Algorithms: Divide and Conquer

Amotz Bar-Noy

CUNY
A Dictionary Search Problem

Input

- A key K.

Output

- Does K appear in A? **YES** or **NO**.
- If **YES**: The first index i such that $A[i] = K$.
- If **NO**: The largest index i such that $A[i] < K$ or $i = 0$ if $K < A[1]$.

Method

- **Comparisons** between K and the keys in the array.

Complexity

- Number of **comparisons**.
A Search Game

Game

- **Player 1**: Selects an integer x in the range $[1..n]$.
- **Player 2**: Searches for x only with comparisons of the type $x \leq i$ for some $1 \leq i \leq n$.

Players Goal

- **Player 1** tries to maximize the number of comparisons until finding x.
- **Player 2** tries to minimize the number of comparisons until finding x.

Complexity

- In the worst case or in the average case.
- As a function of n.
The Two Models are “Equivalent”

Equivalence
- $x \leq i$ is “equivalent” to $K \leq A[i]$
- Algorithms can be “converted” from one model to another while preserving the complexity.

Convenience
- It is “easier” to design algorithms in the search game model.
- It is “easier” to prove bounds and limitations on algorithms in the search game model.
Sequential Search

Algorithm outline

- Assume a search for x in the range $[1..n]$.
- Throughout the algorithm, maintain a lower bound ℓ on x such that $\ell \leq x \leq n$.
- Initially, $\ell = 1$.
- In each round, compare x with the lower bound ℓ.
 - If $x > \ell$ then increment ℓ by 1.
 - If $x \leq \ell$ then return ℓ.
Sequential Search

Example

- **Input:** \(n = 10 \) and \(x = 7 \) \(\Rightarrow \) \((* x \in [1..10] *) \)

- **Search procedure:**
 - Q1: \(x \leq 1 \) \(\Rightarrow \) A1: NO \((* x \in [2..10] *) \)
 - Q2: \(x \leq 2 \) \(\Rightarrow \) A2: NO \((* x \in [3..10] *) \)
 - Q3: \(x \leq 3 \) \(\Rightarrow \) A3: NO \((* x \in [4..10] *) \)
 - Q4: \(x \leq 4 \) \(\Rightarrow \) A4: NO \((* x \in [5..10] *) \)
 - Q5: \(x \leq 5 \) \(\Rightarrow \) A5: NO \((* x \in [6..10] *) \)
 - Q6: \(x \leq 6 \) \(\Rightarrow \) A6: NO \((* x \in [7..10] *) \)
 - Q7: \(x \leq 7 \) \(\Rightarrow \) A7: YES \((* x \in [7..7] *) \)

- **Output:** \(x = 7 \)

- **Complexity:** 7 comparisons.
Sequential Search

Algorithm pseudocode I

Sequential-Search \((n, x)\)

\[
\ell = 1 \\
\text{repeat} \\
\quad \text{if } x \leq \ell \quad (* \text{comparison} *) \\
\quad \text{then return } \ell \\
\quad \text{else } \ell = \ell + 1
\]

Algorithm pseudocode II

Sequential-Search \((n, x)\)

\[
\ell = 1 \\
\text{while } x > \ell \text{ do} \quad (* \text{comparison} *) \\
\quad \ell = \ell + 1 \\
\text{return } \ell
\]
Sequential Search

Correctness
- By induction, $\ell \leq x \leq n$ after $\ell - 1$ comparisons with a NO answer.

Termination
- If $x \leq \ell$ then necessarily $x = \ell$ because by the induction hypothesis $x \geq \ell$.
- Eventually $x \leq n$.
Sequential Search

Worst case complexity
- n comparisons in the worst case when $x = n$.
- In fact, only $n - 1$ comparisons since there is no need for the last comparison when $x = n$.

Best case complexity
- Only 1 comparison when $x = 1$.

Average case complexity
- $(n + 1)/2$ comparisons on average for a random x selected with a uniform distribution from the range $[1..n]$:

$$\frac{1}{n} (1 + 2 + \cdots + n) = \frac{1}{n} \cdot \frac{n(n + 1)}{2} = \frac{n + 1}{2}$$
Sequential Search

Searching in an array pseudocode

if \(K < A[1] \) then return \((K < A[1]) \) (* comparison *)

if \(K > A[n] \) then return \((K > A[n]) \) (* comparison *)

\(\ell = 1 \)

while \(K > A[\ell] \) do (* comparison *)

\(\ell = \ell + 1 \)

if \(K < A[\ell] \)

then return \((A[\ell - 1] < K < A[\ell]) \)

else return \((K = A[\ell]) \)

Worst case number of comparisons

- \(n + 3 \) comparisons when \(K = A[n] \)
Binary Search

Algorithm outline

- Assume a search for x in the range $[1..n]$.
- Throughout the algorithm, maintain a range $[\ell..u]$ such that $\ell \leq x \leq u$.
- Initially, $\ell = 1$ and $u = n$.
- In each round, compare x with the middle of the range $m = \left\lfloor \frac{u + \ell}{2} \right\rfloor$.
 - If $x \leq m$ then update $u = m$.
 - If $x > m$ then update $\ell = m + 1$.
- Terminate when $\ell = u$.
- Return $x = \ell = u$.
Binary Search – Example

- **Input:** \(n = 128 \) and \(x = 50 \) \(\Rightarrow \) \((* x \in [1..128] *) \).

