1. Introduction and Graph Isomorphism
2. Notations and Definitions
3. Families of Graphs
4. Data Structures
5. Graphic Sequences
Graphs

Definition

- A graph is a collection of edges and vertices. Each edge connects two vertices.

The Petersen graph
Different Drawings of the “Same” Graph
Graph Isomorphism

Definition

Graph G_1 and graph G_2 are isomorphic if there is a one-to-one function between their vertices such that the number of edges joining any two vertices of G_1 is equal to the number of edges joining the corresponding vertices of G_2.

Example

\[
\begin{align*}
A & \leftrightarrow A \\
B & \leftrightarrow B \\
C & \leftrightarrow C \\
D & \leftrightarrow D \\
E & \leftrightarrow E \\
F & \leftrightarrow F
\end{align*}
\]
Both graphs must have the same number of vertices.

- Both graphs have 6 edges.
- The graphs are **not isomorphic** because one has 6 vertices while the other has 5 vertices.
Both graphs must have the same number of edges

Both graphs have 6 vertices.

The graphs are **not isomorphic** because one has 6 edges while the other has 5 edges.
Both graphs must have the same degree sequence.

Both graphs have 6 vertices and 7 edges. The graphs are not isomorphic because only one of them has a vertex of degree 4.
Graph Isomorphism

Both graphs must have the same type of connections

- Both graphs have 6 vertices, 7 edges, and the same degree sequence \((3, 3, 2, 2, 2, 2)\).
- The graphs are **not isomorphic** because the two vertices of degree 3 are connected only in one of them.
Graph Isomorphism

Both graphs must contain the same sub-graphs

- Both graphs have 6 vertices, 7 edges, and the same degree sequence \((3, 3, 2, 2, 2, 2)\).
- In both graphs each vertex with degree 3 is connected to the other vertex of degree 3 and to two vertices of degree 2.
- In both graphs each vertex of degree 2 is connected to another vertex of degree 2 and a vertex of degree 3.
- The graphs are **not isomorphic** because only one of them contains a triangle (a cycle of length 3).
Graph Isomorphism

Problem
- Let G and H be two graphs. Is G isomorphic to H?

Algorithm
- Check all possible permutations of the vertices of H and compare them with the vertices of G.
- G and H are isomorphic if at least one of the permutations implies the desired one-to-one correspondence.
- This algorithm is very inefficient with an exponential running time.

Hardness
- There is no known efficient algorithm that solves the graph isomorphism problem.
- It is believed that such an algorithm does not exist.
Online Resources

Get started with graph theory

Learn graph theory interactively

https://d3gt.com/index.html

Online graph editor

https://csacademy.com/app/graph_editor/

A short introduction

Definitions and Euler Tour:

https://youtu.be/2QKjZb9ZKYg?list=PLMyAzUai9V3ox_LDw154GRkNxovx6NqQX (8:52 min)

Trees and Traversals:

https://youtu.be/7OztK4CnsrM?list=PLMyAzUai9V3ox_LDw154GRkNxovx6NqQX (7:13 min)
Sarada Herke: A Graph Theory Online Course

FAQ

https://www.youtube.com/playlist?list=PLGxuz-nmY1Q0AiikIbmTuj4Lf4QPc017G

A comprehensive introductory course with 66 video lectures

Part I: https://www.youtube.com/playlist?list=PLGxuz-nmY1Q0iIOriTXMEOGoybUC3Jmrn
Part II: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOWynO1-09SBboVvjSSrmXF
Part III: https://www.youtube.com/playlist?list=PLGxuz-nmY1Q0we-FPnymy8RA4nzpsygCPx
Part IV: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOXFjanEQY4WHnPJnAYQSqP
Part V: https://www.youtube.com/playlist?list=PLGxuz-nmY1QPtH2TgH3MTTkrMYjKtltwk
Part VI: https://www.youtube.com/playlist?list=PLGxuz-nmY1QMqbct_HCAgSmWEmuHvubXT
Part VII: https://www.youtube.com/playlist?list=PLGxuz-nmY1QNCcfVYLs9G4dtFJDFUuo5A
Part VIII: https://www.youtube.com/playlist?list=PLGxuz-nmY1QNtbShUqPrrMA8cQA4c45103
Part IX: https://www.youtube.com/playlist?list=PLGxuz-nmY1QOnimToereNmISXM808M5Ba
Part X: https://www.youtube.com/playlist?list=PLGxuz-nmY1QPgIHBqWtgD-F7NnJuqs4fH
Part XI: https://www.youtube.com/playlist?list=PLGxuz-nmY1QMO2wRhUhV_g6AN3vLN_4X7

