
 Describe an efficient algorithm to find the maximum difference between any two integers in
 the array. In other words, compute $M = \max_{1 \leq i,j \leq n} \{A[i] - A[j]\}$.

 What is the complexity of your algorithm?

Observation: Let Max and Min be the maximum and minimum numbers in A. Then
the answer is

$$M = \max_{1 \leq i,j \leq n} \{A[i] - A[j]\} = Max - Min$$

Algorithm: Find both Max and Min with the algorithm that performs exactly \(\lceil \frac{3n^2}{2} \rceil - 2\) comparisons.

Remark: The algorithm is optimal since there is no algorithm that can find both Max
and Min with less than \(\lceil \frac{3n^2}{2} \rceil - 2\) comparisons.
2. Let \(A = A[1], \ldots, A[n] \) be an array of \(n \geq 4 \) distinct keys.

Describe an efficient algorithm to find the three smallest keys in \(A \).

What is the worst case number of comparisons performed by your algorithm. Try to find an exact number. Ignore floors and ceilings.

Answer: The algorithm that finds the two smallest keys has two phases. In the first phase, it runs a tournament on all \(n \) keys to find the smallest key with exactly \(n - 1 \) comparisons in \(\lceil \log n \rceil \) rounds. In the second phase, it runs a second smaller tournament only on those \(\lceil \log n \rceil \) keys that were directly compared with the smallest key to find the second smallest key with \(\lceil \log n \rceil - 1 \) comparisons in \(\lceil \log \lceil \log n \rceil \rceil \) rounds. This is because in a tournament any key is directly compared with at most \(\lceil \log n \rceil \) other keys. The total number of comparisons performed by this algorithm is at most

\[
(n - 1) + (\lceil \log n \rceil - 1) = n + \lceil \log n \rceil - 2 .
\]

Observation: Let \(x \) be the smallest key and let \(y \) be the second smallest key. Let \(z \) be another key.

- **Case I:** \(z \) was directly compared with \(x \) but was not directly compared with \(y \): Then \(z \) must be larger than another key in the second tournament and therefore cannot be the third smallest key.
- **Case II:** \(z \) was directly compared neither with \(x \) nor with \(y \): Then \(z \) must be larger than another key in the first tournament and therefore cannot be the third smallest key.
- **Case III:** \(z \) was directly compared with \(y \) in any of the two tournaments: Then \(z \) can be the third smallest key.

Algorithm: Run the algorithm to find the two smallest keys and then run a third tournament on all the keys that were directly compared with the second smallest key in both tournaments to find the third smallest key.

Correctness: By the above observation.

Size of the third tournament: There are at most \(\lceil \log n \rceil - 1 \) such keys from the first tournament and at most \(\lceil \log(\lceil \log n \rceil) \rceil \) such keys from the second tournament. Therefore, the number of comparisons performed by the third tournament is at most \(\lceil \log n \rceil + \lceil \log(\lceil \log n \rceil) \rceil - 2 \).

Total number of comparisons in all three tournaments:

\[
(n - 1) + (\lceil \log n \rceil - 1) + (\lceil \log n \rceil + \lceil \log(\lceil \log n \rceil) \rceil - 2) .
\]

Since \(\lceil x \rceil \leq x + 1 \) for a positive \(x \), it follows that

\[
n + 2 \log(n) + \log \log(n) - 1 .
\]
3. Design an efficient algorithm to find the median of 5 distinct keys.

Algorithm: Let the keys be A_1, A_2, A_3, A_4, and A_5. For $1 \leq i \neq j \leq 5$, denote by $< A_i : A_j >$ the operation that compares A_i with A_j and if $A_i > A_j$ exchanges them.

The first three comparisons are $< A_2 : A_4 >$, $< A_3 : A_5 >$, and $< A_4 : A_5 >$. If $A_4 > A_5$ then also exchange A_2 with A_3.

At this stage, A_5 is greater than A_3 and A_4 because it was directly compared with them and it is greater than A_2 because A_4 is greater than A_2. Since the median can be greater than only two keys, it follows that A_5 cannot be the median. Note that A_5 is not necessarily the maximum key since it can be smaller than A_1.

The next two comparisons are $< A_1 : A_3 >$ and then $< A_3 : A_4 >$.

At this stage, A_4 is greater than A_3 because it was directly compared with it and it is greater than A_1 and A_2 because it was directly compared with one of them while the other is smaller than A_3. Since the median can be greater than only two keys, it follows that A_4 cannot be the median.

