Algorithms

Collection of Problems from Past Exams

General: This document includes many of the problems given in the last two decades in the midterm and final exams the course CISC 7200X Analysis of Algorithms. The problems were modified and some of them were combined or partitioned into several parts. There are two main categories of problems: (i) Problems about growth of function, recursions, and running times of Pseudocodes. (ii) Problems about arrays of numbers that are partitioned by their complexities.

Disclaimer: Knowing and memorizing the solutions to all of these problems does not guarantee success in future exams.

Remarks about array problems:

- It is required to design an algorithm, to prove why the algorithm is correct, to find the running time (complexity) of the algorithm, and to justify the running time claim. If the running time is given, it is still required to justify the running time claim.

- Unless stated otherwise, the complexity model is the comparison model. That is, radix-sort like sorting algorithms and hashing cannot be used in the solution. For these problems, the running time (complexity) is the number of comparisons performed by the algorithm.

- The complexity depends on the array size which is usually n. But for some problems there exists another parameter that might be part of the complexity analysis. Most of the arrays contain n integers for $n \geq 1$. In some problems, n could be larger than some constant c (for example, $c = 2, 3, 4, \ldots$) and in some problems, n is a power of 2 or a power of another constant.

- An arbitrary array is an array that is not necessarily sorted. The integers in the arrays could be negative, positive, or 0 unless stated otherwise and they do not have to be distinct unless stated otherwise.

- Full credit is granted for the most efficient algorithm. Partial credit is granted for non-efficient solutions. However, the solutions MUST be correct.

- High level descriptions are preferable. Pseudocodes have higher risks to have mistakes.
1 Growth of Functions, Recursions, and Running Times of Pseudocodes

1.1 Growth of Functions

1. TRUE (T) or FALSE (F)?

(a) \(f = O(g) \) implies \(f = \Omega(g) \).
(b) \(f = \Theta(g) \) implies \(f = O(g) \).
(c) \((f = O(g) \) and \(f = \Omega(g) \)) implies \(f = \Theta(g) \).
(d) \(f = \Theta(g) \) implies \(f = \Omega(g) \).
(e) \(f = \Omega(g) \) implies \(f = O(g) \).
(f) \(f = O(g) \) implies \(f = \Theta(g) \).
(g) \(f = \Omega(g) \) implies \(f = \Theta(g) \).
(h) \(f = \Theta(g) \) implies \((f = O(g) \) and \(f = \Omega(g) \)).

2. Fill in the following table with one of the three: \(O \), \(\Omega \), \(\Theta \).

Remark: If \(f = \Theta(g) \) then \(f = O(g) \) and \(f = \Omega(g) \) are wrong answers.

<table>
<thead>
<tr>
<th></th>
<th>(f(n))</th>
<th>???</th>
<th>(g(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(n)</td>
<td></td>
<td>(n^2)</td>
</tr>
<tr>
<td>b</td>
<td>(n^2)</td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>c</td>
<td>(2n)</td>
<td></td>
<td>(5n)</td>
</tr>
<tr>
<td>d</td>
<td>(1000000n)</td>
<td>((1/100000)n)</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(\log_2(n))</td>
<td>(\log'_2(n))</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>(\log_2(n))</td>
<td>(\log_{10}(n))</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>(n \log_2(n))</td>
<td>(n/\log_2(n))</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>(2^n)</td>
<td></td>
<td>(n^{100})</td>
</tr>
<tr>
<td>i</td>
<td>(2^n)</td>
<td></td>
<td>(3^n)</td>
</tr>
<tr>
<td>j</td>
<td>(2^n)</td>
<td></td>
<td>(n!)</td>
</tr>
</tbody>
</table>

3. Which of the following 10 functions are \(O(n) \)? Which are \(\Omega(n) \)? Which are \(\Theta(n) \)?

Remark: If \(f = \Theta(n) \) then \(f = O(n) \) and \(f = \Omega(n) \) are wrong answers.

<table>
<thead>
<tr>
<th></th>
<th>(f(n))</th>
<th>???</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(2^n)</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(n^2)</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(2n)</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(n/\log_2(n))</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(\log_2(n))</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>(100 \log_2(n) \log_2(n))</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>(n \log_2(n))</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>(10^{10} n/100^{100})</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>(n^n)</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>(n!)</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Recursions

1. Below there are definitions for ten recursive formulas R_1, R_2, \ldots, R_{10}. Match them with their solutions S_1, S_2, \ldots, S_{10}.

Remark I: Each formula has a different solution.

Remark II: Ignore floors and ceilings by assuming that n is a power of 2 when $T(n)$ is a function of $T(n/2)$.

