Algorithms: Greedy Algorithms

Amotz Bar-Noy

CUNY

Fall 2020
Outline

1. Introduction
2. The Coin Changing Problem
3. The Knapsack Problem
4. The Activity-Selection Problem
5. Huffman Codes
Motivation

- **Greedy algorithms** make decisions that “seem” to be the best following some greedy criteria.

Off-Line settings

- The whole input is known in advance.
- It is possible to do some preprocessing based on the input.
- Decisions are done in rounds and are irrevocable.

Real-Time and On-Line settings

- Current decisions cannot change past decisions.
- Current decisions cannot rely on the un-known future input.
How and When to use Greedy Algorithms?

Initial solutions
- Establish trivial solutions for a problem of a small size.
 - Usually $n = 0$ or $n = 1$.

Top-down procedure
- For a problem of size n, look for a greedy decision that reduces the size of the problem to some $k < n$ and then, apply recursion.

Bottom-up procedure
- Construct the solution for a problem of size n based on some greedy criteria applied on the solutions to the problems of size $k < n$.
The Coin Changing Problem

Input
- $n \geq 1$ integer coin denominations:
 \[d_n > \cdots > d_2 > d_1 = 1 \]
- An integer amount to pay: A.

Output
- Number of coins n_i for each denomination d_i to pay A exactly.
 \[A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1 \]

Optimization goal
- Minimize total number of coins.
 \[\mathcal{N} = n_n + \cdots + n_2 + n_1 \]

Observation
- Since $d_1 = 1$, there is always a solution with $\mathcal{N} = n_1 = A$.
Examples

Current USA currency system
- Dollar, Half Dollar, Quarter, Dime, Nickel, Penny (Cent):

 \[100 > 50 > 25 > 10 > 5 > 1 \]

 \[A = 98 = 1 \cdot 50 + 1 \cdot 25 + 2 \cdot 10 + 3 \cdot 1 \]

 \[N = 1 + 1 + 2 + 3 = 7 \]

Old British currency system
- Pound, Crown, A half-crown, Florin, Shilling, Sixpence (Tanner), Threepence (Bit), Penny:

 \[240 > 60 > 30 > 24 > 12 > 6 > 3 > 1 \]

 \[A = 149 = 2 \cdot 60 + 1 \cdot 24 + 1 \cdot 3 + 2 \cdot 1 \]

 \[N = 2 + 1 + 1 + 2 = 6 \]
The Coin Changing Problem

Greedy Solution

Greedy criterion
- Use the largest possible denomination and update \mathcal{A}.

Implementation

Coin-Changing ($d_n > \cdots > d_2 > d_1 = 1$)

for $i = n$ downto 1

$n_i = \lfloor \mathcal{A}/d_i \rfloor$

$\mathcal{A} = \mathcal{A} \mod d_i = \mathcal{A} - n_id_i$

Return $\mathcal{N} = n_n + \cdots + n_2 + n_1$

Correctness
- $\mathcal{A} = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1$.

Complexity
- $\Theta(n)$ division and mod integer operations.
Optimality

Examples
- Greedy is optimal for the USA system and the old British system.

Greedy is not always optimal
- $d_3 = 4$, $d_2 = 3$, $d_1 = 1$ and $A = 6$:
 - **Greedy**: $6 = 1 \cdot 4 + 2 \cdot 1 \Rightarrow N = 3$.
 - **Optimal**: $6 = 2 \cdot 3 \Rightarrow N = 2$.

Greedy could be very far from optimal
- $d_3 = x + 1$, $d_2 = x$, $d_1 = 1$ and $A = 2x$:
 - **Greedy**: $2x = 1 \cdot (x + 1) + (x - 1) \cdot 1 \Rightarrow N = x$.
 - **Optimal**: $2x = 2 \cdot x \Rightarrow N = 2$.
 - For a very large x, greedy is using too many coins instead of only two coins.
The Coin Changing Problem

Efficiency of Optimal Algorithms

Exhaustive optimal algorithm
- Check all possible combinations.
- This is not a polynomial time algorithm since there are exponential in n possible combinations.

A dynamic programming optimal algorithm
- Find the optimal combination for all the values $1, 2, \ldots, A$.
- This algorithm is polynomial in both n and A.
- It is only a **weakly polynomial time algorithm** because A could be very large.