- **Search procedure:**
 - Q1: \(x \leq 64 \) \(\Rightarrow \) A1: YES \((* x \in [1..64] *) \)
 - Q2: \(x \leq 32 \) \(\Rightarrow \) A2: NO \((* x \in [33..64] *) \)
 - Q3: \(x \leq 48 \) \(\Rightarrow \) A3: NO \((* x \in [49..64] *) \)
 - Q4: \(x \leq 56 \) \(\Rightarrow \) A4: YES \((* x \in [49..56] *) \)
 - Q5: \(x \leq 52 \) \(\Rightarrow \) A5: YES \((* x \in [49..52] *) \)
 - Q6: \(x \leq 50 \) \(\Rightarrow \) A6: YES \((* x \in [49..50] *) \)
 - Q7: \(x \leq 49 \) \(\Rightarrow \) A7: NO \((* x \in [50..50] *) \)

- **Output:** \(x = 50 \)

- **Complexity:** \(7 = \log_2(128) \) comparisons.
Algorithm Pseudocode

Binary-Search \((n,x)\)

\[
\ell = 1 \\
u = n \\
\text{while } \ell < u \\
m = \left\lfloor \frac{u + \ell}{2} \right\rfloor \\
\text{if } x \leq m \text{ (* comparison *)} \\
\text{then } u = m \\
\text{else } \ell = m + 1 \\
\text{return } \ell
\]
Binary Search

Notations
- Let u_j and ℓ_j be the values of u and ℓ after iteration j of the algorithm.
- Let $\Delta_j = u_j - \ell_j + 1$ be the size of the range $[\ell_j..u_j]$.
- Initially $\ell_0 = 1$, $u_0 = n$, and $\Delta_0 = n$.

Observation
- $\Delta_{j+1} \leq \left\lceil \frac{\Delta_j}{2} \right\rceil$ for $j \geq 0$.

Corollary
- $\Delta_k = 1$ for $k = \left\lceil \log_2 n \right\rceil$.
Binary Search – Correctness and Complexity

Correctness
- By induction, always $\ell \leq x \leq u$.
- At the end, $\Delta = 1$ and therefore $\ell = u$ which implies that $x = \ell = u$.

Complexity
- There are at most $\lceil \log_2 n \rceil$ iterations and one comparison per iteration.
- Therefore, the worst-case complexity is $\lceil \log_2 n \rceil$.
- If n is not a power of 2, then for some x there are only $\lfloor \log_2 n \rfloor$ iterations.
- Therefore, the average-case complexity is approximately $\log_2 n$.
Binary Search

Searching in an array pseudocode

if \(K < A[1]\) then return \((K < A[1])\) (* comparison *)
if \(K > A[n]\) then return \((K > A[n])\) (* comparison *)

\(\ell = 1\) and \(u = n\)
while \(\ell < u\)
 \(m = \left\lfloor \frac{u + \ell}{2} \right\rfloor\)
 if \(K \leq A[m]\) (* comparison *)
 then \(u = m\)
 else \(\ell = m + 1\)
 if \(K < A[\ell]\) (* comparison *)
 then return \((A[\ell - 1] < K < A[\ell])\)
 else return \((K = A[\ell])\)

Number of comparisons

- \(\lceil \log_2 n \rceil + 3\) comparisons
Binary-Search vs. Sequential-Search

<table>
<thead>
<tr>
<th></th>
<th>Binary-Search</th>
<th>Sequential-Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best-Case</td>
<td>$\lceil \log_2 n \rceil$</td>
<td>1</td>
</tr>
<tr>
<td>Worst-Case</td>
<td>$\lceil \log_2 n \rceil$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>Average-Case</td>
<td>$\approx \log_2 n$</td>
<td>$\approx n/2$</td>
</tr>
</tbody>
</table>
Adversary Player I

Goal
- Maximize the number of *comparisons* until Player 2 finds x.

Strategy
- **Player 1 does not** select x at the beginning of the game. Instead, it maintains a set S of candidates for x.
- Given a search question:
 - $S(Y)$ – the set of candidates if the answer is *YES*.
 - $S(N)$ – the set of candidates if the answer is *NO*.
- The adversary answer rule:
 - *YES* if $|S(Y)| \geq |S(N)|$.
 - *NO* if $|S(Y)| < |S(N)|$.

