A Dictionary Search Problem

Input
- A key K.

Output
- Does K appear in A? YES or NO.
 - If YES: The first index i such that $A[i] = K$.
 - If NO: The largest index i such that $A[i] < K$ or $i = 0$ if $K < A[1]$.

Method
- Comparisons between K and the keys in the array.

Complexity
- Number of comparisons.
A Search Game

Game
- **Player 1**: Selects an integer x in the range $[1..n]$.
- **Player 2**: Searches for x only with comparisons of the type $x \leq i$ for some $1 \leq i \leq n$.

Players Goal
- **Player 1** tries to maximize the number of comparisons until finding x.
- **Player 2** tries to minimize the number of comparisons until finding x.

Complexity
- In the worst case or in the average case.
- As a function of n.

The Two Models are “Equivalent”

Equivalence
- $x \leq i$ is “equivalent” to $K \leq A[i]$
- Algorithms can be “converted” from one model to another while preserving the complexity.

Convenience
- It is “easier” to design algorithms in the search game model.
- It is “easier” to prove bounds and limitations on algorithms in the search game model.
Sequential Search

Algorithm outline

- Assume a search for x in the range $[1..n]$.
- Throughout the algorithm, maintain a lower bound ℓ on x such that $\ell \leq x \leq n$.
- Initially, $\ell = 1$.
- In each round, compare x with the lower bound ℓ.
 - If $x > \ell$ then increment ℓ by 1.
 - If $x \leq \ell$ then return ℓ.
Sequential Search

Example

- **Input:** \(n = 10 \) and \(x = 7 \) \(\Rightarrow \) \((\ast \ x \in [1..10]) \ast\)

- **Search procedure:**
 - **Q1:** \(x \leq 1 \) \(\Rightarrow \) **A1:** NO \((\ast \ x \in [2..10]) \ast\)
 - **Q2:** \(x \leq 2 \) \(\Rightarrow \) **A2:** NO \((\ast \ x \in [3..10]) \ast\)
 - **Q3:** \(x \leq 3 \) \(\Rightarrow \) **A3:** NO \((\ast \ x \in [4..10]) \ast\)
 - **Q4:** \(x \leq 4 \) \(\Rightarrow \) **A4:** NO \((\ast \ x \in [5..10]) \ast\)
 - **Q5:** \(x \leq 5 \) \(\Rightarrow \) **A5:** NO \((\ast \ x \in [6..10]) \ast\)
 - **Q6:** \(x \leq 6 \) \(\Rightarrow \) **A6:** NO \((\ast \ x \in [7..10]) \ast\)
 - **Q7:** \(x \leq 7 \) \(\Rightarrow \) **A7:** YES \((\ast \ x \in [7..7]) \ast\)

- **Output:** \(x = 7 \)

- **Complexity:** 7 comparisons.
Sequential Search

Algorithm pseudocode I

Sequential-Search \((n, x)\)

\[\ell = 1 \]

repeat

if \(x \leq \ell\) (* comparison *)
then return \(\ell\)
else \(\ell = \ell + 1\)

Algorithm pseudocode II

Sequential-Search \((n, x)\)

\[\ell = 1 \]

while \(x > \ell\) do (* comparison *)

\[\ell = \ell + 1 \]

return \(\ell\)
Sequential Search

Correctness
- By induction, $\ell \leq x \leq n$ after $\ell - 1$ comparisons with a NO answer.

Termination
- If $x \leq \ell$ then necessarily $x = \ell$ because by the induction hypothesis $x \geq \ell$.
- Eventually $x \leq n$.
Sequential Search

Worst case complexity
- \(n \) comparisons in the worst case when \(x = n \).
- In fact, only \(n - 1 \) comparisons since there is no need for the last comparison when \(x = n \).

Best case complexity
- Only 1 comparison when \(x = 1 \).

Average case complexity
- \((n + 1)/2 \) comparisons on average for a random \(x \) selected with a uniform distribution from the range \([1..n]\):

\[
\frac{1}{n} \left(1 + 2 + \cdots + n \right) = \frac{1}{n} \cdot \frac{n(n + 1)}{2} = \frac{n + 1}{2}
\]
Sequential Search

Searching in an array pseudocode

if \(K < A[1]\) then return \((K < A[1])\) (* comparison *)
if \(K > A[n]\) then return \((K > A[n])\) (* comparison *)

\(\ell = 1\)

while \(K > A[\ell]\) do (* comparison *)

\(\ell = \ell + 1\)

if \(K < A[\ell]\)

then return \((A[\ell - 1] < K < A[\ell])\)
else return \((K = A[\ell])\)

Worst case number of comparisons

- \(n + 3\) comparisons when \(K = A[n]\)
Binary Search

Algorithm outline

- Assume a search for x in the range $[1..n]$.
- Throughout the algorithm, maintain a range $[\ell..u]$ such that $\ell \leq x \leq u$.
- Initially, $\ell = 1$ and $u = n$.
- In each round, compare x with the middle of the range $m = \lfloor \frac{u+\ell}{2} \rfloor$.
- If $x \leq m$ then update $u = m$.
- If $x > m$ then update $\ell = m + 1$.
- Terminate when $\ell = u$.
- Return $x = \ell = u$.
Input: \(n = 128 \) and \(x = 50 \) \(\Rightarrow \) (* \(x \in [1..128] \) *).