<table>
<thead>
<tr>
<th>Recursion</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>R_6</th>
<th>R_7</th>
<th>R_8</th>
<th>R_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

2. Let $n = 2^k$ be a power of 2 for $k \geq 0$ and let $T(n)$ be a recursive formula defined as follows

\[
T(1) = 1; \quad T(n) = aT(n/2) + f(n)
\]

for a constant a that can be 1, 2, or 4 and a function $f(n)$ that can be 0, 1, or n.

Match the nine possible solutions for $T(n)$ with the nine possible combinations of a and $f(n)$. Note that you need to assign $2n - 1$ to two different recursive formulas.

- $T_1(n) = 1$
- $T_2(n) = \log_2(n) + 1$
- $T_3(n) = n$
- $T_4(n) = 2n - 1$
- $T_5(n) = 2n - 1$
- $T_6(n) = n(\log_2(n) + 1)$
- $T_7(n) = n^2$
- $T_8(n) = \frac{4n^2 - 1}{3}$
- $T_9(n) = 2n^2 - n$

<table>
<thead>
<tr>
<th>$T(n)$ formula</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
<th>T_6</th>
<th>T_7</th>
<th>T_8</th>
<th>T_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$ and a combination</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
3. Solve the following recursive formulas. Find the **exact** formula for $T(n)$ as a function of n.

(a) $n \geq 1$ is a power of 2 integer.
\[
\begin{align*}
T(1) &= 0 \\
T(n) &= 2T(n/2) + n
\end{align*}
\]

(b) $n \geq 1$ is a power of 2 integer.
\[
\begin{align*}
T(1) &= 0 \\
T(n) &= T(n/2) + 100
\end{align*}
\]

(c) $n \geq 1$ is an integer.
\[
\begin{align*}
T(1) &= 1 \\
T(n) &= T(n - 1) + 1
\end{align*}
\]

(d) $n \geq 1$ is an integer.
\[
\begin{align*}
T(1) &= 1 \\
T(n) &= T(n - 1) + n
\end{align*}
\]

(e) $n \geq 1$ is a power of 2 integer.
\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 4T(n/2)
\end{align*}
\]

(f) $n \geq 1$ is a power of 2 integer.
\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 2T(n/2) + n
\end{align*}
\]

(g) $n \geq 1$ is a power of 3 integer.
\[
\begin{align*}
T(1) &= 0 \\
T(n) &= T(n/3) + 5
\end{align*}
\]

(h) $n \geq 1$ is an odd integer.
\[
\begin{align*}
T(1) &= 1 \\
T(n) &= T(n - 2) + 1
\end{align*}
\]

(i) $n \geq 1$ is an integer.
\[
\begin{align*}
T(1) &= 2 \\
T(n) &= T(n - 1) + 2n
\end{align*}
\]

(j) $n \geq 1$ is a power of 3 integer.
\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 9T(n/3)
\end{align*}
\]

4. Solve the following two double recursions for both $T(n)$ and $S(n)$. Find the **exact** formula for both $T(n)$ and $S(n)$ as a function of n.

(a) Assume that n is a positive integer.
\[
\begin{align*}
T(1) &= 1 & S(1) &= 0 \\
T(n) &= S(n) + 1 & S(n) &= T(n - 1) + 1
\end{align*}
\]

(b) Assume that n is a power of 2 integer.
\[
\begin{align*}
T(1) &= 0 & S(1) &= 1 \\
T(n) &= 2S(n/2) & S(n) &= T(n) + n
\end{align*}
\]
1.3 Running Times of Pseudocodes

1. For the following procedures, find the exact value of \(c \) when the procedure terminates.

(a) \(f(n) \) (* \(n > 0 \) is an integer *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = i \text{ to } n \text{ do} \\
\qquad c := c + 1
\]

(b) \(f(n) \) (* \(n > 0 \) is an even integer number *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n/2 \text{ do} \\
\quad \text{for } j = n/2 \text{ to } n \text{ do} \\
\qquad c := c + 1
\]

2. For the following procedures, find the exact value of \(c \) when the procedure terminates.

(a) \(f(n) \) (* \(n > 0 \) is an integer *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } 2n \text{ do} \\
\qquad \text{for } k = 1 \text{ to } 3n \text{ do} \\
\qquad \quad c := c + 1
\]

(b) \(f(n) \) (* \(n > 0 \) is an integer number *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } i \text{ do} \\
\qquad \text{for } k = 1 \text{ to } j \text{ do} \\
\qquad \quad c := c + 1
\]

3. For the following procedures, find the exact value of \(c \) when the procedure terminates.

(a) \(f(n) \) (* \(n = k^2 \) is a positive square integer *)
\[
c = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{if } i \text{ is a square number} \\
\qquad \text{then } c := c + 1
\]