Amotz Bar-Noy (CUNY)
Example: A possible algorithm

- **Input:** $n = 34$ (* $x \in [1..34]$ *)
- **Search:**
 - Q1: $x \leq 13 \Rightarrow A1$: NO (* $x \in [14..34]$ *)
 - Q2: $x \leq 26 \Rightarrow A2$: YES (* $x \in [14..26]$ *)
 - Q3: $x \leq 18 \Rightarrow A3$: NO (* $x \in [19..26]$ *)
 - Q4: $x \leq 23 \Rightarrow A4$: YES (* $x \in [19..23]$ *)
 - Q5: $x \leq 20 \Rightarrow A5$: NO (* $x \in [21..23]$ *)
 - Q6: $x \leq 22 \Rightarrow A6$: YES (* $x \in [21..22]$ *)
 - Q7: $x \leq 21 \Rightarrow A7$: YES (* $x \in [21..21]$ *)

- **Output:** $x = 21$.
Example: Binary-Search

- **Input:** \(n = 34 \) \((x \in [1..34])\)
- **Search:**
 - Q1: \(x \leq 17 \) \(\Rightarrow\) A1: YES \((x \in [1..17])\)
 - Q2: \(x \leq 9 \) \(\Rightarrow\) A2: YES \((x \in [1..9])\)
 - Q3: \(x \leq 5 \) \(\Rightarrow\) A3: YES \((x \in [1..5])\)
 - Q4: \(x \leq 3 \) \(\Rightarrow\) A4: YES \((x \in [1..3])\)
 - Q5: \(x \leq 2 \) \(\Rightarrow\) A5: YES \((x \in [1..2])\)
 - Q6: \(x \leq 1 \) \(\Rightarrow\) A6: YES \((x \in [1..1])\)
- **Output:** \(x = 1 \).

Observation

With Binary-Search the search always ends up with \(x = 1 \).
Theorem

- There exists $1 \leq x \leq n$ for which the adversary forces the second player to ask at least $\lceil \log_2 n \rceil$ comparisons.

Proof

- Assume that Player 2 asks k comparisons to find x.
- Let S_i be the set of candidates after i comparisons.
- In particular, $|S_0| = n$ and $|S_k| = 1$.
- $S = S(Y) \cup S(N)$ implies that $|S_{i+1}|/|S_i| \geq (1/2)$ for $1 \leq i \leq k - 1$.
- $\lceil \log_2 n \rceil$ rounds are required to decrease n to 1 by halving.
- Therefore, $k \geq \lceil \log_2 n \rceil$.
Remarks

Worst case
- The $\lceil \log_2 n \rceil$ lower bound is a worst case bound.
- No algorithm can guarantee less comparisons for all values of x.

Average case
- It is possible to prove an $\Omega(\log n)$ average case lower bound.

Other search models
- The theorem holds for a “stronger” Player 2. One that may ask any YES/NO questions. For example,
 - Is x even?
 - Is x a prime number?
 - Does $x \in \{1, 2, 3, 5, 8, 13, 21, 34\}$?
Searching with “Clues”

Clue
- **Player 1** selects only even numbers 2, 4, 6, 8, ... between 1 and an even \(n \).

A modified Binary Search
- The search domain is 1, 2, ..., \(n/2 \).
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq 2i \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”.
- When the search outputs \(x = i \) the modified search outputs \(2i \).

Complexity
- \(\lceil \log_2(n/2) \rceil \approx \log_2(n/2) = \log_2(n) - 1 \) comparisons.
- The saving is only 1 comparison although the clue “eliminated” about half of the candidates!
Searching with “Clues”

Clue
- **Player 1** selects only even numbers 2, 4, 6, 8, ... between 1 and an even \(n \).

Example
- \(n = 32 = 2 \cdot 16 \) and \(x = 20 = 2 \cdot 10 \).
- The possible 16 values for \(x \) are 2, 4, 6, ..., 32 and the search domain is 1, 2, ..., 16.

Running the algorithm
- Question 1: \(x \leq (2 \cdot 8 = 16) \)? because \(8 = \lceil (1 + 16)/2 \rceil \).
- Question 2: \(x \leq (2 \cdot 12 = 24) \)? because \(12 = \lceil (9 + 16)/2 \rceil \).
- Question 3: \(x \leq (2 \cdot 10 = 20) \)? because \(10 = \lceil (9 + 12)/2 \rceil \).
- Question 4: \(x \leq (2 \cdot 9 = 18) \)? because \(9 = \lceil (9 + 10)/2 \rceil \).
- \(x = 20 \) found with \(4 = \log_2 16 = \log_2 32 - 1 \) comparisons.
Searching with “Clues”

Clue
- **Player 1** selects only square numbers 1, 4, 9, 16, ... between 1 and a square number n.

A modified Binary Search
- The search domain is 1, 2, ..., \sqrt{n}.
- Instead of asking “if $x \leq i$”, **Player 2** asks “if $x \leq i^2$” and then considers the answer as if it was the answer to “if $x \leq i$”.
- When the search outputs $x = i$ the modified search outputs i^2.

Complexity
- $\lceil \log_2(\sqrt{n}) \rceil \approx \log_2(\sqrt{n}) = \frac{1}{2} \log_2(n)$ comparisons.
- The saving is only half of the comparisons although the clue “eliminated” almost all the candidates!
Searching with “Clues”

Clue
- **Player 1** selects only square numbers 1, 4, 9, 16, ... between 1 and a square number \(n \).

Example
- \(n = 256 = 16^2 \) and \(x = 100 = 10^2 \).
- The possible 16 values for \(x \) are 1, 4, 9, ..., 256 and the search domain is 1, 2, ..., 16.