Open problem
- Design a **strongly polynomial time algorithm**, one that is polynomial only in n.
- Probably impossible!?
The Knapsack Problem

Input

- A thief enters a store and finds \(n \geq 1 \) items \(I_1, \ldots, I_n \).
- For \(1 \leq i \leq n \), item \(I_i \) is associated with two positive integer parameters \(\langle w_i, v_i \rangle \):
 - The **weight** of item \(I_i \) is \(w_i \).
 - The **value** of item \(I_i \) is \(v_i \).

Constraints

- The thief can carry at most integer weight \(W \geq 1 \).
- The thief either takes all of item \(I_i \) or does not take item \(I_i \).

Goal

- Carry items with maximum total value.
 - Which are these items?
 - What is their total value?
The Knapsack Problem

Example

Input

<table>
<thead>
<tr>
<th></th>
<th>W = 10</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>I₂</td>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>I₃</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>I₄</td>
<td>5</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Non-optimal output

- The thief carries \{I₁, I₂, I₃\} for a profit of 60 = 20 + 30 + 10.

Optimal output

- The thief carries \{I₂, I₄\} for a profit of 70 = 30 + 40.
A General Greedy Scheme

Preprocessing

- Order the *n* items according to some **greedy criterion**.
 * Assume this order is \(J_1, J_2, \ldots, J_n \).
 * Assume \(J_1 \) is the most desired item and \(J_n \) is the least desired item.

Rules

- If \(J_1 \) is not too heavy \((w_1 \leq W) \):
 * Take item \(J_1 \).
 * Update the maximum weight to \(W = W - w_1 \).
 * Continue recursively with \(J_2, J_3, \ldots, J_n \).

- If \(J_1 \) is too heavy \((w_1 > W) \):
 * Ignore item \(J_1 \).
 * Do not update the maximum weight to \(W \).
 * Continue recursively with \(J_2, J_3, \ldots, J_n \).
Implementation

Non-Recursive Knapsack\((I_1, \ldots, I_n, w(\cdot), v(\cdot), W)\)

Let \(J_1, \ldots, J_n\) be the new order on the items.

\(S = \emptyset\) \((\text{\textbf{* the set of items the thief takes *})\)

\(V = 0\) \((\text{\textbf{* the value of these items *})}\)

for \(i = 1\) to \(n\)

if \(w(J_i) \leq W\) then

\(S = S \cup \{J_i\}\)

\(V = V + v_i\)

\(W = W - w(J_i)\)

Return\((S, V)\)
Greedy Criteria

Criterion I
- Order the items by their value from the most expensive to the cheapest.

Criterion II
- Order the items by their weight from the lightest to the heaviest.

Criterion III
- Order the items by their ratio of value over weight from the largest ratio to the smallest ratio.
The Knapsack Problem

Greedy-by-Value is Not Optimal

A counter example
- Three items and maximum weight $W = 10$.
- Weights and values: $l_1 = \langle 6, 10 \rangle$, $l_2 = \langle 5, 6 \rangle$, and $l_3 = \langle 5, 6 \rangle$.
- **Optimal** takes items l_2 and l_3 for a profit of 12.
- **Greedy-by-Value** takes only item l_1 for a profit of 10.

A very bad counter example
- n items and maximum weight $W \geq n - 1$.
- Weights and values: $l_1 = \langle W, 2 \rangle$, $l_2 = \langle 1, 1 \rangle$, $l_3 = \langle 1, 1 \rangle$, \ldots, $l_n = \langle 1, 1 \rangle$.
- **Optimal** takes items l_2, \ldots, l_n for a profit of $n - 1$.
- **Greedy-by-Value** takes only item l_1 for a profit of 2.
- The ratio is $(n - 1)/2$ that is $\Omega(n)$.
Greedy-by-Weight is Not Optimal

A counter example
- Three items and maximum weight $W = 10$.
- Weights and values: $I_1 = \langle 6, 13 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
- **Optimal** takes only item I_1 for a profit of 13.
- **Greedy-by-Weight** takes items I_2 and I_3 for a profit of 12.

A very bad counter example
- Two items and maximum weight $W = 2$.
- Weights and values: $I_1 = \langle 1, 1 \rangle$ and $I_2 = \langle 2, x \rangle$.
- **Optimal** takes item I_2 for a profit of x.
- **Greedy-by-Weight** takes item I_1 for a profit of 1.
- The ratio is x that could be very large.
Greedy-by-Ratio is Not Optimal

A counter example
- Three items and maximum weight $W = 10$.
- Weights and values: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
- **Optimal** takes items I_2 and I_3 for a profit of 12.
- **Greedy-by-Ratio** takes only item I_1 for a profit of 10.