Search procedure:

- Q1: \(x \leq 64 \) \(\Rightarrow \) A1: YES (* \(x \in [1..64] \) *)
- Q2: \(x \leq 32 \) \(\Rightarrow \) A2: NO (* \(x \in [33..64] \) *)
- Q3: \(x \leq 48 \) \(\Rightarrow \) A3: NO (* \(x \in [49..64] \) *)
- Q4: \(x \leq 56 \) \(\Rightarrow \) A4: YES (* \(x \in [49..56] \) *)
- Q5: \(x \leq 52 \) \(\Rightarrow \) A5: YES (* \(x \in [49..52] \) *)
- Q6: \(x \leq 50 \) \(\Rightarrow \) A6: YES (* \(x \in [49..50] \) *)
- Q7: \(x \leq 49 \) \(\Rightarrow \) A7: NO (* \(x \in [50..50] \) *)

Output: \(x = 50 \)

Complexity: \(7 = \log_2(128) \) comparisons.
Algorithm Pseudocode

Binary-Search \((n,x)\)

\[
\begin{align*}
\ell &= 1 \\
u &= n \\
\text{while } \ell < u & \\
m &= \left\lfloor \frac{u+\ell}{2} \right\rfloor \\
\text{if } x \leq m \quad (* \text{comparison} *) & \\
\text{then } u &= m \\
\text{else } \ell &= m + 1 \\
\text{return } \ell
\end{align*}
\]
Binary Search

Notations
- Let u_j and ℓ_j be the values of u and ℓ after iteration j of the algorithm.
- Let $\Delta_j = u_j - \ell_j + 1$ be the size of the range $[\ell_j..u_j]$.
- Initially $\ell_0 = 1$, $u_0 = n$, and $\Delta_0 = n$.

Observation
- $\Delta_{j+1} \leq \left\lceil \frac{\Delta_j}{2} \right\rceil$ for $j \geq 0$.

Corollary
- $\Delta_k = 1$ for $k = \lceil \log_2 n \rceil$.
Correctness
- By induction, always $\ell \leq x \leq u$.
- At the end, $\Delta = 1$ and therefore $\ell = u$ which implies that $x = \ell = u$.

Complexity
- There are at most $\lceil \log_2 n \rceil$ iterations and one comparison per iteration.
- Therefore, the **worst-case** complexity is $\lceil \log_2 n \rceil$.
- If n is not a power of 2, then for some x there are only $\lfloor \log_2 n \rfloor$ iterations.
- Therefore, the **average-case** complexity is approximately $\log_2 n$.
Binary Search

Searching in an array pseudocode

- if \(K < A[1]\) then return \((K < A[1])\) (* comparison *)
- if \(K > A[n]\) then return \((K > A[n])\) (* comparison *)

\(\ell = 1\) and \(u = n\)

while \(\ell < u\)

\[m = \left\lfloor \frac{u + \ell}{2} \right\rfloor \]

- if \(K \leq A[m]\) (* comparison *)
 - then \(u = m\)
 - else \(\ell = m + 1\)

- if \(K < A[\ell]\) (* comparison *)
 - then return \((A[\ell - 1] < K < A[\ell])\)
 - else return \((K = A[\ell])\)

Number of comparisons
- \(\lceil \log_2 n \rceil + 3\) comparisons
Binary-Search vs. Sequential-Search

<table>
<thead>
<tr>
<th>Case</th>
<th>Binary-Search</th>
<th>Sequential-Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best-Case</td>
<td>$\lceil \log_2 n \rceil$</td>
<td>1</td>
</tr>
<tr>
<td>Worst-Case</td>
<td>$\lceil \log_2 n \rceil$</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>Average-Case</td>
<td>$\approx \log_2 n$</td>
<td>$\approx n/2$</td>
</tr>
</tbody>
</table>

Divide and Conquer
Adversary Player I

Goal

- Maximize the number of **comparisons** until **Player 2** finds \(x \).

Strategy

- **Player 1 does not** select \(x \) at the beginning of the game. Instead, it maintains a set \(S \) of candidates for \(x \).
- Given a search question:
 - \(S(Y) \) – the set of candidates if the answer is **YES**.
 - \(S(N) \) – the set of candidates if the answer is **NO**.
- The adversary answer rule:
 - **YES** if \(|S(Y)| \geq |S(N)| \).
 - **NO** if \(|S(Y)| < |S(N)| \).
Adversary Player I

Example: A possible algorithm

- **Input:** \(n = 34 \) (* \(x \in [1..34] \) *)
- **Search:**
 - Q1: \(x \leq 13 \) ⇒ A1: NO (* \(x \in [14..34] \) *)
 - Q2: \(x \leq 26 \) ⇒ A2: YES (* \(x \in [14..26] \) *)
 - Q3: \(x \leq 18 \) ⇒ A3: NO (* \(x \in [19..26] \) *)
 - Q4: \(x \leq 23 \) ⇒ A4: YES (* \(x \in [19..23] \) *)
 - Q5: \(x \leq 20 \) ⇒ A5: NO (* \(x \in [21..23] \) *)
 - Q6: \(x \leq 22 \) ⇒ A6: YES (* \(x \in [21..22] \) *)
 - Q7: \(x \leq 21 \) ⇒ A7: YES (* \(x \in [21..21] \) *)