Running the algorithm
- Question 1: \(x \leq (8^2 = 64)? \) because \(8 = \lfloor (1 + 16)/2 \rfloor \).
- Question 2: \(x \leq (12^2 = 144)? \) because \(12 = \lfloor (9 + 16)/2 \rfloor \).
- Question 3: \(x \leq (10^2 = 100)? \) because \(10 = \lfloor (9 + 12)/10 \rfloor \).
- Question 4: \(x \leq (9^2 = 81)? \) because \(9 = \lfloor (9 + 10)/10 \rfloor \).
- \(x = 100 \) found with \(4 \log_2 16 = (1/2) \log_2 256 \) comparisons.
Searching with “Clues”

Clue
- **Player 1** selects only powers of 2 numbers 2, 4, 8, 16, ... between 2 and a power of 2 number \(n \).

A modified Binary Search
- The search domain is 1, 2, ..., \(\log_2 n \).
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq 2^i \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”.
- When the search outputs \(x = i \) the modified search outputs \(2^i \).

Complexity
- \[\lceil \log_2(\log_2(n)) \rceil \approx \log_2(\log_2(n)) \] comparisons.
- For \(n = 2^{32} = 4294967296 \) the saving is from 32 to 5 comparisons although there are only 32 candidates!
Searching with “Clues”

Clue

- **Player 1** selects only powers of 2 numbers 2, 4, 8, 16, ... between 2 and a power of 2 number \(n \).

Example

- \(n = 65536 = 2^{16} \) and \(x = 1024 = 2^{10} \).

The possible 16 values for \(x \) are 2, 4, 8, ..., 65536 and the search domain is 1, 2, ..., 16.

Running the algorithm

- Question 1: \(x \leq (2^8 = 256) \)? \(8 = \lceil (1 + 16) / 2 \rceil \).
- Question 2: \(x \leq (2^{12} = 4096) \)? \(12 = \lceil (9 + 16) / 2 \rceil \).
- Question 3: \(x \leq (2^{10} = 1024) \)? \(10 = \lceil (9 + 12) / 10 \rceil \).
- Question 4: \(x \leq (2^9 = 512) \)? \(9 = \lceil (9 + 10) / 10 \rceil \).

\(x = 1024 \) found with \(4 = \log_2 16 = \log_2 \log_2 65536 \) comparisons.
Searching with “Clues”

Clue
- **Player 1** selects only primes 2, 3, 5, 7, … not larger than \(n \).

A modified Binary Search
- The search domain is \(1, 2, \ldots, \pi(n) \) where \(\pi(n) \) is the number of primes between 2 and \(n \).
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq p_i \)” where \(p_i \) is the \(i \)th prime and then considers the answer as if it was the answer to “if \(x \leq i \)”.
- When the search outputs \(x = i \) the modified search outputs \(p_i \).

Complexity
- \(\log_2(n/\ln(n)) \approx \log_2(n) - \log_2 \log_2(n) \) comparisons because there are approximately \(n/\ln(n) \) primes between 2 and \(n \).
- There are 78498 primes between 2 and 1000000. The clue saves only 3 comparisons, because \(\lceil \log_2(1000000) \rceil = 20 \) and \(\lceil \log_2(78498) \rceil = 17 \).
Searching with “Clues”

Clue
- **Player 1** selects only primes 2, 3, 5, 7, ... not larger than \(n\).

Example
- \(n = 53\) and \(x = 29\).
 - The possible 16 values for \(x\) are
 - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53
 - and the search domain is 1, 2, …, 16.

Running the algorithm
- Question 1: \(x \leq (p_8 = 19)\)? \(8 = \lfloor (1 + 16)/2 \rfloor\).
- Question 2: \(x \leq (p_{12} = 37)\)? \(12 = \lfloor (9 + 16)/2 \rfloor\).
- Question 3: \(x \leq (p_{10} = 29)\)? \(10 = \lfloor (9 + 12)/10 \rfloor\).
- Question 4: \(x \leq (p_9 = 23)\)? \(9 = \lfloor (9 + 10)/10 \rfloor\)
- \(x = 29\) found with \(4 \approx \log_2(53) - \log_2 \log_2(53)\) comparisons.
Searching an Unbounded Domain

Game
- **Player 1:** Selects any positive integer x.
- **Player 2:** Searches for x with *comparisons* $x \leq i$ for some integer i.

Adversary Player 1
- Always answers **NO**.
- **Player 2** will never find x!

Player 2 Goal
- Find x with as minimum possible comparisons as a function of x.
- Ask "**less**" comparisons when x is small and ask "**more**" comparisons when x is large.
Searching an Unbounded Domain

Sequential search
- Sequential search finds x with exactly x comparisons.

The doubling technique
- A strategy that finds x with approximately $2 \log_2(x)$ comparisons.

A more sophisticated doubling technique
- A strategy that finds x with approximately $\log_2(x) + 2 \log_2 \log_2(x)$ comparisons.