Fun with graphs

https://www.youtube.com/playlist?list=PLGxuz-nmY1QMEo9ULIFc5nRy7pdHZK3vj

Amotz Bar-Noy (Brooklyn College)
Introduction and Graph Isomorphism

MIT Discrete Math lectures: Graph Theory

Part I: Graph Theory and Coloring

Part II: Matching Problems
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/lecture-7-matching-problems/

Part III: Minimum Spanning Trees

Part IV: Communication Networks

Part V: Graph Theory III
Graph Theory Algorithms by a Google engineer

Description and outline

https://www.freecodecamp.org/news/learn-graph-theory-algorithms-from-a-google-engineer/

Almost 7 hours Video Lecture

Playlist

https://www.youtube.com/playlist?list=PLDV1Zeh2NRsDGO4--qE8yH72HFL1Km93P
Famous Graph Problems

The seven bridges of Königsberg

- https://www.youtube.com/watch?v=nZwSo4vfw6c (4:39 min)

The four color map problem

- https://www.youtube.com/watch?v=ANY7X-_wpNs (2:36 min)
- https://www.youtube.com/watch?v=NgbK43jB4rQ (14:17 min)

The Traveling Salesperson Problem

- https://www.youtube.com/watch?v=l8KBKItQ3T4 (1:15 min)
- https://www.youtube.com/watch?v=SC5CX8drAtU (2:22 min)
Notations

- $G = (V, E)$ – graph.
- $V = \{1, \ldots, n\}$ – set of vertices.
- $E \subseteq V \times V$ – set of edges.
- $e = (u, v) \in E$ – edge.
- $n = |V| = V$ – number of vertices.
- $m = |E| = E$ – number of edges.
Directed and Undirected Graphs

Undirected graphs
- The edge \((u, v)\) is the same as the edge \((v, u)\).

Directed graphs (D-graphs)
- The edge \((u \rightarrow v)\) is not the same as the edge \((v \rightarrow u)\).

The underlying undirected graph of a directed graph
- The edge \((u \rightarrow v)\) becomes \((u, v)\).
Directed and Undirected Graphs

Undirected edges

- Vertices u and v are the endpoints of the edge (u, v).
- Edge (u, v) is incident with vertices u and v.
- Vertices u and v are neighbors if edge (u, v) exists. Vertex u is adjacent to vertex v and vertex v is adjacent to vertex u.
- Vertex u has degree d if it has d neighbors.
- Edge (v, v) is a (self) loop.
- Edges $e_1 = (u, v)$ and $e_2 = (u, v)$ are parallel edges.
Notations and Definitions

Directed and Undirected Graphs

Directed edges

- Vertex u is the **origin** (initial) and vertex v is the **destination** (terminal) of the directed edge $(u \rightarrow v)$.

- Vertex v is the **neighbor** of vertex u if the directed edge $(u \rightarrow v)$ exists (but vertex u is not a neighbor of vertex v). Vertex v is **adjacent** to vertex u (but vertex u is not adjacent to vertex v).

- Vertex u has **out-degree** d if it has d neighbors and has **in-degree** d if it is the neighbor of d vertices.

- Edge $(v \rightarrow v)$ is a **(self) directed loop**.

- Directed edges $e_1 = (u \rightarrow v)$ and $e_2 = (u \rightarrow v)$ are **parallel** directed edges (but directed edges $e_1 = (u \rightarrow v)$ and $e_2 = (v \rightarrow u)$ are not **parallel** directed edges).
Weighted Graphs

Definition

- In **Weighted graphs** there exists a weight function: \(w : E \rightarrow \mathbb{R} \).

The triangle inequality

- For any three edges \((x, y), (x, z), \) and \((y, z)\), the weight function obeys the inequality:

\[
 w(x, y) \leq w(x, z) + w(y, z)
\]

- Example: distances in the plane.
Simple Graphs

Definition

- A **simple** directed or undirected graph is a graph with no parallel edges and no self loops.
- In a simple directed graph both edges: \((u \rightarrow v)\) and \((v \rightarrow u)\) could exist (they are not parallel edges).

Number of edges in simple graphs

- A simple undirected graph has at most \(m = \binom{n}{2}\) edges.
- A simple directed graph has at most \(m = n(n - 1)\) edges.
- A **dense** simple (directed or undirected) graph has “many” edges: \(m = \Theta(n^2)\).
- A **sparse** (shallow) simple (directed or undirected) graph has “few” edges: \(m = \Theta(n)\).
Labeled and Unlabeled Graphs

Definition

- In a **labeled** graph each vertex has a unique label (ID).
 - Usually the labels are: 1, \ldots, n.