(b) \(f(n) \) (* \(n \) is a power of 2 integer *)
\[
c = 0 \\
\text{while } n > 1 \text{ do} \\
\quad n := n/2 \\
\quad c := c + 1
\]

(c) \(f(n) \) (* \(n > 1000 \) is a power of 2 *)
\[
c = 0 \\
\text{while } n > 512 \text{ do} \\
\quad n := n/2 \\
\quad c := c + 1
\]
1.4 Multiple Choice Problems

1. Mark the correct answer in the following multi-choice problems.

(a) Which of the following describes most accurately the relationship between \(\log_2(n^2) \) and \(\log_{10}(\sqrt{n}) \)?
 i. \(\log_2(n^2) = o(\log_{10}(\sqrt{n})) \)
 ii. \(\log_2(n^2) = O(\log_{10}(\sqrt{n})) \)
 iii. \(\log_2(n^2) = \Theta(\log_{10}(\sqrt{n})) \)
 iv. \(\log_2(n^2) = \Omega(\log_{10}(\sqrt{n})) \)
 v. \(\log_2(n^2) = \omega(\log_{10}(\sqrt{n})) \)

(b) Which of the following describes most accurately the relationship between \(n \log_2(n) \) and \(n \)?
 i. \(n \log_2(n) = o(n) \)
 ii. \(n \log_2(n) = O(n) \)
 iii. \(n \log_2(n) = \Theta(n) \)
 iv. \(n \log_2(n) = \Omega(n) \)
 v. \(n \log_2(n) = \omega(n) \)

(c) For a power of 3 integer \(n \), what is the solution to the recursive formula \(T(1) = 1 \) and \(T(n) = T(n/3) + 1 \)?
 i. \(T(n) = \Theta(\log(n)) \).
 ii. \(T(n) = \Theta(\log^2(n)) \).
 iii. \(T(n) = \Theta(n) \).
 iv. \(T(n) = \Theta(n \log(n)) \).
 v. \(T(n) = \Theta(n^2) \).

(d) For a power of 2 integer \(n \), what is the solution to the recursive formula \(T(1) = 1 \) and \(T(n) = T(n/2) + n \)?
 i. \(T(n) = \Theta(\log(n)) \).
 ii. \(T(n) = \Theta(\log^2(n)) \).
 iii. \(T(n) = \Theta(n) \).
 iv. \(T(n) = \Theta(n \log(n)) \).
 v. \(T(n) = \Theta(n^2) \).

(e) For any positive integer \(n \), what is the solution to the recursive formula \(T(1) = 1 \) and \(T(n) = T([n/2]) + T([n/2]) \)?
 i. \(T(n) = \Theta(\log(n)) \).
 ii. \(T(n) = \Theta(\log^2(n)) \).
 iii. \(T(n) = \Theta(n) \).
 iv. \(T(n) = \Theta(n \log(n)) \).
 v. \(T(n) = \Theta(n^2) \).

6
(f) For any positive integer \(n \), what is the solution to the recursive formula
\[
T(1) = 1 \text{ and } T(n) = T(n - 1) + n?
\]
i. \(T(n) = \Theta(\log(n)) \).
ii. \(T(n) = \Theta(\log^2(n)) \).
iii. \(T(n) = \Theta(n) \).
iv. \(T(n) = \Theta(n \log(n)) \).
v. \(T(n) = \Theta(n^2) \).

(g) Algorithm \(A \) solves Problem \(P \) with a worst-case tight bound of \(\Theta(n) \) on its running time. Which of the following statements may be true?

i. For infinitely many values of \(n \), there are instances of \(P \) of length \(n \) for which the running time of \(A \) is \(n^2 \).
ii. For all \(n \), and for all instances of \(P \) of length \(n \), the running time of \(A \) is \(\Omega(n \log n) \).
iii. For infinitely many values of \(n \), there are instances of \(P \) of length \(n \) for which the running time of \(A \) is \(\log(n) \).
iv. For all \(n \), and for all instances of \(P \) of length \(n \), the running time of \(A \) is \(O(\sqrt{n}) \).
v. None of the above.

(h) For Problem \(P \) with parameters \(k \) and \(n \), Algorithm \(A \) has a worst-case tight bound of \(\Theta(kn) \) on its running time and Algorithm \(B \) has a worst-case tight bound of \(\Theta(k^2 \sqrt{n}) \) on its running time. For which value of \(k \) both algorithms have the same asymptotic complexity?

i. \(k = \Theta(1) \)
ii. \(k = \log_2(n) \)
iii. \(k = \sqrt{n} \)
iv. \(k = n \)
v. \(k = n \sqrt{n} \).