Optimal solution
- A strategy that finds x with approximately $\log_2(x) + \log_2 \log_2(x) + \log_2 \log_2 \log_2(x) + \cdots$ comparisons.
The Doubling Technique

Strategy

- **Phase 1**: Ask the following comparisons until the answer is YES:
 \[x \leq 1? \quad x \leq 2? \quad x \leq 4? \quad x \leq 8? \quad \cdots \quad x \leq 2^j? \quad \cdots \]

 Assume \(2^{k-1} < x \leq 2^k \)

- **Phase 2**: Apply binary search on the domain \([2^{k-1} + 1..2^k]\)

Complexity

- \(k + 1 \) comparisons are asked in **Phase 1**.
- The number of comparisons asked in **Phase 2** is
 \[
 \left\lfloor \log_2(2^k - (2^{k-1} + 1) + 1) \right\rfloor = \left\lfloor \log_2(2^{k-1}) \right\rfloor = k - 1
 \]
- Total number of comparisons:
 \[
 (k + 1) + (k - 1) = 2k = 2 \left\lfloor \log_2(x) \right\rfloor
 \]
The Doubling Technique – Example

Input: \(x = 50 \)

Search procedure:

- Q1: \(x \leq 1 \Rightarrow A1: \text{NO} \ (\ast x \in [2..\infty]) \ast) \).
- Q2: \(x \leq 2 \Rightarrow A2: \text{NO} \ (\ast x \in [3..\infty]) \ast) \).
- Q3: \(x \leq 4 \Rightarrow A3: \text{NO} \ (\ast x \in [5..\infty]) \ast) \).
- Q4: \(x \leq 8 \Rightarrow A4: \text{NO} \ (\ast x \in [9..\infty]) \ast) \).
- Q5: \(x \leq 16 \Rightarrow A5: \text{NO} \ (\ast x \in [17..\infty]) \ast) \).
- Q6: \(x \leq 32 \Rightarrow A6: \text{NO} \ (\ast x \in [33..\infty]) \ast) \).
- Q7: \(x \leq 64 \Rightarrow A7: \text{YES} \ (\ast x \in [33..64]) \ast) \).
- Q8: \(x \leq 48 \Rightarrow A8: \text{NO} \ (\ast x \in [49..64]) \ast) \).
- Q9: \(x \leq 56 \Rightarrow A9: \text{YES} \ (\ast x \in [49..56]) \ast) \).
- Q10: \(x \leq 52 \Rightarrow A10: \text{YES} \ (\ast x \in [49..52]) \ast) \).
- Q11: \(x \leq 50 \Rightarrow A11: \text{YES} \ (\ast x \in [49..50]) \ast) \).
- Q12: \(x \leq 49 \Rightarrow A12: \text{NO} \ (\ast x \in [50..50]) \ast) \).

Output: \(x = 50 \)

Complexity: \(12 = \lceil 2 \log_2 50 \rceil \text{ comparisons.} \)
Integer Multiplication

Input
- Two integers I and J each represented by $n \geq 1$ (binary) bits.

Output
- The product $I \times J$.

Observation
- The product has at most $2n$ bits in its binary representation.

Complexity Objective
- Minimize the number of bit operations.
 - Multiplications.
 - Additions and Subtractions.
 - Shifts.
Multiplying Two Base 10 Integers

\[
\begin{array}{cccccc}
5 & 3 & 6 & 8 \\
2 & 9 & 1 & 7 \\
\hline
3 & 7 & 5 & 7 & 6 \\
5 & 3 & 6 & 8 \\
4 & 8 & 3 & 1 & 2 \\
1 & 0 & 7 & 3 & 6 \\
\hline
1 & 5 & 6 & 5 & 8 & 4 & 5 & 6
\end{array}
\]
Multiplying Two Base 2 (Binary) Integers

Example

- \(I = 1001 \) in base 2 which is 9 in base 10.
- \(J = 1101 \) in base 2 which is 13 in base 10.
- \(I \times J = 9 \times 13 = 117 \) in base 10.
- \(117 = 64 + 32 + 16 + 4 + 1 \) is 1110101 in base 2

```
  1 0 0 1
 1 1 0 1
  
  1 0 0 1
 0 0 0 0
 1 0 0 1
 1 0 0 1
  
  1 1 1 0 1 0 1
```
Integer Multiplication

Algorithms

Direct
- $I \times J$ can be computed with $\Theta(n^2)$ bit operations using the traditional algorithm.

Divide and Conquer
- $I \times J$ can be computed with $\Theta(n^\log_2 3) \approx \Theta(n^{1.585})$ bit operations.

Fast-Transform-Fourier
- Using the Fast-Transform-Fourier, $I \times J$ can be computed with $\Theta(n \log n)$ bit operations.

Lower bound
- $\Omega(n)$ bit operations.
Integer Multiplication

Other Operations

Additions and Subtractions

- $I + J$ and $I - J$ can be computed with $\Theta(n)$ bit operations.
- $I + J$ and $I - J$ need at least $\Omega(n)$ bit operations.

Multiplying by a power of 2

- Multiplying an m-bit integer by 2^k can be done with $\Theta(k + m)$ bit operations (shifting).
The Divide and Conquer Setting

Assumption
- The length n of I and J is a power of 2.

Input representation

$$I = I_h \cdot 2^{n/2} + I_\ell$$
$$J = J_h \cdot 2^{n/2} + J_\ell$$

Example
- $1973 = 19 \cdot 10^2 + 73$: nineteen hundreds seventy three.