Observation

- There are $2^{(n)}$ **non-isomorphic** labeled graphs with n vertices. Because each possible edge exists or does not exist.

Open problem

- There is no known formula for the number of distinct unlabeled non-isomorphic graphs with $n \geq 1$ vertices.
- There are 1, 2, 4, 11, 34, 156, 1044 distinct unlabeled non-isomorphic graphs with $n = 1, 2, 3, 4, 5, 6, 7$ vertices.
- There are 24637809253125004524383007491432768 distinct unlabeled non-isomorphic graphs with $n = 20$ vertices.
The 8 Labelled Graphs with \(n = 3 \) vertices
The 4 Unlabelled Graphs with $n = 3$ Vertices
Paths and Cycles

Paths
- An undirected or directed path $\mathcal{P} = \langle v_0, v_1, \ldots, v_k \rangle$ of length k is an ordered list of vertices such that (v_i, v_{i+1}) or $(v_i \rightarrow v_{i+1})$ exists for $0 \leq i \leq k - 1$ and all the edges are different.

Cycles
- An undirected or directed cycle $\mathcal{C} = \langle v_0, v_1, \ldots, v_k \rangle$ of length k is an undirected or directed path that starts and ends with the same vertex.

Simple paths
- In a simple path, directed or undirected, all the vertices are different.

Simple cycles
- In a simple cycle, directed or undirected, all the vertices except $v_0 = v_k$ are different.
Special Paths and Cycles

Euler paths
- An undirected or directed Euler path (tour) is a path that traverses all the edges of the graph.

Euler cycles
- An undirected or directed Euler cycle (circuit) is a cycle that traverses all the edges of the graph.

Hamiltonian paths
- An undirected or directed Hamiltonian path (tour) is a simple path that visits all the vertices of the graph.

Hamiltonian cycles
- An undirected or directed Hamiltonian cycle (circuit) is a simple cycle that visits all the vertices of the graph.
Connectivity

Definition
- In a **connected** undirected graph there exists a path between any pair of vertices.

Connected components
- A connected sub-graph G' is a **connected component** of an undirected graph G if there is no connected sub-graph G'' of G such that G' is also a subgraph of G''.

Corollary
- A connected graph has exactly one connected component.
Connectivity

A graph with three connected components
Strong Connectivity

Definition
- In a **strongly connected** directed graph there exists a directed path from u to v for any pair of vertices u and v.

Strongly connected components
- A strongly connected directed sub-graph G' is a **strongly connected component** of a directed graph G if there is no strongly connected directed sub-graph G'' of G such that G' is also a subgraph of G''.

Corollary
- A strongly connected directed graph has exactly one strongly connected component.
A graph with two strongly connected components
The WEB Graph

Definition

- In the WEB graph, every page is a vertex and a hyper-link from page p to page q is modeled by the directed edge $(p \rightarrow q)$.

Broder et. al (Graph Structure of the Web, 2000) Examined a large web graph (200M pages, 1.5B links)
Assumptions

Unless stated otherwise, **usually** a graph is:

- Simple.
- Undirected.
- Unlabelled.
- Unweighted.
- Connected.
Forests and Trees

Forests

- Graphs with no cycles.

Trees

- Connected graphs with no cycles.

Trees and Forests

- A tree is a connected forest.
- Each connected component of a forest is a tree.

\[n = 1 \text{ and } n = 2 \]

- For \(n = 1 \), the singleton vertex is a tree.
- For \(n = 2 \), the graph with two isolated vertices is a forest and an edge is a tree.
Example: a tree with 8 vertices

The three characterizations of trees

- A tree is a connected graph.
- A tree with n vertices has $n - 1$ edges.
- A tree has no cycles.
Trees

Theorem 1: three equivalent definitions

- An undirected and simple graph is a tree if
 - It is **connected** and has **no cycles**.
 - It is **connected** and has exactly \(m = n - 1 \) edges.
 - It has **no cycles** and has exactly \(m = n - 1 \) edges.

Corollary

- The number of edges in a forest with \(n \) vertices and \(k \) trees is \(m = n - k \).

Theorem 2: three properties

- An undirected and simple graph is a tree if
 - It is connected and deleting any edge disconnects it.
 - Any two vertices are connected by exactly one path.
 - It has no cycles and any new edge forms one cycle.
Theorem

There are n^{n-2} distinct labelled n vertices trees.

All labelled with four vertices
Counting Unlabelled Trees

Open problem
- What is the number of non-isomorphically unlabelled trees with n vertices?

The two unlabelled trees with four vertices

The three unlabelled trees with five vertices
Null Graphs

Definition

- **Null graphs** are graphs with no edges.
- In null graphs $m = 0$.