There are two options:
- $A_3 > A_1$: A_1 cannot be the median since it is smaller than A_3, A_4, and A_5. Therefore, the last comparison is $< A_2 : A_3 >$.
- $A_3 > A_2$: A_2 cannot be the median since it is smaller than A_3, A_4, and A_5. Therefore, the last comparison is $< A_1 : A_3 >$.

At this stage A_3 is greater than A_1 and A_2 and is less than A_4 and A_5. Therefore, A_3 is the median after 6 comparisons.

Example I:

Initial order: 21, 13, 5, 3, 8

$< A_2 : A_4 > = < 13, 3 > \implies 21, 3, 5, 13, 8$

$< A_3 : A_5 > = < 5, 8 > \implies 21, 3, 5, 13, 8$

$< A_4 : A_5 > = < 13, 8 > \implies 21, 5, 3, 8, 13$ (*3 and 5 also exchange places*)

$< A_1 : A_3 > = < 3, 21 > \implies 3, 5, 21, 8, 13$

$< A_3 : A_4 > = < 21, 8 > \implies 3, 5, 8, 21, 13$ (*8 was directly compared with 5*)

$< A_1 : A_3 > = < 3, 8 > \implies 3, 5, 8, 21, 13 \implies 8$ is the median

Example II:

Initial order: 13, 21, 8, 5, 3

$< A_2 : A_4 > = < 21, 5 > \implies 13, 5, 8, 21, 3$

$< A_3 : A_5 > = < 8, 3 > \implies 13, 5, 3, 21, 8$

$< A_4 : A_5 > = < 21, 8 > \implies 13, 3, 5, 8, 21$ (*3 and 5 also exchange places*)

$< A_1 : A_3 > = < 13, 5 > \implies 5, 3, 13, 8, 21$

$< A_3 : A_4 > = < 13, 8 > \implies 5, 3, 8, 13, 21$ (*8 was directly compared with 3*)

$< A_1 : A_3 > = < 5, 8 > \implies 5, 3, 8, 21, 13 \implies 8$ is the median
4. Let A be an array containing n very large positive integers not necessarily distinct. A majority is a number that appears at least $\left\lceil \frac{n+1}{2} \right\rceil$ times in the array (note that there can be at most one majority). Describe an $O(n)$-time algorithm that finds a majority in A if exists.

Observation I:

- Even n: $\left\lceil \frac{n+1}{2} \right\rceil = \frac{n}{2} + 1$ and therefore $n - \left\lceil \frac{n+1}{2} \right\rceil = \frac{n}{2} - 1$.
- Odd n: $\left\lceil \frac{n+1}{2} \right\rceil = \frac{n+1}{2}$ and therefore $n - \left\lceil \frac{n+1}{2} \right\rceil = \frac{n-1}{2}$.

Corollary I: There is at most one majority. Moreover, if a majority exists and appears f times in the array, then there are at most $f - 1$ non-majority integers in the array.

Observation II: If m is a majority then m is the median of the array.

Proof: Sort A. Then $A[\lceil (n+1)/2 \rceil]$ must equal m since both the number of indices smaller than the median $\lceil (n+1)/2 \rceil - 1$ and the number of indices greater than the median $n - \lceil (n+1)/2 \rceil$ are less than $\lceil (n+1)/2 \rceil$.

Algorithm: Find the median m. Scan the array to count the number of times m appears in A. Let this number be c. If $c \geq \lceil (n+1)/2 \rceil$ then m is the median. Otherwise the array does not have a majority.

Correctness: By Observation II.

Complexity: The median can be found with a $\Theta(n)$ algorithm and the array scan can be implemented in $\Theta(n)$ time. The total complexity is $\Theta(n)$.

BoyerMoore majority vote algorithm:

- Algorithm and proof: https://gregable.com/2013/10/majority-vote-algorithm-find-majority.html
- Video without a proof: https://www.youtube.com/watch?v=v4OyQ0sElhc
5. Let $A = [A_1 < A_2 < \cdots < A_n]$ be a sorted array containing n distinct positive integers and let k be a positive integer. Describe an $O(n)$-time algorithm that finds if exist two indices $1 \leq i, j \leq n$ such that $A_i + A_j = k$.