A very bad counter example
- Two items and maximum weight W.
- Weights and values: $I_1 = \langle 1, 2 \rangle$ and $I_2 = \langle W, W \rangle$.
- **Optimal** takes item I_2 for a profit of W.
- **Greedy-by-Ratio** takes item I_1 for a profit of 2.
- The ratio is $W/2$ that could be very large.
A Better “Almost Greedy” Algorithm

Algorithm

- Select either the output of Greedy-by-Ratio or the output of Greedy-by-Value,
- In particular, the algorithm guarantees the profit of the most valuable item whose weight is at most W.

The algorithm is almost optimal

- The algorithm is a 1/2 guaranteed approximation algorithm.
- The profit of the thief is guaranteed to be at least half of the optimal profit.
The Knapsack Problem

The Fractional Knapsack Problem

Input
- A thief enters a store and finds \(n \geq 1 \) items \(I_1, \ldots, I_n \).
- For \(1 \leq i \leq n \), item \(I_i \) is associated with a positive integer weight \(w_i \) and a positive integer value \(v_i \).

Constraints
- The thief can carry at most integer weight \(W \geq 1 \).
- The thief can take portions of items. If the thief takes a fraction \(0 < p_i \leq 1 \) of item \(I_i \):
 - Its value is \(p_i v_i \).
 - Its weight is \(p_i w_i \).

Goal
- Carry portions of items with maximum total value.
The Knapsack Problem

Optimal Greedy Criterion

Theorem

- **Greedy-by-Ratio** is optimal for the fractional Knapsack problem.

Proof Sketch

- Assume that **Greedy-by-Ratio** is not optimal on I_1, \ldots, I_n and W.
- Let the portions taken by **Optimal** be $0 \leq p_1, \ldots, p_n \leq 1$.
- Since **Greedy-by-Ratio** is not optimal, there exist I_i and I_j for which $p_i < 1$ and $p_j > 0$ such that
 \[
 \frac{v_i}{w_i} > \frac{v_j}{w_j}
 \]
- Because each unit of weight of item I_i generates more profit than each unit of weight of item I_j, it is more profitable to take more of item I_i and less of item I_j.
- A **contradiction** to the optimality of **Optimal**.
The 0-1 Knapsack Problem

The exhaustive algorithm

- Check all possible sets of items.
 - Not a polynomial time algorithm because there are 2^n such sets.

Another optimal algorithm

- A dynamic programming based algorithm.
 - Polynomial in both n and W.
 - Not a strongly polynomial time algorithm.

Open problem

- Find an algorithm that is polynomial only in n.
- Probably impossible!?
- There are “good” theoretical and practical solutions based mainly on Greedy-by-Ratio.
The Activity-Selection Problem

Input
- Activities A_1, \ldots, A_n that need the service of a common resource.
- Activity A_i is associated with a time interval $[s_i, f_i)$ for $s_i < f_i$.
 * A_i needs the service from time s_i until just before time f_i.

Mutual Exclusion
- The resource serves at most one activity at any time.

Definition
- A_i and A_j are compatible if either $f_i \leq s_j$ or $f_j \leq s_i$.

Goal
- Find a maximum size set of compatible activities.
Example

Input

- Three activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.

A graphical representation:

[Diagram showing the activities on a time scale]

Optimal solution

[Diagram showing the optimal solution for the activities]
The Activity-Selection Problem

Static vs. Dynamic Greedy Strategies

Static greedy approach
- The greedy criterion is determined in advance and cannot be changed during the execution of the algorithm.

Dynamic greedy approach
- The greedy criterion may be modified during the execution of the algorithm based on prior decisions.

Remark
- A static criterion is by definition also a dynamic criterion but not vice versa.
A General Static Greedy Scheme

Preprocessing
- Order the activities following some greedy criterion.

Data structure
- **Maintain** a set S of the activities that have been selected so far.
- Initially $S = \emptyset$ and at the end S is the output.