The null graph with six vertices

![Graph with six vertices](image)
Complete Graphs

Definition

- **Complete graphs (cliques)** are graphs with all possible edges.
- In complete graphs $m = \binom{n}{2} = \frac{n(n-1)}{2}$.

The complete graph with six vertices
Definition

- **Cycles** (rings) are connected graphs in which all vertices have degree 2 \((n \geq 3) \).
- In cycles \(m = n \).

The cycle graph with six vertices
Paths

Definition
- **Paths** are cycles with one edge removed (paths are trees).
- In paths $m = n - 1$.

The path graph with six vertices

![Path Graph with Six Vertices](image-url)
Stars

Definition

- **Stars** are graphs with one root that is connected to \(n - 1 \) leaves (stars are trees).
- The degree of the root is \(n - 1 \) and the degree of each leaf is 1.
- In stars \(m = n - 1 \).

The star graph with six vertices
Wheels

Definition
- **Wheels** are stars in which all the $n - 1$ leaves form a cycle.
- In wheels $m = 2n - 2$ for $n \geq 4$.

The wheel graph with seven vertices
Bipartite Graphs

Definition
- The vertices of a bipartite graph $G = (V, E)$ are partitioned into two disjoint sets $V = X \cup Y$.
- Each edge in E is incident to one vertex from X and one vertex from Y.

Observation
- A graph is bipartite iff each cycle in the graph is of even length.

A bipartite graphs with 10 vertices
Complete Bipartite Graphs

Definition

- A **complete bipartite graph** is a bipartite graph in which the set X has x vertices, the set Y has y vertices, and all possible $x \cdot y$ edges exist.

A complete bipartite graph with $x = 4$ and $y = 5$ vertices
Hyper-Cubes

Definition

- The **Hyper-Cube** graph H_k has $n = 2^k$ vertices representing all the 2^k binary sequences of length k.
- Two vertices in H_k are adjacent if their corresponding sequences differ by exactly one bit.

A hyper-cube graph with 8 vertices

![Hyper-Cube Graph Diagram]
Hyper-Cubes

Observation
- Hyper-Cubes are bipartite graphs.

Proof
- \(X \): The set of all the vertices with even number of 1 in their binary representation.
- \(Y \): The set of all the vertices with odd number of 1 in their binary representation.
- Any edge connects two vertices that differ by one bit and therefore one is from the set \(X \) and one is from the set \(Y \).
Planar Graphs

Definition

- **Planar graphs** are graphs that can be drawn on the plane such that edges do not cross each other.

Theorem

- A graph is planar iff it does not have sub-graphs homeomorphic to the complete graph with 5 vertices and the complete \(\langle 3, 3 \rangle \) bipartite graph.

Theorem

- Every planar graph can be drawn with straight lines.
Small Planar Graphs

The complete graph with 4 vertices

The complete \(\langle 2, 3 \rangle \) bipartite graph
Small Non-Planar Graphs

The complete graph with 5 vertices

The complete \(\langle 3, 3 \rangle \) bipartite graph
Regular Graphs

Definition

- In \(\Delta \)-regular graphs the degree of each vertex is exactly \(\Delta \).
- In \(\Delta \)-regular graphs \(m = \frac{\Delta \cdot n}{2} \).

The 3-regular Petersen graph
Random Graphs

Definition I

- The random graph \(R(n, p) \) has \(n \) vertices and each of the possible \(\frac{n(n-1)}{2} \) edges exists with probability \(0 \leq p \leq 1 \).

Observation

- The expected number of edges in \(R(n, p) \) is \(p \frac{n(n-1)}{2} \).

Definition II

- The random graph \(R(n, m) \) is randomly selected with a uniform distribution over all graphs with \(n \) vertices and \(m \) edges.

Remarks

- Both definitions share many properties but they are not equivalent.
- There are many other random graphs models.
Social Graphs

Definition

- A social graph contains all the friendship relations (edges) among \(n \) people (vertices).

Propositions

- In any group of \(n \geq 2 \) people, there are 2 people with the same number of friends in the group.
- There exists a group of 5 people for which no 3 are mutual friends and no 3 are mutual strangers.
- Every group of 6 people contains either three mutual friends or three mutual strangers.
Data structure for Graphs

Goal

- Represent the vertices and edges of the graph efficiently.

Representations

- **Adjacency lists**: $\Theta(n + m)$ memory size.
- **Adjacency matrix**: $\Theta(n^2)$ memory size.
- **Incident matrix**: $\Theta(n \cdot m)$ memory size.
The Adjacency Lists Representation

Definition
- Each vertex is associated with a linked list consisting of all of its neighbors.
- In a directed graph there are two lists: an incoming list and an outgoing list.
- In a weighted graph each record in the list has an additional field for the weight.