(i) Which of the following statements is always correct?

i. If \(f(n) = O(g(n)) \) then \(f(n) \leq g(n) \) for all \(n \geq 1 \).
ii. If \(g(n) = \Omega(f(n)) \) then \(g(n) \geq f(n) \) for all \(n \geq 2^{100} \).
iii. If \(f(n) = O(g(n)) \) and \(g(n) = \Omega(h(n)) \) then \(f(n) = \Theta(h(n)) \).
iv. If \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) then \(f(n) = O(h(n)) \).
v. None of the above.

(j) What is the time complexity of the following segment of code?
\[
x = 1 \\
\text{while } x \leq n^{100} \text{ do} \\
x = 2x
\]
i. \(\Theta(1) \).
ii. \(\Theta(\log(n)) \).
iii. \(\Theta(n) \).
iv. \(\Theta(n \log(n)) \).
v. \(\Theta(n^2) \).
2. Mark the correct answer in the following multi-choice problems.

(a) What is the solution to the recursive formula
\[T(1) = 1 \text{ and } T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) \]?

i. \(T(n) = \Theta(\log(n)) \).
ii. \(T(n) = \Theta(n) \).
iii. \(T(n) = \Theta(n \log(n)) \).
iv. \(T(n) = \Theta(n^2) \).
(v. \(T(n) = \Theta(n) \).

(b) Algorithm \(A \) solves Problem \(P \) with a worst-case tight bound of \(\Theta(n) \) on its running time. Which of the following statements is always wrong?

i. There are instances of \(P \) of length \(n \) for which the running time of \(A \) is \(n^2 \).
ii. For all instances of \(P \) of length \(n \), the running time of \(A \) is \(\Omega(n) \).
iii. There are instances of \(P \) of length \(n \) for which the running time of \(A \) is \(\log(n) \).
iv. For all instances of \(P \) of length \(n \), the running time of \(A \) is \(\Theta(n) \).

(c) For Problem \(P \) with parameters \(k \) and \(n \), Algorithm \(A \) has a worst-case tight bound of \(\Theta(kn) \) on its running time and Algorithm \(B \) has a worst-case tight bound of \(\Theta(k^2 \sqrt{n}) \) on its running time. For which value of \(k \) both algorithms have the same asymptotic complexity?

i. \(k = \Theta(1) \)
ii. \(k = \Theta(\sqrt{n}) \)
iii. \(k = \Theta(n) \)
iv. \(k = \Theta(n \sqrt{n}) \)

(d) Which of the following statements is always correct?

i. If \(f(n) = O(g(n)) \) then \(f(n) \leq g(n) \) for all \(n \geq 1 \).
ii. If \(f(n) = O(g(n)) \) then \(f(n) \leq g(n) \) for all \(n \geq 2^{100} \).
iii. If \(f(n) = O(g(n)) \) and \(g(n) = \Omega(h(n)) \) then \(f(n) = \Theta(h(n)) \).
iv. If \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) then \(f(n) = O(h(n)) \).

(e) What is the time complexity of the following segment of code?
\[
x = 1
\text{while } x \leq n^{100} \text{ do}
\quad x = 2x
\]

i. \(\Theta(1) \)
ii. \(\Theta(\log(n)) \)
iii. \(\Theta(n) \)
iv. \(\Theta(n \log(n)) \)
v. \(\Theta(n^2) \).
3. Mark the correct answer in the following multi-choice problems.

(a) What is the sum of the following sequence?
\[\sum_{i=1}^{2i} = 2 + 4 + 6 + \cdots + (2n - 2) + 2n \]

i. 4n
ii. 2n log2(n)
iii. n(n + 1)/2
iv. n(n + 1)
v. 2n^2

(b) For \(n = 2^k \), what is the sum of the following sequence?
\[\sum_{i=0}^{i=k} \frac{3n}{2^i} = 3n + \frac{3n}{2} + \frac{3n}{4} + \cdots + 12 + 6 + 3 \]

i. 4n - 2
ii. 6n - 3
iii. n log2(n) - 3
iv. n^2 - 3
v. 3n(n + 1)/2 - 6

(c) What is the solution to the following recursive formula?
\[T(1) = 2 \text{ and } T(n) = T(n - 1) + 2n \]

i. \(T(n) = \Theta(\log(n)) \)
ii. \(T(n) = \Theta(\log^2(n)) \)
iii. \(T(n) = \Theta(n) \)
iv. \(T(n) = \Theta(n \log(n)) \)
v. \(T(n) = \Theta(n^2) \)