- **Output:** \(x = 21 \).
Adversary Player I

Example: Binary-Search

- **Input:** $n = 34$ (* $x \in [1..34]$ *)
- **Search:**
 - Q1: $x \leq 17$ ⇒ A1: YES (* $x \in [1..17]$ *)
 - Q2: $x \leq 9$ ⇒ A2: YES (* $x \in [1..9]$ *)
 - Q3: $x \leq 5$ ⇒ A3: YES (* $x \in [1..5]$ *)
 - Q4: $x \leq 3$ ⇒ A4: YES (* $x \in [1..3]$ *)
 - Q5: $x \leq 2$ ⇒ A5: YES (* $x \in [1..2]$ *)
 - Q6: $x \leq 1$ ⇒ A6: YES (* $x \in [1..1]$ *)

- **Output:** $x = 1$.

Observation

- With Binary-Search the search always ends up with $x = 1$.
Theorem

There exists $1 \leq x \leq n$ for which the adversary forces the second player to ask at least $\lceil \log_2 n \rceil$ comparisons.

Proof

- Assume that **Player 2** asks k comparisons to find x.
- Let S_i be the set of candidates after i comparisons.
- In particular, $|S_0| = n$ and $|S_k| = 1$.
- $S = S(Y) \cup S(N)$ implies that $|S_{i+1}|/|S_i| \geq (1/2)$ for $1 \leq i \leq k - 1$.
- $\lceil \log_2 n \rceil$ rounds are required to decrease n to 1 by halving.
- Therefore, $k \geq \lceil \log_2 n \rceil$.

Amotz Bar-Noy (CUNY)
Remarks

Worst case
- The $\lceil \log_2 n \rceil$ lower bound is a **worst case** bound.
- No algorithm can guarantee less comparisons **for all** values of x.

Average case
- It is possible to prove an $\Omega(\log n)$ **average case** lower bound.

Other search models
- The theorem holds for a "**stronger**" Player 2. One that may ask any **YES/NO** questions. For example,
 - Is x even?
 - Is x a prime number?
 - Does $x \in \{1, 2, 3, 5, 8, 13, 21, 34\}$?
Searching with “Clues”

Clue

- **Player 1** selects only even numbers 2, 4, 6, 8, ... between 1 and an even \(n \).

A modified Binary Search

- The search domain is \(1, 2, \ldots, n/2 \).
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq 2i \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”.
- When the search outputs \(x = i \) the modified search outputs \(2i \).

Complexity

- \(\lceil \log_2(n/2) \rceil \approx \log_2(n/2) = \log_2(n) - 1 \) comparisons.
- The saving is only 1 comparison although the clue “eliminated” about half of the candidates!
Searching with “Clues”

Clue
- **Player 1** selects only even numbers 2, 4, 6, 8, … between 1 and and an even \(n \).

Example
- \(n = 32 = 2 \cdot 16 \) and \(x = 20 = 2 \cdot 10 \).
- The possible 16 values for \(x \) are 2, 4, 6, …, 32 and the search domain is 1, 2, …, 16.

Running the algorithm
- Question 1: \(x \leq (2 \cdot 8 = 16) \)? because \(8 = \lfloor (1 + 16)/2 \rfloor \).
- Question 2: \(x \leq (2 \cdot 12 = 24) \)? because \(12 = \lfloor (9 + 16)/2 \rfloor \).
- Question 3: \(x \leq (2 \cdot 10 = 20) \)? because \(10 = \lfloor (9 + 12)/2 \rfloor \).
- Question 4: \(x \leq (2 \cdot 9 = 18) \)? because \(9 = \lfloor (9 + 10)/2 \rfloor \).
- \(x = 20 \) found with \(4 = \log_2 16 = \log_2 32 - 1 \) comparisons.
Searching with “Clues”

Clue

- **Player 1** selects only square numbers 1, 4, 9, 16, \ldots between 1 and a square number \(n \).

A modified Binary Search

- The search domain is 1, 2, \ldots, \(\sqrt{n} \).
- Instead of asking “if \(x \leq i \)”, **Player 2** asks “if \(x \leq i^2 \)” and then considers the answer as if it was the answer to “if \(x \leq i \)”.
- When the search outputs \(x = i \) the modified search outputs \(i^2 \).

Complexity

- \[\lceil \log_2(\sqrt{n}) \rceil \approx \log_2(\sqrt{n}) = \frac{1}{2} \log_2(n) \] comparisons.
- The saving is only half of the comparisons although the clue “eliminated” almost all the candidates!
Searching with “Clues”

Clue

- **Player 1** selects only square numbers 1, 4, 9, 16, \ldots between 1 and a square number n.

Example

- $n = 256 = 16^2$ and $x = 100 = 10^2$.
- The possible 16 values for x are 1, 4, 9, \ldots, 256 and the search domain is 1, 2, \ldots, 16.

Running the algorithm

- **Question 1:** $x \leq (8^2 = 64)$? because $8 = \lfloor(1 + 16)/2\rfloor$.
- **Question 2:** $x \leq (12^2 = 144)$? because $12 = \lfloor(9 + 16)/2\rfloor$.
- **Question 3:** $x \leq (10^2 = 100?)$ because $10 = \lfloor(9 + 12)/10\rfloor$.
- **Question 4:** $x \leq (9^2 = 81?)$ because $9 = \lfloor(9 + 10)/10\rfloor$.