Θ(n + m)-memory
- Undirected graphs: \(\sum_v \text{Deg}(v) = 2m \)
- Directed graphs: \(\sum_v \text{OutDeg}(v) = \sum_v \text{InDeg}(v) = m \)
The Adjacency Lists Representation

Example: an undirected graph

- A → (B, C, D)
- B → (A, C, E)
- C → (A, B, F)
- D → (A, E, F)
- E → (B, D, F)
- F → (C, D, E)
The Adjacency Lists Representation

Example: a directed graph

Example: the adjacency lists

\[
\begin{align*}
A &\rightarrow (B, D) & (C) &\rightarrow A \\
B &\rightarrow () & (A, C, E) &\rightarrow B \\
C &\rightarrow (A, B, F) & () &\rightarrow C \\
D &\rightarrow (F) & (A, E) &\rightarrow D \\
E &\rightarrow (B, D) & (F) &\rightarrow E \\
F &\rightarrow (E) & (C, D) &\rightarrow F
\end{align*}
\]
The Adjacency Matrix Representation

Definition

- A matrix A of size $n \times n$:
 - $A[u, v] = 1$ if (u, v) or $(u \to v)$ is an edge.
 - $A[u, v] = 0$ if (u, v) or $(u \to v)$ is not an edge.

- In simple graphs: $A[u, u] = 0$
- In weighted graphs: $A[u, v] = w(u, v)$

$\Theta(n^2)$-memory

- Independent of m that could be $o(n^2)$ and even $O(n)$.
The Adjacency Matrix Representation

Example: an undirected graph

Example: the adjacency matrix
The Adjacency Matrix Representation

Example: a directed graph

Example: the adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The Incident Matrix Representation

Definition

- A matrix A of size $n \times m$:
 - $A[v, e] = 1$ if undirected edge e is incident with v.
 - Otherwise $A[v, e] = 0$.

- In simple graphs all the columns are different and each contains exactly two non-zero entries.

- In weighted undirected graphs: $A[v, e] = w(e)$ if edge e is incident with vertex v.

$\Theta(n \cdot m)$-memory

- The memory size depends on the number of edges.
The Incident Matrix Representation

Example: an undirected graph

Example: the incident matrix

<table>
<thead>
<tr>
<th></th>
<th>(A, B)</th>
<th>(A, C)</th>
<th>(A, D)</th>
<th>(B, C)</th>
<th>(B, E)</th>
<th>(C, F)</th>
<th>(D, E)</th>
<th>(D, F)</th>
<th>(E, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
The Incident Matrix Representation

Example: a directed graph

Example: the incident matrix
Which Data Structure to Choose?

Adjacency matrices
- Simpler to implement and maintain.
- Easy to find out if a graph contains a specific edge.
- Easy to add or delete edges.
- Efficient for dense graphs.

Adjacency lists
- Efficient for sparse graphs.
- Used by algorithms whose complexity depends on the m.

Incident matrices
- Useful for **hypergraphs** in which hyperedges may contain more than two vertices.
- Not efficient for graph algorithms.
Graphic Sequences

Degrees
- The degree \(d_v \) of vertex \(v \) in graph \(G \) is the number of neighbors of \(v \) in \(G \).

The hand-shaking lemma
- Lemma: \(\sum_{i=1}^{n} d_i = 2m \).
- Proof outline: Each edge “contributes” exactly 2 to the sum.
- Corollary: The number of odd degree vertices is even.

Graphic sequences
- The degree sequence of \(G \) is \(S = (d_1, \ldots, d_n) \).
- A sequence \(S = (d_1, \ldots, d_n) \) is graphic if there exists a graph with \(n \) vertices whose degree sequence is \(S \).
Examples of Non-Graphic Sequences

(3, 3, 3, 3, 3, 3, 3)
- Since the sum of the degrees in any graph must be even.
- There is no 7-vertex 3-regular graph.

(5, 5, 4, 4, 0)
- Since there are 5 vertices and therefore the maximum degree could be at most 4.
- The maximum degree in a graph with \(n \) vertices is \(n - 1 \).

(3, 2, 1, 0)
- Since there is a vertex with degree 3 and only two additional vertices with a positive degree.
Testing if Sequences are Graphic

Observation
- Each graph is associated with a degree sequence while a degree sequence might be associated with more than one non-isomorphic graph.