(d) For \(n = 2^k \), what is the solution to the following recursive formula?
\[T(1) = 3 \text{ and } T(n) = T(n/2) + 3n \]

i. \(T(n) = \Theta(\log(n)) \)
ii. \(T(n) = \Theta(\log^2(n)) \)
iii. \(T(n) = \Theta(n) \)
iv. \(T(n) = \Theta(n \log(n)) \)
v. \(T(n) = \Theta(n^2) \)

(e) Algorithm A solves problem P with complexity \(\Theta(k^2) \) and Algorithm B solves problem P with complexity \(\Theta(n + k) \). For which values of \(n \) and \(k \) both algorithms have the same complexity?

i. \(n = \Theta(1) \)
ii. \(n = \Theta(\log(k)) \)
iii. \(n = \Theta(k) \)
iv. \(n = \Theta(k^2) \)
v. \(n = \Theta(2^k) \)
2 Array Problems

2.1 $\Theta(\log n)$ Problems

1. Assume n is a power of 2.

Let $x < y$ be two positive integers.
Describe an efficient algorithm that finds an index i (if exists) such that $A[i]$ is a number between x and y: $x \leq A[i] \leq y$.
What is the exact worst-case number of comparisons made by your algorithm?

2. Assume n is a power of 2.

Let x be a positive integer.
Describe an efficient algorithm that finds an index i (if exists) such that $A[i]$ is a number between x and $2x$: $x \leq A[i] \leq 2x$.
What is the exact worst-case number of comparisons made by your algorithm?

3. Assume n is a power of 2.

Let $x \leq y$ be two positive integers.

(a) Describe an efficient algorithm that returns “TRUE” if one of the numbers $x, x+1, \ldots, y$ appears in the array.
What is the exact worst-case number of comparisons made by your algorithm?

(b) Describe an efficient algorithm that returns “TRUE” if all the numbers $x, x+1, \ldots, y$ appear in the array.
What is the exact worst-case number of comparisons made by your algorithm?

Design an $O(\log(n))$ algorithm to find the number of times x appears in the array.

5. Definition: An array A with n distinct integers is called a hill array if there exists an index m such that the array is in an ascending order from index 1 to index m and in a descending order from index m to index n:

Example: $A = [2, 4, 6, 8, 7, 5, 3, 1]$ is a hill array for which $m = 4$.
Example: $A = [13, 34, 21, 8, 5, 3, 2, 1]$ is a hill array for which $m = 2$.
Example: $A = [1, 2, 8, 5, 3, 13, 21, 34]$ is not a hill array.
Note that an ascending-sorted array is a hill array for which $m = n$ and that a descending-sorted array is a hill array for which $m = 1$.
Let A be a hill array. Describe an efficient algorithm to find the index m.
What is the worst-case number of comparisons made by your algorithm?

8. Let $n \geq 1$ be an integer and let $1 \leq x \leq n$ be an unknown integer in the range $[1..n]$. The goal is to find x with as minimum as possible comparisons of the type: $x \leq i$ for $1 \leq i \leq n$.

Each of the following cases restricts the values x can get. In each case, explain with few sentences how to modify the binary search to get a better performance than $\log_2 n$ in the worst case. Then compute the exact worst case number of comparisons performed by your modified search as a function of n.

Remark: To avoid ceilings, in each case there is an assumption about the value of n.

(a) x is an odd number. $n = 2^k$ is a power of 2.
(b) $x = y^2$ is a square number. $n = (2^k)^2$ is a square of a power of 2.
(c) $x = 2^y$ is a power of 2. $n = 2^{(2^k)}$ is a power of 2 and the exponent is also a power of 2.

9. The following Trinary-Search procedure looks for x in the range $[f..\ell]$ for some positive integers $1 \leq f < \ell \leq n$. Initially, $\ell = 1$ and $f = n$ for the range $[1..n]$. Assume that n is a power of 3 and that the size of the range, $\ell - f + 1$, is always a power of 3.

- The procedure first checks if $f = \ell$ (not a comparison). If the answer is “YES” then the search terminates.
- Otherwise, let $m = \frac{\ell - f + 1}{3}$ be one third of the size of the range. The procedure partitions the input range into the following 3 equal size ranges: $[f..(f+m-1)]$, $[(f+m)..(\ell-m)]$, and $[(\ell-m+1)..\ell]$. For example the range $[10..18]$ is partitioned into the ranges: $[10, 11, 12]$, $[13, 14, 15]$, and $[16, 17, 18]$.
- The first comparison is: $x \leq f + m - 1$ (does x belong to the first range?).
- If “YES”, then the search continues recursively in the first range: $[f..(f+m-1)]$.
- If “NO”, then the second comparison is: $x \leq \ell - m$ (does x belong to the second range?).
- If “YES”, then the search continues recursively in the second range: $[(f+m)..(\ell-m)]$.
- If “NO”, then the search continues recursively in the third range: $[(\ell-m+1)..\ell]$.