$x = 100$ found with $4 = \log_2 16 = (1/2) \log_2 256$ comparisons.
Searching with “Clues”

Clue
- **Player 1** selects only powers of 2 numbers \(2, 4, 8, 16, \ldots\) between 2 and a power of 2 number \(n\).

A modified Binary Search
- The search domain is \(1, 2, \ldots, \log_2 n\).
- Instead of asking “if \(x \leq i\)”, **Player 2** asks “if \(x \leq 2^i\)” and then considers the answer as if it was the answer to “if \(x \leq i\)”.
- When the search outputs \(x = i\) the modified search outputs \(2^i\).

Complexity
- \(\lceil \log_2(\log_2(n)) \rceil \approx \log_2(\log_2(n))\) comparisons.
- For \(n = 2^{32} = 4294967296\) the saving is from 32 to 5 comparisons although there are only 32 candidates!
Searching with “Clues”

Clue
- **Player 1** selects only powers of 2 numbers 2, 4, 8, 16, ... between 2 and a power of 2 number \(n\).

Example
- \(n = 65536 = 2^{16}\) and \(x = 1024 = 2^{10}\).
- The possible 16 values for \(x\) are 2, 4, 8, ..., 65536 and the search domain is 1, 2, ..., 16.

Running the algorithm
- **Question 1:** \(x \leq (2^8 = 256)\)? \(8 = \lfloor (1 + 16)/2 \rfloor\).
- **Question 2:** \(x \leq (2^{12} = 4096)\)? \(12 = \lfloor (9 + 16)/2 \rfloor\).
- **Question 3:** \(x \leq (2^{10} = 1024)\)? \(10 = \lfloor (9 + 12)/10 \rfloor\).
- **Question 4:** \(x \leq (2^9 = 512)\)? \(9 = \lfloor (9 + 10)/10 \rfloor\).
- \(x = 1024\) found with \(4 = \log_2 16 = \log_2 \log_2 65536\) comparisons.
Searching with “Clues”

Clue
- **Player 1** selects only primes 2, 3, 5, 7, … not larger than \(n\).

A modified Binary Search
- The search domain is \(1, 2, \ldots, \pi(n)\) where \(\pi(n)\) is the number of primes between 2 and \(n\).
- Instead of asking “if \(x \leq i\)”, **Player 2** asks “if \(x \leq p_i\)” where \(p_i\) is the \(i^{th}\) prime and then considers the answer as if it was the answer to “if \(x \leq i\)”.
- When the search outputs \(x = i\) the modified search outputs \(p_i\).

Complexity
- \(\log_2(n/\ln(n)) \approx \log_2(n) - \log_2 \log_2(n)\) comparisons because there are approximately \(n/\ln(n)\) primes between 2 and \(n\).
- There are 78498 primes between 2 and 1000000. The clue saves only 3 comparisons, because \(\lceil \log_2(1000000) \rceil = 20\) and \(\lceil \log_2(78498) \rceil = 17\).
Searching with “Clues”

Clue
- **Player 1** selects only primes 2, 3, 5, 7, ... not larger than \(n \).

Example
- \(n = 53 \) and \(x = 29 \).
- The possible 16 values for \(x \) are
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53
- and the search domain is 1, 2, ..., 16.

Running the algorithm
- **Question 1:** \(x \leq (p_8 = 19) \)? \(8 = \lceil (1 + 16)/2 \rceil \).
- **Question 2:** \(x \leq (p_{12} = 37) \)? \(12 = \lceil (9 + 16)/2 \rceil \).
- **Question 3:** \(x \leq (p_{10} = 29) \)? \(10 = \lceil (9 + 12)/10 \rceil \).
- **Question 4:** \(x \leq (p_9 = 23) \)? \(9 = \lceil (9 + 10)/10 \rceil \).
- \(x = 29 \) found with \(4 \approx \log_2(53) - \log_2 \log_2(53) \) comparisons.
Searching an Unbounded Domain

Game

- **Player 1**: Selects any positive integer x.
- **Player 2**: Searches for x with comparisons $x \leq i$ for some integer i.

Adversary Player 1

- Always answers **NO**.
- **Player 2** will never find x!

Player 2 Goal

- Find x with as minimum possible comparisons as a function of x.
- Ask **“less”** comparisons when x is small and ask **“more”** comparisons when x is large.
Sequential search

Sequential search finds x with exactly x comparisons.

The doubling technique

A strategy that finds x with approximately $2 \log_2(x)$ comparisons.

A more sophisticated doubling technique

A strategy that finds x with approximately $\log_2(x) + 2 \log_2 \log_2(x)$ comparisons.

Optimal solution

A strategy that finds x with approximately

$$\log_2(x) + \log_2 \log_2(x) + \log_2 \log_2 \log_2(x) + \cdots$$

comparisons.
The Doubling Technique

Strategy

- **Phase 1:** Ask the following comparisons until the answer is **YES**:

 \[x \leq 1? \quad x \leq 2? \quad x \leq 4? \quad x \leq 8? \quad \cdots \quad x \leq 2^j? \quad \cdots \]

- Assume \(2^{k-1} < x \leq 2^k \)

- **Phase 2:** Apply binary search on the domain \([2^{k-1} + 1..2^k]\)

Complexity

- \(k + 1 \) comparisons are asked in **Phase 1**.