Example
- The degree sequence of both graphs below is \((3, 3, 2, 2, 2, 2)\).
- The two graphs are not isomorphic because one of them has two cycles of size 3 while the other has two cycles of size 4.
Testing if Sequences are Graphic

Theorem (Erdős-Gallai)

- For $n \geq 1$, a sequence $(d_1 \geq d_2 \geq \cdots \geq d_n)$ of n non-negative integers is **graphic** if the following two conditions hold:
 - $d_1 + d_2 + \cdots + d_n$ is even.
 - for $1 \leq k \leq n$:
 $$\sum_{i=1}^{k} d_i \leq k(k - 1) + \sum_{i=k+1}^{n} \min\{d_i, k\}.$$

Complexity

- A **dynamic programming** based algorithm can check all the n inequalities with complexity $\Theta(n)$.

Remark

- The theorem does not provide a **realization** graph if the sequence is graphic.
Theorem

For $n \geq 2$, a sequence (d_1, d_2, \ldots, d_n) of n positive integers is a degree sequence of a tree iff

$$\sum_{i=1}^{n} d_i = 2n - 2$$

Proof

\Rightarrow A tree has $n - 1$ edges. By the hand-shaking lemma the sum of the degrees in a tree is $2n - 2$.

\Leftarrow By induction on n.

Online resource

https://www.youtube.com/watch?v=cCG4_mj9TgM
Observation I

The sequence \((0,0,\ldots,0)\) of length \(n\) is graphic since it represents the null graph with \(n\) vertices.

Observation II

\(d_1 \leq n - 1\) in a graphic sequence \(S = (d_1 \geq \cdots \geq d_n)\).

Observation III

\(d_{d_1+1} > 0\) in a graphic sequence \(S = (d_1 \geq \cdots \geq d_n)\) of a non-null graph.
Equivalently, if \(d_1 > 0\) then there are at least \(d_1 + 1\) non-zeros in \(S\).
Transformation

Definition
- Let $S = (d_1 \geq d_2 \geq \cdots \geq d_n)$.
- Then $f(S) = (d_2 - 1 \geq \cdots \geq d_{d_1+1} - 1, d_{d_1+2} \geq \cdots \geq d_n)$.

Examples

- $S = (5, 4, 3, 3, 2, 1, 1, 1) \implies f(S) = (3, 2, 2, 1, 0, 1, 1)$
- $S = (6, 6, 6, 3, 3, 2, 2, 2) \implies f(S) = (5, 5, 2, 2, 1, 1, 2, 2)$

Remarks
- The transformation can be applied only if both Observation II and Observation III hold.
- The transformation does not change S if Observation I holds.
Graphic Sequences

Theorem (Havel-Hakimi)

- $S = (d_1 \geq \cdots \geq d_n)$ is graphic iff $f(S)$ is graphic.

Proof outline

\Leftarrow To get a graphic representation for S, add a vertex of degree d_1 to the graphic representation of $f(S)$ and connect this vertex to all vertices whose degrees in $f(S)$ are smaller by 1 than those in S.

\Rightarrow To get a graphic representation for $f(S)$, omit a vertex of degree d_1 from the graphic representation of S. Make sure (how?) that this vertex is connected to the vertices whose degrees are $d_2, \ldots, d_{d_1}+1$.

Online resources

- https://www.youtube.com/watch?v=aNKO4ttWmcU
- https://www.youtube.com/watch?v=iQJ1PF24gh0
Algorithm to Test if a Sequence is Graphic

Algorithm

```
Graphic(S = (d_1 \geq \cdots \geq d_n \geq 0))
  case d_1 = 0 return(TRUE)
  case d_1 \geq n return(FALSE)
  case d_{d_1+1} = 0 return(FALSE)
  otherwise return Graphic(Sort(f(S)))
```

Termination

- The sequence’s length is reduced by 1 after each recursive call. Thus, the algorithm terminates after at most \(n - 1 \) recursive calls.

Correctness outline

- Observation I implies the first case.
- Observation II implies the second case.
- Observation III implies the third case.
- The theorem justifies the recursion.
Constructing the Realization Graph

Setting

- Let $S = (d_1 \geq d_2 \geq \cdots \geq d_n)$ be a graphic sequence.
- Let the vertices of S be v_1, v_2, \ldots, v_n where the degree of v_i should be d_i.