(a) For the range $[1..n]$, what is the exact number of comparisons between x and a number in the range that are performed by Trinary-Search?

i. $n = 3$ and $x = 1, 2, 3$.
ii. $n = 9$ and $x = 1, \ldots, 9$.
iii. $x = n$ for any n.
iv. $x = 1$ for any n.

(b) Let $T(n)$ be the worst case complexity (number of comparisons) of Trinary-Search. Write the initial value and the recursive formula for $T(n)$.

What is the solution of this recursion using the Θ-notation.

What is the exact solution of this recursion?
2.2 $\Theta(n)$ Problems

1. Let $A = A[1], A[2], \ldots, A[n]$ be an arbitrary array of n ($4 \leq n$) distinct positive integers.
 Describe an efficient algorithm that finds the two largest integers and the two smallest integers in A.

 What is the exact worst-case number of comparisons made by your algorithm?

2. For $n \geq 1$, let A and B be two sorted arrays each of n distinct positive integers:

 (a) Describe an efficient algorithm that finds an integer (if exists) that appears in both arrays. What is the worst-case number of comparisons made by your algorithm?

 (b) Describe an efficient algorithm that finds (if exists) an integer that appears in one of the arrays but not in both. What is the worst-case number of comparisons made by your algorithm?

3. Let $A = A[1], \ldots, A[n]$ be an array of n positive integers. Let $S = A[1] + \cdots + A[n]$ be the sum of all the numbers in the array. For $1 \leq i \leq n$, let

 be the sum of all the numbers in the array except $A[i]$. Design a linear time ($O(n)$) algorithm to compute $S[1], \ldots, S[n]$ only with plus operations (The algorithm cannot use the minus operation).

 For a given positive integer k, describe an efficient algorithm that finds two indices $i < j$ (if exist) such that $A[j] - A[i] = k$.

 What is the complexity (number of comparisons) of your algorithm?

 (a) Describe an efficient algorithm that finds two indices $i < j$ (if exist) such that $A[j] = A[i] + 1$.

 What is the worst-case number of comparisons of the type $A[j] = A[i] + 1$ that are performed by your algorithm?

 (b) Describe an efficient algorithm that finds two indices $i < j$ (if exist) such that $A[j] = (A[i])^2$.

 What is the worst-case number of comparisons of the type $A[j] = (A[i])^2$ that are performed by your algorithm?

 Design an efficient algorithm that constructs the array B for a given array A.

 What is the worst-case number of comparisons performed by your algorithm?
7. Let \(A = A[1], A[2], \ldots, A[n] \) be an arbitrary array of \(n \) distinct integers. Assume that \(n > 2 \) is an odd number.

For a given integer \(1 \leq k < n/2 \), describe an efficient algorithm that finds the \(k \) smallest integers in \(A \) that are larger than the median.

Example: For \(n = 11 \), \(k = 3 \), and \(A = [3, 55, 1, 144, 13, 21, 8, 5, 89, 2, 34] \), the median is 13 and the 3 smallest integer that are larger than 13 are 55, 21, 34.

What is the complexity of your algorithm?

8. An array \(A \) of \(n \geq 1 \) distinct positive integers is bitonic if there exists an index \(1 \leq i \leq n \) such that:

Describe a linear time \((O(n))\) algorithm that sorts bitonic arrays.

9. **Definition:** An array \(A \) of size \(n \geq 2 \) is called a \(k \)-sorted array for an integer \(0 \leq k < n \), if for any index \(i \), if \(j \) is the location of \(A[i] \) when the array is sorted then \(|i - j| \leq k \). In other words, \(A[i] \) is at most \(k \) locations away from its position in the sorted version of array \(A \).

Example: Consider the array \(A = [5, 3, 8, 1, 21, 2, 13, 34] \) the sorted version of which is \(A' = [1, 2, 3, 5, 8, 13, 21, 34] \). It follows that
 - \(A[1] = 5 \) is 3 locations away from its position at \(A'[4] \),
 - \(A[2] = 3 \) is 1 location away from its position at \(A'[3] \),
 - \(A[3] = 8 \) is 2 locations away from its position at \(A'[5] \),
 - \(A[4] = 1 \) is 3 locations away from its position at \(A'[1] \),
 - \(A[5] = 21 \) is 2 locations away from its position at \(A'[7] \),
 - \(A[6] = 2 \) is 4 locations away from its position at \(A'[2] \),
 - \(A[7] = 13 \) is 1 location away from its position at \(A'[6] \),
 - \(A[8] = 34 \) is 0 locations away from its position at \(A'[8] \).