Scheme
- Let A be the current considered activity. If A is compatible with all the activities already in S:
 - Then **add** A to S.
 - Else **ignore** A.
- **Repeat** the above until there are no activities to consider.
A General Dynamic Greedy Scheme

Data structure

- **Maintain** two sets of activities:
 - S: activities that have been selected so far.
 - \mathcal{R}: activities not in S that are compatible with all the activities in S.
 - Initially, $S = \emptyset$ and $\mathcal{R} = \{A_1, \ldots, A_n\}$.
 - At the end, S is the output and $\mathcal{R} = \emptyset$.

Scheme

- **Select** a “good” activity A from \mathcal{R}, following some greedy criterion.
- **Add** A to S.
- **Delete** A and the activities that are not compatible with A from \mathcal{R}.
- **Repeat** the above until \mathcal{R} is empty.
The Activity-Selection Problem

Greedy Criteria

Four possible criteria

- Prefer short activities.
- Prefer activities that intersect few other activities.
- Prefer activities that start earlier.
- Prefer activities that terminate earlier.

Optimality

- Only the fourth criterion is optimal.

Remarks

- All four criteria are static in their nature.
- The second criterion has a dynamic version.
An Optimal Greedy Algorithm

Preprocessing \((A_1, \ldots, A_n)\)

Sort the activities according to their finish time

Let this order be \(A_1, \ldots, A_n\) \((*i < j \Rightarrow f_i \leq f_j *)\)

Greedy-Activity-Selector \((A_1, \ldots, A_n)\)

\[S = \{A_1\} \]

\(j = 1\) \((* A_1 \text{ terminates the earliest } *)\)

\textbf{for} \(i = 2 \text{ to } n\) \((* \text{ scan all the activities } *)\)

\textbf{if} \(s_i \geq f_j\) \((* \text{ check compatibility } *)\)

\textbf{then}

\[S = S \cup \{A_i\} \]

\(j = i\) \((* \text{ select } A_i \text{ that is compatible with } S *)\)

\textbf{else}

\((* A_i \text{ is not compatible } *)\)

\textbf{Return}(S)
Example – Input
Example – Output

activities

A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

time

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Example – Output

The diagram illustrates the activity selection problem with activities labeled A_1, A_4, A_8, and A_{11}. The horizontal axis represents time, and the vertical axis represents the activities. The lines connect the start and end times of each activity, showing which activities are selected for execution.
Correctness and Complexity

Correctness
- The selection rule guarantees that a new activity A_i is added to S only if it is compatible with activity A_j that was the last activity added to S.
- Therefore, A_i is compatible with all the activities in S because A_j terminates the latest among these activities.
- As a result, all the activities in the output set are compatible with each other.

Complexity
- The sorting can be done in $\Theta(n \log n)$ time.
- There are $\Theta(1)$ operations per each activity.
- All together: $\Theta(n \log n) + n \cdot \Theta(1) = \Theta(n \log n)$ complexity.
Optimality

Proof setting

- Let A_1, \ldots, A_n be ordered by their finish time.
- Let T be an optimal set of activities. Transform T to S preserving the size of T.
- Let A_i be the first activity that is in T and not in S. All the activities in T that finish before A_i are also in S.

Proof sketch

- $A_i \notin S \Rightarrow \exists A_j \in S$ that is not in T in which $j < i$.
- A_j is compatible with all the activities in T that finish before it since they are all in S.
- A_j is compatible with all the activities in T that finish after A_i since it finishes before A_i.
- Therefore, $T \cup \{A_j\} \setminus \{A_i\}$ is a solution with the same size as T and hence optimal.
- Continue this way until T becomes S.
Example

Another optimal solution with 4 activities.
A third optimal solution: after the first transformation.
The Activity-Selection Problem

Example

The greedy solution: after the second transformation.
Huffman Codes

Input

- An alphabet of n symbols a_1, a_2, \ldots, a_n.
- A File \mathcal{F} containing L symbols from the alphabet.

Notations

- For $1 \leq i \leq n$, the symbol a_i appears n_i times in \mathcal{F}.
- For $1 \leq i \leq n$, the frequency of a_i is $f_i = n_i/L$.

Observation

$$\sum_{i=1}^{n} n_i = L \quad \Rightarrow \quad \sum_{i=1}^{n} f_i = 1$$

Output

- For symbol a_i, $1 \leq i \leq n$: A binary codeword w_i of length ℓ_i.
- A compressed (encoded) binary file \mathcal{F}' of \mathcal{F}.
Huffman Codes – Goals

Optimization

- Minimize L' the length of F'.