Construction outline

- Initially there are no edges in the graph.
- In each round
 - Let d be the degree of one of the highest degree vertices v_i.
 - Let $v_{i_1}, v_{i_2}, \ldots, v_{i_d}$ be the next d vertices with the highest degrees.
 - These vertices are the new neighbors of v_i.
 - For all $1 \leq j \leq d$, add the edge (v_i, v_{i_j}) to the graph.
 - Update the degree of v_i to be 0 and reduce the degrees of each one of v_{i_1}, \ldots, v_{i_d} by one.
- Terminate when the degree of all vertices is 0.
Efficient Implementation of the Algorithm

Data structure

- Maintain n bins of vertices $B_{n-1}, B_{n-2}, \ldots, B_1, B_0$.
- B_i contains all the vertices that need i more neighbors.
- Initially v_i is placed in bin B_{d_i}.
- In each round,
 - Let the degree of the highest degree vertex v_i be k (B_{k+1}, \ldots, B_{n-1} are empty while B_k is not empty).
 - Let $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ be the new neighbors of v_i whose degrees are c_1, c_2, \ldots, c_k respectively.
 - Transfer v_i from B_k to B_0.
 - For all $1 \leq j \leq k$, transfer v_{i_j} from B_{c_j} to B_{c_j-1}.
- Terminate when all the vertices are in B_0 ($|B_0| = n$).
The Complexity of the Efficient Implementation

Proposition

For a degree sequence for which \(\sum_{i=1}^{n} d_i = 2m \), the complexity of the efficient implementation is \(\Theta(m) \).

Proof outline

- Vertex \(v_i \) eventually reaches \(B_0 \) with at most \(d_i \) transfers between the bins.
- The complexity of each transfer is \(\Theta(1) \).
- The total complexity is \(\Theta(m) \) because \(\sum_{i=1}^{n} d_i = 2m \).
Example I

Initial sequence

$$(A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)$$.

Tiebreaker rules

- Selecting the neighbors: by the alphabetical order from A to H.

Initial graph
Example I

Round 1
- Sequence before: $(A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)$.
- New edges: A is connected to B, C, D, and E.
- Sequence after: $(A, B, C, D, E, F, G, H) = (0, 3, 2, 1, 1, 2, 2, 1)$.

Graph after Round 1
Example I

Round 2
- Sequence before: \((A, B, C, D, E, F, G, H) = (0, 3, 2, 1, 1, 2, 2, 1)\).
- New edges: \(B\) is connected to \(C, F,\) and \(G\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (0, 0, 1, 1, 1, 1, 1, 1)\).

Graph after Round 2

![Graph after Round 2](image-url)
Example I

Round 3

- Sequence before: \((A, B, C, D, E, F, G, H) = (0, 0, 1, 1, 1, 1, 1, 1)\).
- New edge: \(C\) is connected to \(D\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 1, 1, 1, 1)\).

Graph after Round 3

![Graph after Round 3](image-url)
Example I

Round 4

- Sequence before: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 1, 1, 1, 1)\).
- New edge: \(E\) is connected to \(F\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 1, 1)\).

Graph after Round 4
Example I

Round 5
- Sequence before: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 1, 1)\).
- New edge: \(G\) is connected to \(H\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0)\).

Graph after Round 5

![Graph after Round 5](image-url)
Example I

The graphic sequence

\((4, 4, 3, 2, 2, 2, 2, 1)\)

The realization graph
A Generalization

Algorithm
- Call the vertex that is selected in each round the **pivot** vertex.
- The algorithm works for any vertex being the **pivot** vertex as long as it is connected to the highest degree vertices.

Remarks
- Different selections of **pivot** vertices may lead to different non-isomorphic realizations.
- Different **tiebreaker rules** may lead to different non-isomorphic realizations.
- However, not all the graphs can be realized by this algorithm.
Example II

Initial sequence

\[(A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\].

Tiebreaker rules

- Selecting the pivot: one of the smallest degree vertices by the alphabetical order from \(H\) to \(A\).
- Selecting the neighbors: by the alphabetical order from \(A\) to \(H\).

Initial graph
Example II

Round 1
- Sequence before: \((A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\).
- New edge: the pivot \(H\) is connected to \(A\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (3, 4, 3, 2, 2, 2, 2, 0)\).

Graph after Round 1

![Graph of the sequence after Round 1]
Example II

Round 2

- Sequence before: \((A, B, C, D, E, F, G, H) = (3, 4, 3, 2, 2, 2, 2, 0)\).
- New edges: the pivot \(G\) is connected to \(B\) and \(A\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (2, 3, 3, 2, 2, 2, 0, 0)\).

Graph after Round 2

![Graph after Round 2](image-url)
Example II

Round 3
- Sequence before: \((A, B, C, D, E, F, G, H) = (2, 3, 3, 2, 2, 2, 0, 0)\).
- New edges: the pivot \(F\) is connected to \(B\) and \(C\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (2, 2, 2, 2, 2, 0, 0, 0)\).