As a result, \(A \) is a 4-sorted array but not a 3-sorted array.

Remark: Note that a sorted array is a 0-sorted array and that any array is for sure an \((n - 1)\)-sorted array but maybe a \(k \)-sorted array for \(k < n - 1 \).

Let \(n \) be an even number. Describe an efficient algorithm that transforms an arbitrary array \(A \) of \(n \) integers to be an \(n/2 \)-sorted array.

What is the worst-case number of comparisons made by your algorithm?

10. Let \(A = A[1], \ldots, A[n] \) and \(B = B[1], \ldots, B[n] \) be two arbitrary arrays. Define \(A - B \) to be the sum of all \(n^2 \) differences \(A[i] - B[j] \) for \(1 \leq i \leq n \) and \(1 \leq j \leq n \).

\[
A - B = \sum_{i,j \in \{1,\ldots,n\}} (A[i] - B[j]).
\]

Let \(C = C[1], \ldots, C[2n] \) be an array with \(2n \) distinct positive integers. Describe an efficient algorithm that partitions \(C \) into two arrays \(A \) and \(B \) each containing a different set of \(n \) integers from \(C \) such that \(A - B \) is maximum.

What is the worst-case number of comparisons made by your algorithm?
11. Let $A = A_1 < A_2 < \cdots < A_n$ be a sorted array containing n distinct positive integers and let k be a positive integer.

Describe an $O(n)$-time algorithm that finds (if exist) two indices $1 \leq i, j \leq n$ such that $A_i + A_j = k$.

12. Let $A = A[1], \ldots, A[n]$ be an arbitrary array containing n positive integers.

A **majority** is a number that appears more than $n/2$ times in the array (note that there can be at most one majority).

Describe an $O(n)$-time algorithm that finds a majority in A if exists.

Let $Count$ be the number of pairs i and j for which $A[i] > B[j]$.

Describe an efficient algorithm to compute $Count$.

What is the worst-case number of comparisons performed by your algorithm?

14. Let $A = A[1], \ldots, A[n]$ be an arbitrary array containing $3n$ ($n \geq 1$) distinct integers.

Describe an efficient algorithm that partitions the $3n$ integers from A into three arrays B, C, and D, each of size n. Array D will contain the n largest integers from A, array B will contain the n smallest integers from A, and array C will contain the rest of the integers from A.

What is the worst-case number of comparisons performed by your algorithm?

15. Let M be an $n \times n$ matrix containing n^2 distinct integers. The n integers of each row of M are sorted in an ascending order (from left to right) and the integers of each column of M are sorted in an ascending order (from top to bottom).

Let x be one of the numbers in M. The goal is to find the position of x in M using only comparisons between x and integers in the matrix. That is, you need to find the indices $1 \leq i, j \leq n$ such that $M[i, j] = x$.

(a) Describe an algorithm that accomplishes this task with $O(n)$ comparisons.

(b) **Bonus** question: Prove that any algorithm that solves this problem must use $\Omega(n)$ comparisons.
16. **Story:** There are n pancakes all of different sizes that are stacked on top of each other. It is allowed to slip a flipper under one of the pancakes and flip over the whole stack above the flipper. The purpose is to arrange pancakes according to their size with the biggest at the bottom.

Model: Let A be an array of size n containing the numbers $1, \ldots, n$ in any order (A represents an arbitrary permutation). For any $2 \leq i \leq n$, the F_i operation (flip) is to reverse the prefix of size i of the array.

Example I: $F_5([1, 2, 3, 4, 5, 6, 7, 8]) = [5, 4, 3, 2, 1, 6, 7, 8]$.

Example II: $F_3([3, 2, 1, 4, 5, 6, 7, 8]) = [1, 2, 3, 4, 5, 6, 7, 8]$.

Problem: Sort the array with as few as possible flips.

Remark: In the comparison model, array operations were free and the objective is to minimize the number of comparisons. In the pancake model, comparisons are free since the final location of each pancake is known. The objective is to minimize the number of array (flip) operations.

(a) Sort the following arrays with as few as possible flips. Specify the list of flips that sorts the arrays.

i. $[8, 7, 6, 5, 1, 2, 3, 4]$

ii. $[8, 6, 4, 2, 1, 3, 5, 7]$

iii. $[2, 8, 6, 4, 3, 5, 7, 1]$

(b) Describe an algorithm to sort any array of size n with at most $2n - 3$ flips.
2.3 $\Theta(n \log n)$ Problems

1. Let $A = A[1], A[2], \ldots, A[n]$ and $B = B[1], B[2], \ldots, B[n]$ be arbitrary arrays each containing n distinct positive integers.