- The number of comparisons asked in **Phase 2** is

 \[\left\lfloor \log_2 (2^k - (2^{k-1} + 1) + 1) \right\rfloor = \left\lfloor \log_2 (2^{k-1}) \right\rfloor = k - 1 \]

- Total number of comparisons:

 \((k + 1) + (k - 1) = 2k = 2 \left\lfloor \log_2 (x) \right\rfloor \)
The Doubling Technique – Example

- **Input:** \(x = 50 \)
- **Search procedure:**
 - Q1: \(x \leq 1 \Rightarrow A1: \) NO (* \(x \in [2..\infty] *\)).
 - Q2: \(x \leq 2 \Rightarrow A2: \) NO (* \(x \in [3..\infty] *\)).
 - Q3: \(x \leq 4 \Rightarrow A3: \) NO (* \(x \in [5..\infty] *\)).
 - Q4: \(x \leq 8 \Rightarrow A4: \) NO (* \(x \in [9..\infty] *\)).
 - Q5: \(x \leq 16 \Rightarrow A5: \) NO (* \(x \in [17..\infty] *\)).
 - Q6: \(x \leq 32 \Rightarrow A6: \) NO (* \(x \in [33..\infty] *\)).
 - Q7: \(x \leq 64 \Rightarrow A7: \) YES (* \(x \in [33..64] *\)).
 - Q8: \(x \leq 48 \Rightarrow A8: \) NO (* \(x \in [49..64] *\)).
 - Q9: \(x \leq 56 \Rightarrow A9: \) YES (* \(x \in [49..56] *\)).
 - Q10: \(x \leq 52 \Rightarrow A10: \) YES (* \(x \in [49..52] *\)).
 - Q11: \(x \leq 50 \Rightarrow A11: \) YES (* \(x \in [49..50] *\)).
 - Q12: \(x \leq 49 \Rightarrow A12: \) NO (* \(x \in [50..50] *\)).
- **Output:** \(x = 50 \)
- **Complexity:** \(12 = \lfloor 2 \log_2 50 \rfloor \) comparisons.
Integer Multiplication

Input
- Two integers I and J each represented by $n \geq 1$ (binary) bits.

Output
- The product $I \times J$.

Observation
- The product has at most $2n$ bits in its binary representation.

Complexity Objective
- Minimize the number of bit operations.
 - Multiplications.
 - Additions and Subtractions.
 - Shifts.
Multiplying Two Base 10 Integers

\[\begin{array}{cccccc}
5 & 3 & 6 & 8 \\
2 & 9 & 1 & 7 \\
\hline
3 & 7 & 5 & 7 & 6 \\
5 & 3 & 6 & 8 \\
\hline
4 & 8 & 3 & 1 & 2 \\
1 & 0 & 7 & 3 & 6 \\
\hline
1 & 5 & 6 & 5 & 8 & 4 & 5 & 6
\end{array}\]
Example

- \(I = 1001 \) in base 2 which is 9 in base 10.
- \(J = 1101 \) in base 2 which is 13 in base 10.
- \(I \times J = 9 \times 13 = 117 \) in base 10.
- \(117 = 64 + 32 + 16 + 4 + 1 \) is 1110101 in base 2
Algorithms

Direct
- $I \times J$ can be computed with $\Theta(n^2)$ bit operations using the traditional algorithm.

Divide and Conquer
- $I \times J$ can be computed with $\Theta(n^\log_2^3) \approx \Theta(n^{1.585})$ bit operations.

Fast-Transform-Fourier
- Using the Fast-Transform-Fourier, $I \times J$ can be computed with $\Theta(n \log n)$ bit operations.

Lower bound
- $\Omega(n)$ bit operations.
Other Operations

Additions and Subtractions

- $I + J$ and $I - J$ can be computed with $\Theta(n)$ bit operations.
- $I + J$ and $I - J$ need at least $\Omega(n)$ bit operations.

Multiplying by a power of 2

- Multiplying an m-bit integer by 2^k can be done with $\Theta(k + m)$ bit operations (shifting).
The Divide and Conquer Setting

Assumption
- The length \(n \) of \(I \) and \(J \) is a power of 2.

Input representation
- \(I = I_h \cdot 2^{n/2} + I_\ell \)
- \(J = J_h \cdot 2^{n/2} + J_\ell \)

Example
- \(1973 = 19 \cdot 10^2 + 73 \): nineteen hundreds seventy three.

