Algorithms: Greedy Algorithms

Amotz Bar-Noy

CUNY
Greedy Algorithms

Motivation

- **Greedy algorithms** make decisions that “seem” to be the best following some **greedy** criteria.

Off-Line settings

- The whole input is known in advance.
- It is possible to do some preprocessing based on the input.
- Decisions are done in rounds and are irrevocable.

Real-Time and On-Line settings

- Current decisions cannot change past decisions.
- Current decisions cannot rely on the un-known future input.
How and When to use Greedy Algorithms?

Initial solutions
- Establish trivial solutions for a problem of a small size.
 - Usually \(n = 0 \) or \(n = 1 \).

Top-down procedure
- For a problem of size \(n \), look for a greedy decision that reduces the size of the problem to some \(k < n \) and then, apply recursion.

Bottom-up procedure
- Construct the solution for a problem of size \(n \) based on some greedy criteria applied on the solutions to the problems of sizes smaller than \(n \).
The Coin Changing Problem

Input
- \(n \geq 1 \) integer coin denominations:
 \[d_n > \cdots > d_2 > d_1 = 1 \]
- An integer amount to pay: \(A \).

Output
- Number of coins \(n_i \) for each denomination \(d_i \) to pay \(A \) exactly assuming there are infinite number of coins from each denomination:
 \[A = n_n d_n + n_{n-1} d_{n-1} + n_2 d_2 + n_1 d_1. \]

Optimization goal
- Minimize total number of coins:
 \[N = n_n + \cdots + n_2 + n_1. \]

Observation
- Since \(d_1 = 1 \), there is always a solution with \(N = n_1 = A \).
Examples

Current USA currency system

- Dollar, Half Dollar, Quarter, Dime, Nickel, Penny (Cent):

 \[100 > 50 > 25 > 10 > 5 > 1 \]

 * \(A = 98 = 1 \cdot 50 + 1 \cdot 25 + 2 \cdot 10 + 3 \cdot 1 \)

 * \(N = 1 + 1 + 2 + 3 = 7 \)

Old British currency system

- Pound, Crown, A half-crown, Florin, Shilling, Sixpence (Tanner), Threepence (Bit), Penny:

 \[240 > 60 > 30 > 24 > 12 > 6 > 3 > 1 \]

 * \(A = 149 = 2 \cdot 60 + 1 \cdot 24 + 1 \cdot 3 + 2 \cdot 1 \)

 * \(N = 2 + 1 + 1 + 2 = 6 \)
The Coin Changing Problem

Greedy Solution

Greedy criterion
- Use the largest possible denomination and update A.

Implementation

Coin-Changing ($d_n > \cdots > d_2 > d_1 = 1$)

for $i = n$ downto 1

$n_i = \lfloor A / d_i \rfloor$

$A = A \mod d_i = A - n_id_i$

Return ($N = n_n + \cdots + n_2 + n_1$)

Correctness
- $A = n_n d_n + n_{n-1} d_{n-1} + \cdots + n_2 d_2 + n_1 d_1$.

Complexity
- $\Theta(n)$ division and mod integer operations.
Optimality

Examples
- Greedy is optimal for the USA system and the old British system.

Greedy is not always optimal
- \(d_3 = 4, \ d_2 = 3, \ d_1 = 1 \) and \(A = 6 \):
 - **Greedy:** \(6 = 1 \cdot 4 + 2 \cdot 1 \implies N = 3 \).
 - **Optimal:** \(6 = 2 \cdot 3 \implies N = 2 \).

Greedy could be very far from optimal
- \(d_3 = x + 1, \ d_2 = x, \ d_1 = 1 \) and \(A = 2x \):
 - **Greedy:** \(2x = 1 \cdot (x + 1) + (x - 1) \cdot 1 \implies N = x \).
 - **Optimal:** \(2x = 2 \cdot x \implies N = 2 \).
 - For a very large \(x \), greedy is using too many coins instead of only two coins.
Efficiency of Optimal Algorithms

Exhaustive optimal algorithm
- Check all possible combinations.
- This is not a polynomial time algorithm since there are exponential in \(n \) possible combinations.