Observation I: Let $1 \leq \ell < r \leq n$ be two indices such that $A_\ell + A_r > k$. Then $A_h + A_r > k$ for all $\ell \leq h \leq r$ because $A_h + A_r \geq A_\ell + A_r > k$. Therefore, if there are two indices i and j in the range $[\ell..r]$ such that $A_i + A_j = k$ then r is not one of them.

Observation II: Let $1 \leq \ell < r \leq n$ be two indices such that $A_\ell + A_r < k$. Then $A_\ell + A_h < k$ for all $\ell \leq h \leq r$ because $A_\ell + A_h \leq A_\ell + A_r < k$. Therefore, if there are two indices i and j in the range $[\ell..r]$ such that $A_i + A_j = k$ then ℓ is not one of them.

Algorithm: Initially, $\ell = 1$ and $r = n$ forming the range $[\ell..r]$. Follow the recursive steps until $\ell > r$. In this case, return a NO answer (that is, there are no two indices i and j such that $A_i + A_j = k$ in the array).

Recursive step for the range $[\ell..r]$ for which $\ell \leq r$:
- If $A_\ell + A_r = k$: return a YES answer for the indices ℓ and r.
- If $A_\ell + A_r > k$: continue recursively with the range $[\ell..(r-1)]$. (* Observation I *)
- If $A_\ell + A_r < k$: continue recursively with the range $[(\ell+1)..r]$. (* Observation II *)

Correctness: Implied by Observations I and II.

Complexity: Let $\Delta = r - \ell$. Initially, $\Delta = n - 1$. In each recursive call the value of Δ is decreased by 1. The maximum number of recursive calls happens when the answer is NO. At this stage, $\Delta = -1$. Therefore there are at most n recursive calls. The total complexity is $\Theta(n)$ since the complexity of each recursive call is $\Theta(1)$.
6. Let \(A = [A_1 < A_2 < \cdots < A_n] \) be a sorted array containing \(n \) distinct negative and positive integers. Describe an \(O(\log(n)) \)-time algorithm that finds if exists an index \(1 \leq i \leq n \) such that \(A_i = i \).

Observation I: For any two indices \(1 \leq i < j \leq n \):

\[
(j - i) \leq A_j - A_i
\]

Proof I: Since the integers in the sorted array are distinct, it follows that

\[
1 \leq A_{i+1} - A_i \\
2 \leq A_{i+2} - A_i \\
3 \leq A_{i+3} - A_i \\
\vdots \\
(j - i) \leq A_{i+(j-i)} - A_i
\]

The last inequality is equivalent to \(j - i \leq A_j - A_i \).

Observation II: For \(1 < j \leq n \), if \(A_j < j \) then \(A_i < i \) for all \(1 \leq i < j \)

Proof II: By Observation I, \(j - A_j \leq i - A_i \). By the assumption, \(0 < j - A_j \). Therefore, \(0 < i - A_i \) which is equivalent to \(A_i < i \).

Observation III: For \(1 \leq i < n \), if \(A_i > i \) then \(A_j > j \) for all \(i < j \leq n \).

Proof III: By Observation I, \(A_j - j \geq A_i - i \). By the assumption, \(A_i - i > 0 \). Therefore, \(A_j - j > 0 \) which is equivalent to \(A_j > j \).

Algorithm: Apply a *Binary Search* like procedure. As long as an index \(i \) for which \(A_i = i \) has not been found, the search continues in a range \([\ell..r]\) of the array for some \(1 \leq \ell \leq r \leq n \). Initially, \(\ell = 1 \) and \(r = n \). The search returns a negative answer if \(\ell > r \).

Recursive step for the range \([\ell..r]\) for which \(\ell \leq r \): Let \(m = \left\lfloor \frac{\ell+r}{2} \right\rfloor \) be the middle index of the range \([\ell..r]\). Compare \(A_m \) with \(m \).

- If \(A_m = m \): return \(m \).
- If \(A_m < m \): continue recursively with the range \([(m+1)..r] \). (* Observation II *)
- If \(A_m > m \): continue recursively with the range \([\ell..(m-1)] \). (* Observation III *)

Correctness: Implied by Observations II and III.

Complexity: The size of the range of the next recursive step is at most half of the size of the current range. Therefore, there are at most \(\lfloor \log(n/2) \rfloor \) recursive steps. The time complexity of each recursive step is \(\Theta(1) \) which implies that the complexity of the algorithm is \(\Theta(\log n) \).