Algorithms

Assignment Solutions: Order Statistics
1. Let $A = [A_1, A_2, \ldots, A_n]$ be an unsorted array of $n \geq 1$ positive integers. Design an efficient algorithm that finds the maximum difference between any two integers in the array. In other words, compute $M = \max_{1 \leq i, j \leq n} \{A_i - A_j\}$. What is the exact worst-case number of comparisons made by your algorithm?

Observation: Let Max and Min be the maximum and minimum integers in A. Then the answer is

$$M = \max_{1 \leq i, j \leq n} \{A_i - A_j\} = \text{Max} - \text{Min}$$

Algorithm: Find both Max and Min with the algorithm that performs exactly $\lceil \frac{3n^2}{2} \rceil - 2$ comparisons.

Optimality: The algorithm is optimal since there is no algorithm that can find both Max and Min with less than $\lceil \frac{3n^2}{2} \rceil - 2$ comparisons.
2. Let $A = [A_1, A_2, \ldots, A_n]$ be an unsorted array of $n \geq 4$ distinct integers. Design an efficient algorithm that finds the first, second, and third largest integers in A. What is the worst case number of comparisons made by your algorithm?

Background: The algorithm that finds the two largest integers has two phases. In the first phase, it runs a tournament on all n integers to find the largest integer with $n - 1$ comparisons in $\lceil \log_2(n) \rceil$ rounds. In the second phase, it runs a second smaller tournament only on those $\lceil \log_2(n) \rceil$ integers that were directly compared with the largest integer to find the second largest integer with $\lceil \log_2(n) \rceil - 1$ comparisons in $\lceil \log_2(\lceil \log_2(n) \rceil) \rceil$ rounds. This is because in a tournament on k integers, any integer is directly compared with at most $\lceil \log_2(k) \rceil$ other integers. The number of comparisons made by this algorithm is at most

$$(n - 1) + (\lceil \log_2(n) \rceil - 1) = n + \lceil \log_2(n) \rceil - 2.$$

Observation: Let x be the largest integer in A and let y be the second largest integer in A. Let $z \not\in \{x, y\}$ be another integer in A.

- **Case I.** z was directly compared with x but was not directly compared with y: Then z must be smaller than another integer in the second tournament and therefore cannot be the third largest key.
- **Case II.** z was not directly compared with x and was not directly compared with y: Then z must be smaller than another integer in the first tournament and therefore cannot be the third largest integer.
- **Case III.** z was directly compared with y in any of the two tournaments: Then z can be the third largest integer.

Algorithm: Run the algorithm to find the two largest integers and then run a third tournament on all the integers that were directly compared with the second largest key in both tournaments to find the third largest integer.

Correctness: By the above observation.

Size of the third tournament: There are at most $\lceil \log_2(n) \rceil - 1$ such integers from the first tournament and at most $\lceil \log(\lceil \log_2(n) \rceil) \rceil$ such integers from the second tournament. Therefore, the number of comparisons made by the third tournament is at most

$$\lceil \log_2(n) \rceil + \lceil \log(\lceil \log_2(n) \rceil) \rceil - 2.$$

Total number of comparisons made by all three tournaments:

$$(n - 1) + (\lceil \log n \rceil - 1) + (\lceil \log n \rceil + \lceil \log(\lceil \log n \rceil) \rceil - 2).$$

Since $[x] \leq x + 1$ for a positive x, it follows that the total number of comparisons made in all three tournaments is less than $n + 2 \log(n) + \log \log(n)$.

A more efficient algorithm: For $1 \leq k \leq n$, there exists an algorithm that finds the $1^{\text{st}}, 2^{\text{nd}}, \ldots, k^{\text{th}}$ largest integers in A with at most $n + (k - 1) \lceil \log_2(n) \rceil$ comparisons. For $k = 3$, this algorithm finds the three largest integers in A with at most $n + 2 \lceil \log_2(n) \rceil$ comparisons. It is therefore a more efficient than the above 3-tournament algorithm.