Objective
- Compute the product $I \times J$ of two length-n integers recursively using multiplications among the four length-$n/2$ integers:

$$I_h \quad I_\ell \quad J_h \quad J_\ell$$
Integer Multiplication

Divide and Conquer I

Computation

\[I \times J = (I_h 2^{n/2} + I_\ell) \times (J_h 2^{n/2} + J_\ell) \]
\[= (I_h \times J_h) 2^n + (I_h \times J_\ell + I_\ell \times J_h) 2^{n/2} + I_\ell \times J_\ell \]

Example

- \(I = 5368, J = 2917 \implies I \times J = 15658456 \)
- \(I_h = 53, I_\ell = 68, J_h = 29, J_\ell = 17 \)
- \(I_h \times J_h = 53 \times 29 = 1537 \)
- \(I_h \times J_\ell + I_\ell \times J_h = 53 \times 17 + 68 \times 29 = 901 + 1972 = 2873 \)
- \(I_\ell \times J_\ell = 68 \times 17 = 1156 \)

\[I \times J = (1537)10^4 + (2873)10^2 + 1156 \]
\[= 15370000 + 287300 + 1156 = 15658456 \]
Divide and Conquer I

Computation

\[I \times J = (I_h 2^{n/2} + I_\ell) \times (J_h 2^{n/2} + J_\ell) \]
\[= (I_h \times J_h)2^n + (I_h \times J_\ell + I_\ell \times J_h)2^{n/2} + I_\ell \times J_\ell \]

Number of bit operations

\[T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \]
\[= \Theta(n^2) \]

Result

- Not an improvement!
Solving the Recursion

\[T(1) = 1 \]
\[T(n) = 4T \left(\frac{n}{2} \right) + \Theta(n) \]

- \(a = 4. \)
- \(b = 2. \)
- \(\log_b(a) = 2. \)
- \(d = 1. \)
- \(d < \log_b(a). \)

Master Theorem Case 1: \(T(n) = \Theta(n^2). \)
Integer Multiplication

Divide and Conquer II

Key idea
- Compute the product $I \times J$ using **only three** multiplications among I_h, I_ℓ, J_h, J_ℓ with $\Theta(n)$ extra work.

Computation

\[
\begin{align*}
(I_h - I_\ell)(J_\ell - J_h) & = I_h J_\ell - I_h J_h - I_\ell J_\ell + I_\ell J_h \\
I_h J_\ell + I_\ell J_h & = (I_h - I_\ell)(J_\ell - J_h) + I_h J_h + I_\ell J_\ell \\
A & = I_h \times J_h \\
B & = I_\ell \times J_\ell \\
C & = (I_h - I_\ell) \times (J_\ell - J_h) \\
I \times J & = I_h J_h 2^n + (I_h J_\ell + I_\ell J_h)2^{n/2} + I_\ell J_\ell \\
I \times J & = A 2^n + (C + A + B)2^{n/2} + B
\end{align*}
\]
Example

- \(I = 5368, J = 2917 \implies I \times J = 15658456. \)
- \(I_h = 53, I_\ell = 68, J_h = 29, J_\ell = 17. \)
- \(A = I_h \times J_h = 53 \times 29 = 1537. \)
- \(B = I_\ell \times J_\ell = 68 \times 17 = 1156. \)
- \(C = (I_h - I_\ell) \times (J_\ell - J_h) = (53 - 68)(17 - 29) = (-15)(-12) = 180. \)

\[
I \times J = (1537)10^4 + (180 + 1537 + 1156)10^2 + 1156 \\
= (1537)10^4 + (2873)10^2 + 1156 \\
= 15370000 + 287300 + 1156 = 15658456
\]
Integer Multiplication

Divide and Conquer II

Computation

\[A = I_h \times J_h \]
\[B = I_\ell \times J_\ell \]
\[C = (I_h - I_\ell) \times (J_\ell - J_h) \]
\[l \times j = A2^n + (C + A + B)2^{n/2} + B \]

Number of bit operations

\[T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n) \]
\[= \Theta(n^{\log_2 3}) \approx \Theta(n^{1.585}) \]

Result

- Better than \(\Theta(n^2) \).
Solving the Recursion

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 3T\left(\frac{n}{2}\right) + \Theta(n)
\end{align*}
\]

- \(a = 3 \).
- \(b = 2 \).
- \(\log_b(a) \approx 1.585 \).
- \(d = 1 \).
- \(d < \log_b(a) \).

Master Theorem Case 1: \(T(n) = \Theta(n^{\log_2 3}) \).
Arbitrary \(n \geq 1 \)

Input
- \(2^{k-1} < n \leq 2^k \implies 2^k < 2n. \)

Algorithm
- **Add** \(2^k - n \) zeros in front of both integers.
- **Run** the computation with the new integers of length \(2^k \).
- **Omit** zeros from the beginning of the product.

Observation
- \(n \log_2 3 \leq (2^k) \log_2 3 < (2n) \log_2 3 = 2 \log_2 3 \times n \log_2 3 = 3n \log_2 3 \)

Complexity
- The algorithm complexity \(\Theta((2^k) \log_2 3) \) is \(\Theta(n \log_2 3) \).
Online Resources

13-minute Video lecture: Algorithm without analysis justification

https://www.youtube.com/watch?v=JCbZayFr9RE

10 slides: Summary with a detailed example

https://courses.csail.mit.edu/6.006/spring11/exams/notes3-karatsuba

Article: Motivation, details, but no analysis

https://www.quantamagazine.org/the-math-behind-a-faster-multiplication-algorithm-20190923/
Matrix Multiplication

Input
- For $n \geq 1$, two $n \times n$ matrices A and B of scalars (usually numbers).