Efficiency

- Design an efficient algorithm to find the n codewords.
 - An algorithm with a “good” polynomial running time: $(O(n \log n))$.
- Efficient encoding and decoding procedures.
 - Should be done in $O(B)$-time where B is the size of the original file in bits.
Example

Input
- A file with the alphabet \(a, b, c, d, e, f\) containing 100 symbols.
- \(n_a = 45, n_b = 13, n_c = 12, n_d = 16, n_e = 9, n_f = 5\).

Code I
- \(w_a = 000, w_b = 001, w_c = 010, w_d = 011, w_e = 100, w_f = 101\).
- Length of encoded file: \(300 = 3 \cdot 100\).

Code II
- \(w_a = 0, w_b = 101, w_c = 100, w_d = 111, w_e = 1101, w_f = 1100\).
- Length of encoded file: \(224 = 1 \cdot 45 + 3 \cdot 13 + 3 \cdot 12 + 3 \cdot 16 + 4 \cdot 9 + 4 \cdot 5\).

Remark
- Code II is optimal, \(\approx 25\%\) better than code I.
Encoding Codes

Encoding
- Straightforward using tables.

Example: Code II

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>1100</td>
</tr>
</tbody>
</table>

“fedcba” \Rightarrow 1100|1101|111|100|101|0
“abbfccccde” \Rightarrow 0|101|101|1100|100|100|100|100|111|1101
Prefix Free Codes

Definition

- A **prefix free code** is a code in which no codeword is a prefix of another codeword.

Examples

- Both code I and code II are prefix free.

Proposition

- A code in which the lengths of all the codewords is the same is a prefix free code.

Encoding and Decoding

- Simple with one pass of the encoded and decoded files.

Theorem

- An optimal prefix free code always exists.
Prefix Free Codes as Binary Trees

Definition

- A prefix free code can be represented by a rooted and ordered binary tree with \(n \) leaves.
- Each leaf stores a codeword.
- The codeword corresponding to a leaf is defined by the unique path from the root to the leaf:
 - \(0 \) for going left.
 - \(1 \) for going right.

Proposition

- The binary tree represents a prefix free code since a path to a leaf cannot be a prefix of any other path.
Example: Code II

Illustration
- A leaf is represented by the symbol and its frequency.
- An internal node is labelled by the sum of the frequencies of all the leaves in its subtree.
Decoding with Prefix Free Codes

Decoding
- Follow the tree.

Example: Code II

```
110011011111001010  =>  1100|1101|111|100|101|0
                         f e d c b a
010110111001001001001111101  =>  “abbfcccde”
```
Binary Trees Cost

Notations

- T: a binary tree with n leaves representing a code for a File \mathcal{F} with an alphabet with n symbols.
- $n(x)$: the number of appearances of a leaf x in \mathcal{F}.
- $f(x) = (n(x)/L)$: the frequency of a leaf x.
- $\ell(x)$ the length of the path from the root to a leaf x.

Cost

The length of the encoded file

$$B(T) = \sum_{\text{a leaf } x} n(x)\ell(x)$$

The average length of a codeword is

$$\sum_{\text{a leaf } x} f(x)\ell(x) = \sum_{\text{a leaf } x} \frac{n(x)}{L}\ell(x) = \frac{B(T)}{L}$$
A Structural Claim

Lemma
- Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

Proof outline
- Assume that an internal node z has only one child y.
- Eliminate z to create a tree with a smaller cost.
- In the new tree, $\ell(x)$ of all the leaves in the sub-tree rooted at z is reduced by 1.
- The cost of the tree is improved since, these are the only changes.
- A contradiction to the optimality of the code.

Two cases to complete the proof
- Case I: z is the root.
- Case II: z is not the root.
Lemma

Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

$$B(T) = (45 + 13 + 12 + 16 + 9 + 5)3 = 300$$
Lemma

Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

$$B(T) = (45 + 13 + 12 + 16)3 + (9 + 5)2 = 286$$
Huffman Codes

A Structural Claim

Case I

- z is the root: Make y the new root.

Diagram:

```
       z
      / \  
     y   
    / \   
   B   C

  B   C
   \  /  
    y  
```

Amotz Bar-Noy (CUNY)
A Structural Claim

Case II

- z is not a root and p is its parent: Bypass z by making y the child of p.

![Diagram of tree transformations](image-url)
Huffman Code Algorithm

Goal
- Construct a coding tree bottom-up.