Remark: If the task is to find the k largest integers in an array without necessarily knowing the order among them, then it can be done with a linear-time algorithm for any $1 \leq k \leq n$. First run the linear-time k-selection algorithm and then with one scan find the $k - 1$ integers that are larger than the selected integer. For $k = \omega(n/\log(n))$, this algorithm is more efficient than the above algorithm. However, the above algorithm also finds the order among the k largest integers.
3. Design an algorithm that finds the median of 5 distinct keys with at most 6 comparisons.

Algorithm: Let the keys be \(A_1, A_2, A_3, A_4, \) and \(A_5 \). For \(1 \leq i < j \leq 5 \), denote by \(< A_i : A_j >\) the operation that compares \(A_i \) with \(A_j \) and if \(A_i > A_j \) swap them.

The first three comparisons are \(< A_2 : A_4 >, < A_3 : A_5 >, \) and \(< A_4 : A_5 >\). If \(A_4 > A_5 \) then also swap \(A_2 \) with \(A_3 \).

At this stage, \(A_5 \) is greater than \(A_3 \) and \(A_4 \) because it was directly compared with them. \(A_5 \) is also greater than \(A_2 \) because \(A_4 \) is greater than \(A_2 \). Since the median is greater than exactly two keys, it follows that \(A_5 \) cannot be the median. Note that \(A_5 \) is not necessarily the maximum key since it can be smaller than \(A_1 \).

The next two comparisons are \(< A_1 : A_3 >\) and then \(< A_3 : A_4 >\). If \(A_3 > A_4 \) then also swap \(A_1 \) with \(A_2 \).

At this stage, the following relationships are known:

- \(A_4 \) is greater than \(A_3 \) and \(A_2 \) because it was directly compared with them. \(A_4 \) is also greater than \(A_1 \) because \(A_3 \) is greater than \(A_1 \). Since the median is greater than exactly two keys, it follows that \(A_4 \) cannot be the median.

- \(A_1 \) is smaller than \(A_3, A_4, \) and \(A_5 \). Since the median is smaller than exactly two keys, it follows that \(A_1 \) cannot be the median.

- Both \(A_2 \) and \(A_3 \) are smaller than both \(A_4 \) and \(A_5 \) (but the order between \(A_4 \) and \(A_5 \) is not always known). Therefore, the median is either \(A_2 \) or \(A_3 \).

The 6\(^{th}\) and last comparison is \(< A_2 : A_3 >\). After this comparison, \(A_3 \) is the median.

Example I:

<table>
<thead>
<tr>
<th>Initial order</th>
<th>21,13,5,3,8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< A_2 : A_4 >)</td>
<td>=> 21,3,5,13,8</td>
</tr>
<tr>
<td>(< A_3 : A_5 >)</td>
<td>=> 21,3,5,13,8</td>
</tr>
<tr>
<td>(< A_4 : A_5 >)</td>
<td>=> 21,5,3,8,13 (* 3 and 5 also exchange places *)</td>
</tr>
<tr>
<td>(< A_1 : A_3 >)</td>
<td>=> 3,5,21,8,13</td>
</tr>
<tr>
<td>(< A_3 : A_4 >)</td>
<td>=> 5,3,8,21,13 (* 3 and 5 also exchange places *)</td>
</tr>
<tr>
<td>(< A_2 : A_3 >)</td>
<td>=> 5,3,8,21,13 ➞ 8 is the median</td>
</tr>
</tbody>
</table>

Example II:

<table>
<thead>
<tr>
<th>Initial order</th>
<th>13,21,8,5,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< A_2 : A_4 >)</td>
<td>=> 13,5,8,21,3</td>
</tr>
<tr>
<td>(< A_3 : A_5 >)</td>
<td>=> 13,5,3,21,8</td>
</tr>
<tr>
<td>(< A_4 : A_5 >)</td>
<td>=> 13,3,5,8,21 (* 3 and 5 also exchange places *)</td>
</tr>
<tr>
<td>(< A_1 : A_3 >)</td>
<td>=> 5,3,13,8,21</td>
</tr>
<tr>
<td>(< A_3 : A_4 >)</td>
<td>=> 3,5,8,13,21 (* 3 and 5 also exchange places *)</td>
</tr>
<tr>
<td>(< A_2 : A_3 >)</td>
<td>=> 3,5,8,21,13 ➞ 8 is the median</td>
</tr>
</tbody>
</table>
4. For an odd \(n \geq 1 \), let \(A = [A_1, A_2, \ldots, A_n] \) be an unsorted array of \(n \) positive integers that are not necessarily distinct. A majority is an integer that appears at least \((n + 1)/2 \) times in the array. Design a linear-time algorithm that finds a majority in \(A \) if exists.