Output
- An $n \times n$ matrix $C = A \times B$.

Definition
- For all $1 \leq i, j \leq n$:
 \[c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \]

Complexity objective
- Minimize the number of additions, subtractions, and multiplications between two scalars.
Matrix Multiplication

Multiplying two 2×2 Matrices

$$C = A \times B$$

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & g \\ f & h \end{pmatrix}$$

The 4 scalars in C
- $r = ae + bf$
- $s = ag + bh$
- $t = ce + df$
- $u = cg + dh$

Complexity
- Total of 8 multiplications and 4 additions.
Matrix Multiplication

Multiplying Two 3×3 Matrices

$$C = A \times B$$

$$
\begin{pmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{pmatrix}
=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}
$$

The 9 scalars in C

- $c_{11} = a_{11}b_{11} + a_{12}b_{12} + a_{13}b_{13}$
- $c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{23}$
- $c_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$
- $c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$
- $c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$
- $c_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$
- $c_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$
- $c_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$
- $c_{33} = a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}$

Complexity

- Total of 27 multiplications and 18 additions.
Matrix Multiplication

The Direct Algorithm

Pseudocode

\[C = A \times B \quad (*) \text{ } A, B, C \text{ are } n \times n \text{ matrices of numbers } *) \]

for \(i = 1 \) to \(n \) do
 for \(j = 1 \) to \(n \) do
 \[c_{ij} = a_{i1}b_{1j} \]
 for \(k = 2 \) to \(n \) do
 \[c_{ij} = c_{ij} + a_{ik}b_{kj} \]

Complexity

- Total of \(n^3 \) multiplications and \((n - 1)n^2 \) additions.
Matrix Multiplication – Algorithms

Direct algorithm
- $\Theta(n^3)$ operations: n^3 multiplications and $n^2(n - 1)$ additions.

Strassen algorithm
- $\Theta(n^{\log_2 7}) \approx \Theta(n^{2.81})$ operations.

Best known algorithm (2022)
- $O(n^{2.37188})$ operations.

Lower bound
- $\Omega(n^2)$ operations.
Matrix Addition

Input
- For $n \geq 1$, two $n \times n$ matrices A and B of scalars.

Output
- An $n \times n$ matrix $C = A + B$.

Definition
- For all $1 \leq i, j \leq n$:
 \[c_{ij} = a_{ij} + b_{ij} \]

Complexity
- Exactly n^2 additions.
- **Optimal** since any computation must be based on all the $2n^2$ scalars from A and B.
Adding 2×2 Matrices

\[C = A + B \]
\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix}
= \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
+ \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

The 4 scalars in C
- $r = a + e$
- $s = b + g$
- $t = c + f$
- $u = d + h$

Complexity
- Total of $4 = 2^2$ additions.
Adding 3×3 Matrices

$$C = A + B$$

$$\begin{pmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{pmatrix} =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix} +
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{pmatrix}$$

The 9 scalars in C

- $c_{11} = a_{11} + b_{11}$
- $c_{12} = a_{12} + b_{12}$
- $c_{13} = a_{13} + b_{13}$
- $c_{21} = a_{21} + b_{21}$
- $c_{22} = a_{22} + b_{22}$
- $c_{23} = a_{23} + b_{23}$
- $c_{31} = a_{31} + b_{31}$
- $c_{32} = a_{32} + b_{32}$
- $c_{33} = a_{33} + b_{33}$

Complexity

- Total of $9 = 3^2$ additions.
The Divide and Conquer Setting

Assumption
- The size n of both A and B is a power of 2.

Input representation

\[
\begin{pmatrix}
(C_{11}) & (C_{12}) \\
(C_{21}) & (C_{22})
\end{pmatrix} = \begin{pmatrix}
(A_{11}) & (A_{12}) \\
(A_{21}) & (A_{22})
\end{pmatrix} \times \begin{pmatrix}
(B_{11}) & (B_{12}) \\
(B_{21}) & (B_{22})
\end{pmatrix}
\]

Objective
- Compute the product $A \times B$ of two $n \times n$ matrices using multiplications among the eight $(n/2) \times (n/2)$ matrices

\[A_{11}, A_{12}, A_{21}, A_{22}, B_{11}, B_{12}, B_{21}, B_{22}\]

- In other words, show how to represent each one of the four $(n/2) \times (n/2)$ matrices $C_{11}, C_{12}, C_{21}, C_{22}$ as a function of the above eight $(n/2) \times (n/2)$ matrices.
Matrix Multiplication

Divide-and-Conquer I

\[C = A \times B \]

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} =
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \times
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

Lemma

- The multiplication procedure works for sub-matrices as well.

The 4 submatrices in \(C \)

- \((C_{11}) = (A_{11}) \times (B_{11}) + (A_{12}) \times (B_{21})\)
- \((C_{12}) = (A_{11}) \times (B_{12}) + (A_{12}) \times (B_{22})\)
- \((C_{21}) = (A_{21}) \times (B_{11}) + (A_{22}) \times (B_{21})\)
- \((C_{22}) = (A_{21}) \times (B_{12}) + (A_{22}) \times (B_{22})\)
Algorithm

- **Partition** A and B into 4 sub-matrices each of size $\frac{n}{2} \times \frac{n}{2}$.
- **Recursively compute** the 8 sub-matrices multiplications.
- **Do** the 4 matrices additions each with $(n/2)^2$ addition operations.

