiply two matrices of size $n \times n$ with exactly n^3 scalar multiplications and $n^2(n - 1)$ scalar additions.

- With the Strassen method, it is possible to multiply two matrices of size 2×2 with exactly 7 scalar multiplications and 18 scalar additions.

- The complexity for multiplying two matrices of size $n \times n$ using the Strassen algorithm is

 $$\Theta \left(n^{\log_2 7}\right) = \Theta \left(n^{2.807354922...}\right) = O \left(n^{2.81}\right)$$
1. Use the recursive Strassen method to compute the **exact** number of scalar multiplications and scalar additions (subtractions are considered as additions) to multiply two matrices of size 4×4, two matrices of size 8×8, and two matrices of size 16×16.

Solution for matrices of size 4×4:

- 7 multiplications of two 2×2 matrices are required to multiply two 4×4 matrices. Each multiplication of two 2×2 matrix requires 7 scalar multiplications. All together,
 \[49 = 7 \cdot 7 = 7^2 \]
 scalar multiplications are required to multiply two 4×4 matrices.

- 7 multiplications of two 2×2 matrices and 18 additions of two 2×2 matrices are required to multiply two 4×4 matrices. Each multiplication of two 2×2 matrices requires 18 scalar additions and each addition of two 2×2 matrices requires 4 scalar additions. All together,
 \[198 = 7 \cdot 18 + 18 \cdot 4 \]
 scalar additions are required to multiply two 4×4 matrices.

Solution for matrices of size 8×8:

- 7 multiplications of two 4×4 matrices are required to multiply two 8×8 matrices. Each multiplication of two 4×4 matrix requires 7^2 scalar multiplications. All together,
 \[343 = 7 \cdot 7^2 = 7^3 \]
 scalar multiplications are required to multiply two 8×8 matrices.

- 7 multiplications of two 4×4 matrices and 18 additions of two 4×4 matrices are required to multiply two 8×8 matrices. Each multiplication of two 4×4 matrices requires 198 scalar additions and each addition of two 4×4 matrices requires 16 scalar additions. All together,
 \[1674 = 7 \cdot 198 + 18 \cdot 16 \]
 scalar additions are required to multiply two 8×8 matrices.

Solution for matrices of size 16×16:

- 7 multiplications of two 8×8 matrices are required to multiply two 16×16 matrices. Each multiplication of two 8×8 matrix requires 7^3 scalar multiplications. All together,
 \[2401 = 7 \cdot 7^3 = 7^4 \]
 scalar multiplications are required to multiply two 16×16 matrices.

- 7 multiplications of two 8×8 matrices and 18 additions of two 8×8 matrices are required to multiply two 16×16 matrices. Each multiplication of two 8×8 matrices requires 1674 scalar additions and each addition of two 8×8 matrices requires 64 scalar additions. All together,
 \[12870 = 7 \cdot 1674 + 18 \cdot 64 \]
 scalar additions are required to multiply two 16×16 matrices.
2. Let $M(n)$ be the number of multiplications used by the Strassen algorithm for $n = 2^k$ ($k \geq 1$). What is the recursive formula for $M(n)$? What is the exact solution for $M(n)$? Note that in this problem the number of additions is ignored.

Solution: The recursive call involves no additional multiplications beyond those performed by the 7 multiplications of the smaller matrices. Trivially, only one multiplication is performed when multiplying two 1×1 matrices. As a result, the recursive formula is,

\[
M(1) = 1 \\
M(n) = 7M\left(\frac{n}{2}\right)
\]

Proposition: The solution to the above recursion is

\[
T(n) = 7^{\log_2(n)} = n^{\log_2(7)}
\]

Proof by induction: For $n = 1$, it follows that $M(1) = 1$ and $7^{\log_2(1)} = 7^0 = 1$.

For $n \geq 1$, assume that $M(n) = 7^{\log_2(n)}$ and prove that $M(2n) = 7^{\log_2(2n)}$.

\[
M(2n) = 7M(n) \\
= 7 \cdot 7^{\log_2(n)} \\
= 7^{\log_2(n)+1} \\
= 7^{\log_2(2n)}
\]

Top down proof: Apply the recursion until $n = 1$,

\[
M(n) = 7 \cdot M\left(\frac{n}{2}\right) \\
= 7 \cdot 7 \cdot M\left(\frac{n}{4}\right) \\
= 7 \cdot 7 \cdot 7 \cdot M\left(\frac{n}{8}\right) \\
\vdots \\
= 7^i \cdot M\left(\frac{n}{2^i}\right) \\
\vdots \\
= 7^{\log_2(n)} \cdot M\left(\frac{n}{2^{\log_2(n)}}\right) \\
= 7^{\log_2(n)} \cdot M\left(\frac{n}{n}\right) \\
= 7^{\log_2(n)} \cdot M(1) \\
= 7^{\log_2(n)} \cdot 1 \\
= 7^{\log_2(n)}
\]

Remark: The above line “$= 7^i \cdot M\left(\frac{n}{2^i}\right)$” needs a proof by induction. However, this method helps getting the guess that allows a direct proof by induction.
3. Let \(A(n) \) be the number of additions used by the Strassen algorithm for \(n = 2^k \) \((k \geq 1)\). What is the recursive formula for \(A(n) \)? What is the exact solution to \(A(n) \)? Note that in this problem the number of multiplications is ignored.