Constructing the tree outline
- Maintain a forest with total of n leaves in all of its trees.
- Initially, there are n singleton trees in the forest. Each tree is a leaf.
- The frequency of a tree is the sum of the frequencies of its leaves.
- In each round reduce the number of trees in the forest by one.
- Terminate when there is only one tree in the forest.

Greedy step
- Combine two trees with the minimum frequencies into one tree.
- The frequency of the new tree is the sum of the frequencies of the two combined trees.
Example

```
f:5  e:9  c:12  b:13  d:16  a:45
```

```
c:12  b:13
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```

```
14
```

```
c:12  b:13
```

```
14
```

```
f:5  e:9
```
Example
Example
Example

```
c:12
25
b:13

14
f:5
e:9
d:16

30

a:45
```
Example

```
a:45
c:12 b:13
e:9
3025
55
14 d:16
f:5
```
Another Example

A small example with animation:

Correctness and Complexity

Correctness
- Huffman algorithm generates a binary tree with \(n \) leaves.
- A binary tree represents a prefix free code.

Complexity
- The Huffman code algorithm can be implemented with complexity \(\Theta(n \log(n)) \).
Implementation – Data Structure

Forest of trees
- Initially, the forest contains n singleton trees.
- At the end, the forest contains one tree.

Priority queue of frequencies
- The frequencies of the trees in the forest are maintained in a priority queue Q.
- Initially, the queue contains the n original frequencies.
- At the end, the queue contains one frequency which is 1 the sum of all original frequencies.
Huffman Codes

Implementation – Procedure

\[\text{Huffman}(\langle a_1, f_1 \rangle, \ldots, \langle a_n, f_n \rangle) \]

\[\text{Build-Queue}(\{f_1, \ldots, f_n\}, Q) \]

for \(i = 1 \) to \(n - 1 \) (* the combination loop *)

\[z = \text{Allocate-Node}() \quad (* \text{creating a new root} *) \]

\[x = \text{left}(z) = \text{Extract-Min}(Q) \]

(* the lightest tree is the left sub-tree *)

\[y = \text{right}(z) = \text{Extract-Min}(Q) \]

(* the second lightest tree is the right sub-tree *)

\[f(z) = f(x) + f(y) \quad (* \text{the frequency of the new root} *) \]

\[\text{Insert}(Q, f(z)) \quad (* \text{inserting the new root to the queue} *) \]

return \(\text{Extract-Min}(Q) \) (* the last tree is the Huffman code *)
Implement the priority queue with a Binary Heap

The complexity of Build-Queue is $\Theta(n)$.

The complexity of Extract-Min and Insert is $\Theta(\log n)$.

The loop is executed $\Theta(n)$ times.

The total complexity of all the Extract-Min and the Insert operations is $\Theta(n \log n)$.

The overall complexity is: $\Theta(n \log n)$.
Optimality – First Lemma

Lemma I

- Let \mathcal{A} be an alphabet.
- Let x and y be the two symbols in \mathcal{A} with the smallest frequencies.
- Then, there exists an optimal tree in which:
 - x and y are adjacent leaves (differ only in their last bit).
 - x and y are the farthest leaves from the root.
Let z and w be adjacent leaves in an optimal tree that are the farthest from the root.

Exchanging z and w with x and y yields a tree with a smaller or equal cost.
Optimality – Second Lemma

Lemma II

- Let \(T \) be an optimal tree for the alphabet \(\mathcal{A} \).
- Let \(x, y \) be adjacent leaves in \(T \) and let \(z \) be their parent.
- Let \(\mathcal{A}' \) be \(\mathcal{A} \) with a new symbol \(z \) replacing \(x \) and \(y \) with frequency: \(f(z) = f(x) + f(y) \).
- Let \(T' \) be the tree \(T \) without the leaves \(x \) and \(y \) and with \(z \) as a new leaf.
- Then \(T' \) is an optimal tree for the alphabet \(\mathcal{A}' \).
Lemma II – Proof Sketch

Let T'' be an optimal tree with smaller cost than T'. Replacing z in T'' with the two leaves x and y creates a tree with a smaller cost than T. A contradiction to the optimality of T.
Optimality

Theorem
- The Huffman code is an optimal code.

Proof by induction outline
- **Lemma I** implies that the first greedy step is a first step towards an optimal solution.
- **Lemma II** justifies the inductive steps that apply again and again the first lemma.