Graph after Round 3
Example II

Round 4
- Sequence before: \((A, B, C, D, E, F, G, H) = (2, 2, 2, 2, 2, 0, 0, 0)\).
- New edges: the pivot \(E\) is connected to \(A\) and \(B\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (1, 1, 2, 2, 0, 0, 0, 0)\).

Graph after Round 4

```
A --- B
|    |
|    |
H --- C
|    |
|    |
G --- D
|    |
|    |
F --- E
```
Example II

Round 5

- Sequence before: \((A, B, C, D, E, F, G, H) = (1, 1, 2, 2, 0, 0, 0, 0)\).
- New edge: the pivot \(B\) is connected to \(C\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (1, 0, 1, 2, 0, 0, 0, 0)\).

Graph after Round 5
Example II

Round 6
- Sequence before: \((A, B, C, D, E, F, G, H) = (1, 0, 1, 2, 0, 0, 0, 0)\).
- New edge: the pivot \(C\) is connected to \(D\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (1, 0, 0, 1, 0, 0, 0, 0)\).

Graph after Round 6

![Graph after Round 6](image_url)
Example II

Round 7

- Sequence before: \((A, B, C, D, E, F, G, H) = (1, 0, 0, 1, 0, 0, 0, 0)\).
- New edge: the pivot \(D\) is connected to \(A\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0)\).

Graph after Round 7

![Graphic Sequences](image-url)
Example II

The graphic sequence

(4, 4, 3, 2, 2, 2, 2, 1)

The realization graph
Example III

Initial sequence

- \((A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)\).

Tiebreaker rules

- Selecting the pivot: arbitrarily.
- Selecting the neighbors: by the alphabetical order from \(H\) to \(A\).

Initial graph
Example III

Round 1
- Sequence before: $(A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1)$.
- New edges: the pivot D is connected to B and A.
- Sequence after: $(A, B, C, D, E, F, G, H) = (3, 3, 3, 0, 2, 2, 2, 1)$.

Graph after Round 1

![Graph after Round 1](image-url)
Example III

Round 2
- Sequence before: \((A, B, C, D, E, F, G, H) = (3, 3, 3, 0, 2, 2, 2, 1)\).
- New edge: the pivot \(H\) is connected to \(C\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (3, 3, 2, 0, 2, 2, 2, 0)\).

Graph after Round 2

![Graph of the sequence after Round 2](image-url)
Example III

Round 3

Sequence before: \((A, B, C, D, E, F, G, H) = (3, 3, 2, 0, 2, 2, 2, 0)\).

New edges: the pivot \(B\) is connected to \(A, G,\) and \(F\).

Sequence after: \((A, B, C, D, E, F, G, H) = (2, 0, 2, 0, 2, 1, 1, 0)\).

Graph after Round 3
Example III

Round 4

- Sequence before: \((A, B, C, D, E, F, G, H) = (2, 0, 2, 0, 2, 1, 1, 0)\).
- New edges: the pivot \(C\) is connected to \(E\) and \(A\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 1, 1, 1, 0)\).

Graph after Round 4
Example III

Round 5

- Sequence before: \((A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 1, 1, 1, 0)\).
- New edge: the pivot \(E\) is connected to \(G\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 0, 1, 0, 0)\).

Graph after Round 5
Example III

Round 6
- Sequence before: \((A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 0, 1, 0, 0)\).
- New edge: the pivot \(A\) is connected to \(F\).
- Sequence after: \((A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0)\).

Graph after Round 6
Example III

The graphic sequence

\((4, 4, 3, 2, 2, 2, 2, 1)\)

The realization graph

![Graph](image-url)
The Three Realizations Are Not Isomorphic

The realizations

Two differences

- The degree-1 vertex is connected to a degree-2 vertex in the left realization, to a degree-4 vertex in the middle realization, and to a degree-3 vertex in the right realization.

- The two degree-4 vertices are connected and share only one neighbor in the left realization, the two degree-4 vertices are not connected in the middle realization, and the two degree-4 vertices are connected and share two neighbors in the right realization.
Not All Graphs Can be Realized by the Algorithm

The degree sequence

\((3, 3, 2, 2, 2, 2, 2, 2)\)

An impossible realization

- If the first pivot is a degree-3 vertex, it must be connected to the other degree-3 vertex.
- If the first pivot is a degree-2 vertex, it must have the two degree-3 vertices as its neighbors.
Not All Graphs Can be Realized by the Algorithm

The degree sequence

\((3, 3, 2, 2, 2, 2, 2, 2)\)

Two possible realizations

![Two possible realizations](image)

The two realizations are not isomorphic

- The two degree-3 vertices are neighbors in the left realization while they are not neighbors in the right realization.