Solution: The recursive call involves additions that are performed by the 7 multiplications of the smaller matrices and \(18 \cdot \frac{n^2}{2} \) scalar additions due to the 18 additions of \((n/2) \times (n/2)\) matrices. Trivially, no additions are needed when multiplying two 1 \times 1 matrices. As a result, the recursive formula is,

\[
A(1) = 0 \\
A(n) = 7A(n/2) + 18(n^2/4)
\]

Proposition: The solution to the above recursion is

\[
A(n) = 6 \cdot 7^{\log_2(n)} - 6 \cdot 4^{\log_2(n)} = 6 \cdot n^{\log_2(7)} - 6 \cdot n^2
\]

Proof by induction: for \(n = 1 \), it follows that \(A(1) = 0 \) and \(6 \cdot 7^{\log_2(1)} - 6 \cdot 1^2 = 0 \).

For \(n \geq 1 \), assume that \(A(n) = 6 \cdot 7^{\log_2(n)} - 6 \cdot n^2 \) and prove that \(A(2n) = 6 \cdot 7^{\log_2(2n)} - 6 \cdot (2n)^2 \).

\[
A(2n) = 7A(n) + 18 \cdot ((2n)^2/4) \\
= 7(6 \cdot 7^{\log_2(n)} - 6 \cdot n^2) + 18 \cdot n^2 \\
= 6 \cdot 7^{\log_2(n)+1} - 42 \cdot n^2 + 18 \cdot n^2 \\
= 6 \cdot 7^{\log_2(n)+1} - 24 \cdot n^2 \\
= 6 \cdot 7^{\log_2(2n)} - 6 \cdot (2n)^2
\]

Top down proof: Apply the recursion until \(n = 1 \),

\[
A(n) = 7 \cdot A(n/2) + 18(n^2/4) \\
= 7 \cdot 7 \cdot A(n/4) + 7 \cdot 18(n^2/16) + 18(n^2/4) \\
= 7 \cdot 7 \cdot 7 \cdot A(n/8) + 7 \cdot 7 \cdot 18(n^2/64) + 7 \cdot 18(n^2/16) + 18(n^2/4) \\
\vdots \\
= 7^i \cdot A(n/(2^i)) + 7^{i-1} \cdot 18(n^2/4^i) + \cdots + 7 \cdot 18(n^2/16) + 18(n^2/4) \\
= 7^i \cdot A(n/(2^i)) + ((7/4)^{i-1} + \cdots + (7/4)^1 + (7/4)^0) \cdot (18/4) \cdot n^2 \\
= 7^i \cdot A(n/(2^i)) + ((7/4)^{i-1} - (7/4 - 1)) \cdot (18/4) \cdot n^2 \\
= 7^i \cdot A(n/(2^i)) \cdot (4/3)(18/4) \cdot n^2 \\
= 7^i \cdot A(n/(2^i)) \cdot (7/4)^{i-1} \cdot 6 \cdot n^2 \\
\vdots \\
= 7^{\log_2(n)} \cdot A(n/(2^{\log_2(n)})) + (7/4)^{\log_2(n)-1}) \cdot 6 \cdot n^2 \\
= 7^{\log_2(n)} \cdot A(1) + (7^{\log_2(n)} / 4^{\log_2(n)}) \cdot 6 \cdot n^2 - 6 \cdot n^2 \\
= 0 + (7^{\log_2(n)} / n^{\log_2(4)}) \cdot 6 \cdot n^2 - 6 \cdot n^2 \\
= (7^{\log_2(n)} / n^2) \cdot 6 \cdot n^2 - 6 \cdot n^2 \\
= 6 \cdot 7^{\log_2(n)} - 6 \cdot n^2 \\
= 6 \cdot n^{\log_2(7)} - 6 \cdot n^2
\]

Remark: The identity \(1 + q + q^2 + \cdots + q^{i-1} = (q^i - 1)/(q - 1) \) was used for \(q = 7/4 \). Other algebraic justifications for the equalities are omitted.
4. Assume that \(n \) is a power of 3. Assume that there is a way to multiply two matrices of size \(3 \times 3 \) with 25 scalar multiplications and 50 scalar additions. What is the complexity of a recursive algorithm that is based on this method?

Solution:

The following is the recursive formula for the complexity of this algorithm,

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 25T(n/3) + \Theta(n^2)
\end{align*}
\]

By the master theorem, the solution to this recursion is

\[
T(n) = \Theta \left(n^{\log_3(25)} \right) = O \left(n^{2.93} \right) = \Omega \left(n^{2.9299} \right)
\]

since \(\log_3(25) = 2.929947 \ldots \)

5. What should be the number of scalar multiplications in multiplying two matrices of size \(3 \times 3 \) in order to get a recursive way to multiply two matrices of size \(n \times n \) with a better complexity than the original Strassen algorithm?

Solution:

Denote by \(s \) the number of scalar multiplications in multiplying two matrices of size \(3 \times 3 \). Then the following is the recursive formula for the complexity of this algorithm,

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= sT(n/3) + \Theta(n^2)
\end{align*}
\]

By the master theorem, the solution to this recursion is

\[
T(n) = \Theta \left(n^{\log_3(s)} \right)
\]

Since \(\log_3(22) > 2.81 > \log_2(7) \) and \(\log_3(21) < 2.78 < \log_2(7) \), it follows that in order to get a better complexity than the original Strassen algorithm \(s \) must be at most 21.

6. Assume that \(n \) is a power of 70. There exists a way to multiply two matrices of size \(70 \times 70 \) with 143640 scalar multiplications and \(\alpha \) scalar additions for some constant \(\alpha \). What is the complexity of a recursive algorithm that is based on this method? Write the recursive formula and use the master theorem to solve it.

Solution:

The following is the recursive formula for the complexity of this algorithm,

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 143640T(n/70) + \Theta(n^2)
\end{align*}
\]

By the master theorem, the solution to this recursion is

\[
T(n) = \Theta \left(n^{\log_{70}(143640)} \right) = O \left(n^{2.796} \right) = \Omega \left(n^{2.795} \right)
\]

since \(\log_{70}(143640) = 2.795122689 \ldots \)