Design an efficient algorithm that determines if there exists an integer k and reordering of both arrays such that after the reordering $A[i] + B[i] = k$ for all $1 \leq i \leq n$.

What is the worst-case number of comparisons performed by your algorithm?

2. Let $A = A[1], A[2], \ldots, A[n]$ and $B = B[1], B[2], \ldots, B[n]$ be arbitrary arrays containing $2n$ distinct positive integers. Array A dominates array B if it is possible to rearrange the arrays in a way such that $A[i] > B[i]$ for all $1 \leq i \leq n$.

(a) Show an example of two arrays A and B such that A does not dominates B and B does not dominate A. Try to find an example with a very small n.

(b) Describe an efficient algorithm that decides if array A dominates array B.

What is the worst-case number of comparisons performed by your algorithm?

For example in the array $[3, 8, 2, 4,]$, the pair $i = 1$ and $j = 3$ is an inversion because $A[1] = 3$ is greater than $A[3] = 2$. On the other hand, the pair $i = 1$ and $j = 2$ is not an inversion because $A[1] = 3$ is smaller than $A[2] = 8$. In this array there are 7 inversions and 3 non-inversions.

Describe an efficient algorithm that counts the number of inversions in any array.

What is the worst-case number of comparisons performed by your algorithm?
2.4 Problems with mixed complexity answers: $\Theta(n), \Theta(\log n)$ and/or $\Theta(n \log n)$

Examples: $[1, 3, 2, 5, 13, 8, 34, 21]$ is almost sorted while $[1, 3, 5, 2, 8, 21, 13, 34]$ is not because 2 is too far from its sorted position.

(a) Describe a linear time ($\Theta(n)$) algorithm that sorts almost sorted arrays.

(b) Describe a logarithmic time ($\Theta(\log(n))$) algorithm that finds if an integer k appears in an almost sorted array A.

2. Let A be an arbitrary array of n positive integers. The goal is to find one of the numbers that appears only once in the array if exists.

For each of the following cases, describe an efficient algorithm that solves the above task and state the worst-case complexity (number of comparisons) of your algorithm.

(b) A is an arbitrary array: the integers in the array may appear in any order.

(c) There are exactly 2 distinct integers in the entire array A (but A is not sorted).

(d) If a number x appears in A more than once, then all of its appearances are consecutive (but A is not sorted).

3. Let A be an arbitrary array of n positive integers. The goal is to find one of the numbers that appears more than once in the array if exists.

For each of the following cases, describe an efficient algorithm that solves the above task and state the worst-case complexity (number of comparisons) of your algorithm.

(b) A is an arbitrary array: the integers in the array may appear in any order.

(c) There are exactly 2 distinct integers in the entire array A (but A is not sorted).

(d) If a number x appears in A more than once, then all of its appearances are consecutive (but A is not sorted).

(a) Describe an efficient algorithm that finds the maximum difference between any two integers in the array. In other words, compute $M = \max_{1 \leq i, j \leq n} \{A[i] - A[j]\}$.

What is the worst-case number of comparisons performed by your algorithm?

(b) Describe an efficient algorithm that finds the minimum positive difference between any two integers in the array. In other words, compute $m = \min_{1 \leq i, j \leq n} \{|A[i] - A[j]|\}$.

What is the worst-case number of comparisons performed by your algorithm?
2.5 Complexity that Depends on Another Parameter

Describe an efficient algorithm that finds the k ($1 \leq k \leq 2n$) smallest numbers among the $2n$ numbers of both arrays.

What is the worst-case number of comparisons made by your algorithm?

2. The range of an array X is $[\text{min}(X) .. \text{max}(X)]$ where $\text{min}(X)$ is the minimum number in the array and $\text{max}(X)$ is the maximum number in the array. For two arrays X and Y, define $X \leq Y$ if the range of Y contains the range of X. That is, $\text{min}(X) \geq \text{min}(Y)$ and $\text{max}(X) \leq \text{max}(Y)$.

Let A be an arbitrary array containing n ($n \geq 2$) distinct integers and let B be an arbitrary array containing $m \geq 2$ distinct integers. Design an efficient algorithm that decides if:

(i) either $A \leq B$, (ii) or $B \leq A$, (iii) or neither $A \leq B$ nor $B \leq A$.

What is the worst-case number of comparisons made by your algorithm as a function of n and k?

3. Let $A = A[1] < \cdots < A[n]$ be a sorted array of $n \geq 1$ integers and $B = B[1] < \cdots < B[m]$ be a sorted array of $m \geq 1$ integers. Assume that all the $n + m$ integers are distinct.

Describe an efficient algorithm that finds the k-th largest number among the $n + m$ numbers for any possible value of k between 1 and $n + m$.

What is the worst-case number of comparisons made by your algorithm?