Number of scalar operations

$$T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2$$

$$= 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

$$= \Theta(n^3)$$

Result

- Not an improvement!
Solving the Recursion

\[
T(1) = 1 \\
T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)
\]

- \(a = 8\).
- \(b = 2\).
- \(\log_b(a) = 3\).
- \(d = 2\).
- \(d < \log_b(a)\).

Master Theorem Case 1: \(T(n) = \Theta(n^3)\).
Multiplying 2×2 Matrices with 7 Multiplications

The “out of the blue” computation

With 7 multiplications and 10 additions, compute 7 help variables:

- $p_1 = a(g - h)$
- $p_2 = (a + b)h$
- $p_3 = (c + d)e$
- $p_4 = d(f - e)$
- $p_5 = (a + d)(e + h)$
- $p_6 = (b - d)(f + h)$
- $p_7 = (a - c)(e + g)$

With 8 more additions, compute r, s, t, u:

- $r = p_5 + p_4 - p_2 + p_6$
- $s = p_1 + p_2$
- $t = p_3 + p_4$
- $u = p_5 + p_1 - p_3 - p_7$

Complexity

Total of 7 multiplications and 18 additions.
Matrix Multiplication

Verifying the Computation

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix} = \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \times \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

Verifying the value of \(r \)

\[
r = p_5 + p_4 - p_2 + p_6 \\
= (a + d)(e + h) + d(f - e) - (a + b)h + (b - d)(f + h) \\
= ae + ah + de + dh + df - de - ah - bh + bf + bh - df - dh \\
= ae + ah + de + dh + df - de - ah - bh + bf + bh - df - dh \\
= ae + bf
\]
Matrix Multiplication

Verifying the Computation

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix} =
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \times
\begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

Verifying the value of \(s \)

\[
\begin{align*}
s &= p_1 + p_2 \\
 &= a(g - h) + (a + b)h \\
 &= ag - ah + ah + bh \\
 &= ag - ah + ah + bh \\
 &= ag + bh
\end{align*}
\]
Matrix Multiplication

Verifying the Computation

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix} = \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \times \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

Verifying the value of \(t \)

\[
t = p_3 + p_4 \\
= (c + d)e + d(f - e) \\
= ce + de + df - de \\
= ce + df
\]
Matrix Multiplication

Verifying the Computation

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix} = \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} \times \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

Verifying the value of \(u \)

\[
\begin{align*}
u &= p_5 + p_1 - p_3 - p_7 \\
 &= (a + d)(e + h) + a(g - h) - (c + d)e - (a - c)(e + g) \\
 &= ae + ah + de + dh + ag - ah - ce - de - ae - ag + ce + cg \\
 &= ae + ah + dh + ag - ah - ce - de - ae - ag + cg + ce + cg \\
 &= cg + dh
\end{align*}
\]
Matrix Multiplication

Divide-and-Conquer II

Algorithm

- **Partition** A and B into 4 sub-matrices of size $\frac{n}{2} \times \frac{n}{2}$.
- **Recursively compute** the 7 sub-matrices multiplications.
- **Do** the 18 matrices additions each with $(n/2)^2$ addition operations.

Number of scalar operations

\[
T(n) = 7T\left(\frac{n}{2}\right) + 18\left(\frac{n}{2}\right)^2
\]

\[
= 7T\left(\frac{n}{2}\right) + \Theta(n^2)
\]

\[
= \Theta(n^{\log_2 7}) \approx \Theta(n^{2.81})
\]

Result

- Better than $\Theta(n^3)$.
Solving the Recursion

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 7T\left(\frac{n}{2}\right) + \Theta(n^2)
\end{align*}
\]

- \(a = 7\).
- \(b = 2\).
- \(\log_b(a) \approx 2.81\).
- \(d = 2\).
- \(d < \log_b(a)\).

Master Theorem Case 1: \(T(n) = \Theta(n^{\log_2 7})\).
Arbitrary $n \geq 1$

Input
- $2^{k-1} < n \leq 2^k \implies 2^k < 2n$.

Algorithm
- **Add** $(2^k - n)$ zero-columns and rows to both A and B.
- **Run** the algorithm for the new matrices of size $2^k \times 2^k$.
- **Omit** the zero columns and rows from C.

Observation
- $n^{\log_2 7} \leq (2^k)^{\log_2 7} < (2n)^{\log_2 7} = 2^{\log_2 7} n^{\log_2 7} = 7 n^{\log_2 7}$

Complexity
- The algorithm complexity $\Theta((2^k)^{\log_2 7})$ is $\Theta(n^{\log_2 7})$.

Online Resources

23-minute video lecture: Algorithm without analysis justification
- https://www.youtube.com/watch?v=ORrM-aSNZUs

Text lecture: Includes most of the details with implementations
- https://www.geeksforgeeks.org/strassens-matrix-multiplication/