Observation I: There is at most one majority. Moreover, if a majority exists and appears \(f \) times in the array, then there are at most \(f - 1 \) non-majority integers in the array.

Proof:

\[
\frac{n - n + 1}{2} = \frac{n - 1}{2} = \frac{n + 1}{2} - 1.
\]

Observation II: If \(m \) is a majority then \(m \) is the median of the array.

Proof: Sort \(A \). Then \(A_{(n+1)/2} \) must equal \(m \) since both the number of indices smaller than the median and the number of indices greater than the median are at most \((n - 1)/2 \) which is strictly less than \((n + 1)/2 \) by the proof of Observation I.

Algorithm: Find the median \(m \). Scan the array to count the number of times \(m \) appears in \(A \). Let this number be \(c \). If \(c \geq (n + 1)/2 \) then \(m \) is a majority in \(A \). Otherwise the array does not have a majority.

Correctness: By Observation II.

Complexity: The median can be found with a \(\Theta(n) \)-time algorithm and the array scan can be implemented in \(\Theta(n) \)-time. The total complexity is therefore \(\Theta(n) \).

BoyerMoore majority vote algorithm:

- Algorithm and proof: https://gregable.com/2013/10/majority-vote-algorithm-find-majority.html
- Video without a proof: https://www.youtube.com/watch?v=x0yG0e95F1k
5. Let \(A = [A_1 < A_2 < \cdots < A_n] \) be a sorted array of \(n \geq 1 \) distinct positive integers and let \(k \) be a positive integer. Design a linear-time algorithm that finds, if exist, two indices \(1 \leq i, j \leq n \) such that \(A_i + A_j = k \).

Observation I: Let \(1 \leq \ell < r \leq n \) be two indices such that \(A_\ell + A_r > k \). Then \(A_h + A_r > k \) for all \(\ell \leq h \leq r \) because \(A_h + A_r \geq A_\ell + A_r > k \). Therefore, if there are two indices \(i \) and \(j \) in the range \([\ell..r]\) such that \(A_i + A_j = k \) then \(r \) is not one of them.

Observation II: Let \(1 \leq \ell < r \leq n \) be two indices such that \(A_\ell + A_r < k \). Then \(A_\ell + A_h < k \) for all \(\ell \leq h \leq r \) because \(A_\ell + A_h \leq A_\ell + A_r < k \). Therefore, if there are two indices \(i \) and \(j \) in the range \([\ell..r]\) such that \(A_i + A_j = k \) then \(\ell \) is not one of them.

Algorithm: Initially, \(\ell = 1 \) and \(r = n \) forming the range \([\ell..r]\). Apply the following recursive step until \(\ell > r \). In this case, return a NO answer (that is, there are no two indices \(i \) and \(j \) such that \(A_i + A_j = k \) in the array).

Recursive step for the range \([\ell..r]\) for which \(\ell \leq r \):
- If \(A_\ell + A_r = k \): return a YES answer for the indices \(\ell \) and \(r \).
- If \(A_\ell + A_r > k \): continue recursively with the range \([\ell..(r-1)]\). (* Observation I *)
- If \(A_\ell + A_r < k \): continue recursively with the range \([(\ell+1)..r]\). (* Observation II *)

Correctness: Implied by Observations I and II.

Complexity: Let \(\Delta = r - \ell \). Initially, \(\Delta = n - 1 \). After each recursive step the value of \(\Delta \) is decreased by 1. The maximum number of recursive steps happens when the answer is NO. At this stage, \(\Delta = -1 \). Therefore there are at most \(n \) recursive steps. The total complexity is \(\Theta(n) \) since the complexity of each recursive step is \(\Theta(1) \).