Objective
- Compute the product \(I \times J \) of two length-\(n \) integers recursively using multiplications among the four length-\(n/2 \) integers:
 \[I_h \quad I_\ell \quad J_h \quad J_\ell \]
Computation

\[I \times J = (I_h 2^{n/2} + I_\ell) \times (J_h 2^{n/2} + J_\ell) \]
\[= (I_h \times J_h)2^n + (I_h \times J_\ell + I_\ell \times J_h)2^{n/2} + I_\ell \times J_\ell \]

Example

- \(I = 5368, J = 2917 \implies I \times J = 15658456 \)
- \(I_h = 53, I_\ell = 68, J_h = 29, J_\ell = 17 \)
- \(I_h \times J_h = 53 \times 29 = 1537 \)
- \(I_h \times J_\ell + I_\ell \times J_h = 53 \times 17 + 68 \times 29 = 901 + 1972 = 2873 \)
- \(I_\ell \times J_\ell = 68 \times 17 = 1156 \)

\[I \times J = (1537)10^4 + (2873)10^2 + 1156 \]
\[= 15370000 + 287300 + 1156 = 15658456 \]
Divide and Conquer I

Computation

\[I \times J = (I_h2^{n/2} + I_\ell) \times (J_h2^{n/2} + J_\ell) \]

\[= (I_h \times J_h)2^n + (I_h \times J_\ell + I_\ell \times J_h)2^{n/2} + I_\ell \times J_\ell \]

Number of bit operations

\[T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \]

\[= \Theta(n^2) \]

Result

- Not an improvement!
Solving the Recursion

\[
T(1) = 1 \\
T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)
\]

- \(a = 4\).
- \(b = 2\).
- \(\log_b(a) = 2\).
- \(d = 1\).
- \(d < \log_b(a)\).

Master Theorem Case 1: \(T(n) = \Theta(n^2)\).
Key idea

- Compute the product $I \times J$ using only three multiplications among I_h, I_ℓ, J_h, J_ℓ with $\Theta(n)$ extra work.

Computation

\[
(I_h - I_\ell)(J_\ell - J_h) = I_hJ_\ell - I_hJ_h - I_\ell J_\ell + I_\ell J_h
\]
\[
I_hJ_\ell + I_\ell J_h = (I_h - I_\ell)(J_\ell - J_h) + I_hJ_h + I_\ell J_\ell
\]
\[
A = I_h \times J_h
\]
\[
B = I_\ell \times J_\ell
\]
\[
C = (I_h - I_\ell) \times (J_\ell - J_h)
\]
\[
I \times J = I_hJ_h2^n + (I_hJ_\ell + I_\ell J_h)2^{n/2} + I_\ell J_\ell
\]
\[
I \times J = A2^n + (C + A + B)2^{n/2} + B
\]
Example

- \(I = 5368, J = 2917 \implies I \times J = 15658456. \)
- \(I_h = 53, I_\ell = 68, J_h = 29, J_\ell = 17. \)
- \(A = I_h \times J_h = 53 \times 29 = 1537. \)
- \(B = I_\ell \times J_\ell = 68 \times 17 = 1156. \)
- \(C = (I_h - I_\ell) \times (J_\ell - J_h) = (53 - 68)(17 - 29) = (-15)(-12) = 180. \)

\[
I \times J = (1537)10^4 + (180 + 1537 + 1156)10^2 + 1156 \\
= (1537)10^4 + (2873)10^2 + 1156 \\
= 15370000 + 287300 + 1156 = 15658456
\]
Integer Multiplication

Divide and Conquer II

Computation

\[
A = I_h \times J_h \\
B = I_\ell \times J_\ell \\
C = (I_h - I_\ell) \times (J_\ell - J_h) \\
I \times J = A2^n + (C + A + B)2^{n/2} + B
\]

Number of bit operations

\[
T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n) \\
= \Theta(n^{\log_2 3}) \approx \Theta(n^{1.585})
\]

Result

- Better than \(\Theta(n^2)\).
Solving the Recursion

\[
T(1) = 1 \\
T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n)
\]

- \(a = 3\).
- \(b = 2\).
- \(\log_b(a) \approx 1.585\).
- \(d = 1\).
- \(d < \log_b(a)\).

Master Theorem Case 1: \(T(n) = \Theta(n^{\log_2 3})\).
Arbitrary $n \geq 1$

Input
- $2^{k-1} < n \leq 2^k \implies 2^k < 2n$.

Algorithm
- **Add** $2^k - n$ zeros in front of both integers.
- **Run** the computation with the new integers of length 2^k.
- **Omit** zeros from the beginning of the product.

Observation
- $n^{\log_2 3} \leq (2^k)^{\log_2 3} < (2n)^{\log_2 3} = 2^{\log_2 3} n^{\log_2 3} = 3n^{\log_2 3}$

Complexity
- The algorithm complexity $\Theta((2^k)^{\log_2 3})$ is $\Theta(n^{\log_2 3})$.
Online Resources

13-minute Video lecture: Algorithm without analysis justification
https://www.youtube.com/watch?v=JCbZayFr9RE

10 slides: Summary with a detailed example
https://courses.csail.mit.edu/6.006/spring11/exams/notes3-karatsuba

Article: Motivation, details, but no analysis
https://www.quantamagazine.org/the-math-behind-a-faster-multiplication-algorithm-20190923/
Matrix Multiplication

Input
- For $n \geq 1$, two $n \times n$ matrices A and B of scalars (usually numbers).

Output
- An $n \times n$ matrix $C = A \times B$.

Definition
- For all $1 \leq i, j \leq n$:
 \[c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \]

Complexity objective
- Minimize the number of additions, subtractions, and multiplications between two scalars.
Matrix Multiplication

Multiplying two 2×2 Matrices

$C = A \times B$

$$\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & g \\ f & h \end{pmatrix}$$

The 4 scalars in C

- $r = ae + bf$
- $s = ag + bh$
- $t = ce + df$
- $u = cg + dh$

Complexity

- Total of 8 multiplications and 4 additions.
Multiplying Two 3 \times 3 Matrices

\[
C = A \times B
\]

\[
\begin{pmatrix}
 c_{11} & c_{12} & c_{13} \\
 c_{21} & c_{22} & c_{23} \\
 c_{31} & c_{32} & c_{33}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\times \begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{pmatrix}
\]

The 9 scalars in \(C \)

- \(c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \)
- \(c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \)
- \(c_{13} = a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \)
- \(c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} \)
- \(c_{22} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \)
- \(c_{23} = a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \)
- \(c_{31} = a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} \)
- \(c_{32} = a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} \)
- \(c_{33} = a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \)

Complexity

- Total of 27 multiplications and 18 additions.
The Direct Algorithm

Pseudocode

\[\mathbf{C} = \mathbf{A} \times \mathbf{B} \quad (* \quad \mathbf{A}, \mathbf{B}, \mathbf{C} \text{ are } n \times n \text{ matrices of numbers } *) \]

\[
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad \text{for } j = 1 \text{ to } n \text{ do} \\
\quad\quad c_{ij} = a_{i1}b_{1j} \\
\quad\quad \text{for } k = 2 \text{ to } n \text{ do} \\
\quad\quad\quad c_{ij} = c_{ij} + a_{ik}b_{kj}
\]

Complexity

- Total of \(n^3 \) multiplications and \((n - 1)n^2 \) additions.
Matrix Multiplication – Algorithms

Direct algorithm
- \(\Theta(n^3) \) operations: \(n^3 \) multiplications and \(n^2(n - 1) \) additions.

Strassen algorithm
- \(\Theta(n^{\log_2 7}) \approx \Theta(n^{2.81}) \) operations.

Best known algorithm (2022)
- \(O(n^{2.37188}) \) operations.

Lower bound
- \(\Omega(n^2) \) operations.
Matrix Addition

Input
- For $n \geq 1$, two $n \times n$ matrices A and B of scalars.

Output
- An $n \times n$ matrix $C = A + B$.

Definition
- For all $1 \leq i, j \leq n$:
 \[c_{ij} = a_{ij} + b_{ij} \]

Complexity
- Exactly n^2 additions.
- **Optimal** since any computation must be based on all the $2n^2$ scalars from A and B.
Adding 2 × 2 Matrices

\[C = A + B \]

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix}
= \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
+ \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

The 4 scalars in \(C \)

- \(r = a + e \)
- \(s = b + g \)
- \(t = c + f \)
- \(u = d + h \)

Complexity

- Total of 4 = \(2^2 \) additions.
Adding 3×3 Matrices

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$

$$\begin{pmatrix}
 c_{11} & c_{12} & c_{13} \\
 c_{21} & c_{22} & c_{23} \\
 c_{31} & c_{32} & c_{33}
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix} +
\begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{pmatrix}$$

The 9 scalars in \mathbf{C}

- $c_{11} = a_{11} + b_{11}$
- $c_{12} = a_{12} + b_{12}$
- $c_{13} = a_{13} + b_{13}$
- $c_{21} = a_{21} + b_{21}$
- $c_{22} = a_{22} + b_{22}$
- $c_{23} = a_{23} + b_{23}$
- $c_{31} = a_{31} + b_{31}$
- $c_{32} = a_{32} + b_{32}$
- $c_{33} = a_{33} + b_{33}$

Complexity

- Total of $9 = 3^2$ additions.
The Divide and Conquer Setting

Assumption
- The size n of both A and B is a power of 2.

Input representation
$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Objective
- Compute the product $A \times B$ of two $n \times n$ matrices using multiplications among the eight $(n/2) \times (n/2)$ matrices

- In other words, show how to represent each one of the four $(n/2) \times (n/2)$ matrices $C_{11}, C_{12}, C_{21}, C_{22}$ as a function of the above eight $(n/2) \times (n/2)$ matrices.
Matrix Multiplication

Divide-and-Conquer I

C = A × B

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \times \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

Lemma

- The multiplication procedure works for sub-matrices as well.

The 4 submatrices in C

- \((C_{11}) = (A_{11}) \times (B_{11}) + (A_{12}) \times (B_{21})\)
- \((C_{12}) = (A_{11}) \times (B_{12}) + (A_{12}) \times (B_{22})\)
- \((C_{21}) = (A_{21}) \times (B_{11}) + (A_{22}) \times (B_{21})\)
- \((C_{22}) = (A_{21}) \times (B_{12}) + (A_{22}) \times (B_{22})\)
Matrix Multiplication

Divide-and-Conquer I

Algorithm

- **Partition** A and B into 4 sub-matrices each of size $\frac{n}{2} \times \frac{n}{2}$.
- **Recursively compute** the 8 sub-matrices multiplications.
- **Do** the 4 matrices additions each with $(n/2)^2$ addition operations.

Number of scalar operations

\[
T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2
\]

\[
= 8T\left(\frac{n}{2}\right) + \Theta(n^2)
\]

\[
= \Theta(n^3)
\]

Result

- **Not an improvement!**
Solving the Recursion

\[
\begin{align*}
T(1) &= 1 \\
T(n) &= 8T\left(\frac{n}{2}\right) + \Theta(n^2)
\end{align*}
\]

- \(a = 8 \).
- \(b = 2 \).
- \(\log_b(a) = 3 \).
- \(d = 2 \).
- \(d < \log_b(a) \).

Master Theorem Case 1: \(T(n) = \Theta(n^3) \).
Matrix Multiplication

Multiplying 2×2 Matrices with 7 Multiplications

The “out of the blue” computation

- With 7 multiplications and 10 additions, compute 7 help variables:

 \[
 \begin{align*}
 p_1 &= a(g - h) \\
 p_2 &= (a + b)h \\
 p_3 &= (c + d)e \\
 p_4 &= d(f - e) \\
 p_5 &= (a + d)(e + h) \\
 p_6 &= (b - d)(f + h) \\
 p_7 &= (a - c)(e + g)
 \end{align*}
 \]

- With 8 more additions, compute r, s, t, u:

 \[
 \begin{align*}
 r &= p_5 + p_4 - p_2 + p_6 \\
 s &= p_1 + p_2 \\
 t &= p_3 + p_4 \\
 u &= p_5 + p_1 - p_3 - p_7
 \end{align*}
 \]

Complexity

- Total of 7 multiplications and 18 additions.
Matrix Multiplication

Verifying the Computation

\[
\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & g \\ f & h \end{pmatrix}
\]

Verifying the value of \(r \)

\[
\begin{align*}
r & = p_5 + p_4 - p_2 + p_6 \\
& = (a + d)(e + h) + d(f - e) - (a + b)h + (b - d)(f + h) \\
& = ae + ah + de + dh + df - de - ah - bh + bf + bh - df - dh \\
& = ae + ah + de + dh + df - de - ah - bh + bf + bh - df - dh \\
& = ae + bf
\end{align*}
\]
Verifying the Computation

\[
\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & g \\ f & h \end{pmatrix}
\]

Verifying the value of \(s \)

\[
\begin{align*}
 s &= p_1 + p_2 \\
 &= a(g - h) + (a + b)h \\
 &= ag - ah + ah + bh \\
 &= ag - a/h + a/h + bh \\
 &= ag + bh
\end{align*}
\]
Matrix Multiplication

Verifying the Computation

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix}
=
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\times
\begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

Verifying the value of \(t \)

\[
t = p_3 + p_4
\]
\[
= (c + d)e + d(f - e)
\]
\[
= ce + de + df - de
\]
\[
= ce + d'e + df - d'e
\]
\[
= ce + df
\]
Verifying the Computation

\[
\begin{pmatrix} r & s \\ t & u \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & g \\ f & h \end{pmatrix}
\]

Verifying the value of \(u \)

\[
\begin{align*}
\quad u & = p_5 + p_1 - p_3 - p_7 \\
& = (a + d)(e + h) + a(g - h) - (c + d)e - (a - c)(e + g) \\
& = ae + ah + de + dh + ag - ah - ce - de - ae - ag + ce + cg \\
& = a/e + a|h + d|e + dh + a|g - a|h - d|e - d|e - a/e - a/g + d|e + cg \\
& = cg + dh
\end{align*}
\]
Algorithm

- **Partition** A and B into 4 sub-matrices of size $\frac{n}{2} \times \frac{n}{2}$.
- **Recursively compute** the 7 sub-matrices multiplications.
- **Do** the 18 matrices additions each with $(n/2)^2$ addition operations.

Number of scalar operations

\[T(n) = 7T\left(\frac{n}{2}\right) + 18 \left(\frac{n}{2}\right)^2 \]
\[= 7T\left(\frac{n}{2}\right) + \Theta(n^2) \]
\[= \Theta(n^\log_2 7) \approx \Theta(n^{2.81}) \]

Result

- Better than $\Theta(n^3)$.

Amotz Bar-Noy (CUNY)
Divide and Conquer
Solving the Recursion

\[T(1) = 1 \]
\[T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2) \]

- \(a = 7 \).
- \(b = 2 \).
- \(\log_b(a) \approx 2.81 \).
- \(d = 2 \).
- \(d < \log_b(a) \).

Master Theorem Case 1: \(T(n) = \Theta\left(n^{\log_2 7}\right) \).
Arbitrary \(n \geq 1 \)

Input
- \(2^{k-1} < n \leq 2^k \implies 2^k < 2n. \)

Algorithm
- **Add** \((2^k - n)\) zero-columns and rows to both \(A\) and \(B\).
- **Run** the algorithm for the new matrices of size \(2^k \times 2^k\).
- **Omit** the zero columns and rows from \(C\).

Observation
\[
n \log_2{7} \leq (2^k)^{\log_2{7}} < (2n)^{\log_2{7}} = 2^{\log_2{7}} n^{\log_2{7}} = 7n^{\log_2{7}}
\]

Complexity
- The algorithm complexity \(\Theta((2^k)^{\log_2{7}})\) is \(\Theta(n^{\log_2{7}})\).
Online Resources

23-minute video lecture: Algorithm without analysis justification

https://www.youtube.com/watch?v=ORrM-aSNZUs

Text lecture: Includes most of the details with implementations

https://www.geeksforgeeks.org/strassens-matrix-multiplication/