A dynamic programming optimal algorithm
- Find the optimal combination for all the values 1, 2, \ldots, \(A \).
- This algorithm is polynomial in both \(n \) and \(A \).
- It is only a *weakly polynomial time algorithm* because \(A \) could be very large.

Open problem
- Design a *strongly polynomial time algorithm*, one that is polynomial only in \(n \).
- Probably impossible!?
The Knapsack Problem

Input
- A thief enters a store and finds \(n \geq 1 \) items \(l_1, \ldots, l_n \).
- For \(1 \leq i \leq n \), item \(l_i \) is associated with two positive integer parameters \(\langle w_i, v_i \rangle \):
 - The weight of item \(l_i \) is \(w_i \).
 - The value of item \(l_i \) is \(v_i \).

Constraints
- The thief can carry at most integer weight \(W \geq 1 \).
- The thief either takes all of item \(l_i \) or does not take item \(l_i \).

Goal
- Carry items with maximum total value.
 - Which are these items?
 - What is their total value?
The Knapsack Problem

Example

Input

\[
\begin{array}{|c|c|c|}
\hline
W &= 10 & \text{Weight} & \text{Value} \\
\hline
I_1 & 3 & 20 \\
I_2 & 3 & 30 \\
I_3 & 4 & 10 \\
I_4 & 5 & 40 \\
\hline
\end{array}
\]

Non-optimal output

- The thief carries \(\{I_1, I_2, I_3\} \) for a profit of 60 = 20 + 30 + 10.

Optimal output

- The thief carries \(\{I_2, I_4\} \) for a profit of 70 = 30 + 40.
A General Greedy Scheme

Preprocessing

- Order the \(n \) items according to some greedy criterion.
 - Assume this order is \(J_1, J_2, \ldots, J_n \).
 - Assume \(J_1 \) is the most desired item and \(J_n \) is the least desired item.

Rules

- If \(J_1 \) is not too heavy (\(w_1 \leq W \)):
 * Take item \(J_1 \).
 * Update the maximum weight to \(W = W - w_1 \).
 * Continue recursively with \(J_2, J_3, \ldots, J_n \).

- If \(J_1 \) is too heavy (\(w_1 > W \)):
 * Ignore item \(J_1 \).
 * Do not update the maximum weight to \(W \).
 * Continue recursively with \(J_2, J_3, \ldots, J_n \).
A General Greedy Scheme – Implementation

Implementation

Non-Recursive Knapsack \((I_1, \ldots, I_n, w(\cdot), v(\cdot), W)\)

Let \(J_1, \ldots, J_n\) be the new order on the items.

\[S = \emptyset \quad (* \text{the set of items the thief takes} *) \]

\[V = 0 \quad (* \text{the value of these items} *) \]

for \(i = 1\) to \(n\)

if \(w(J_i) \leq W\) then

\[S = S \cup \{J_i\} \]

\[V = V + v_i \]

\[W = W - w(J_i) \]

Return \((S, V)\)
Greedy Criteria

Criterion I
- Order the items by their value from the most expensive to the cheapest.

Criterion II
- Order the items by their weight from the lightest to the heaviest.

Criterion III
- Order the items by their ratio of value over weight from the largest ratio to the smallest ratio.
Greedy-by-Value is Not Optimal

A counter example
- Three items and maximum weight \(W = 10 \).
- Weights and values: \(I_1 = \langle 6, 10 \rangle \), \(I_2 = \langle 5, 6 \rangle \), and \(I_3 = \langle 5, 6 \rangle \).
- **Optimal** takes items \(I_2 \) and \(I_3 \) for a profit of 12.
- **Greedy-by-Value** takes only item \(I_1 \) for a profit of 10.

A very bad counter example
- \(n \) items and maximum weight \(W \geq n - 1 \).
- Weights and values: \(I_1 = \langle W, 2 \rangle \), \(I_2 = \langle 1, 1 \rangle \), \ldots , \(I_n = \langle 1, 1 \rangle \).
- **Optimal** takes items \(I_2, \ldots , I_n \) for a profit of \(n - 1 \).
- **Greedy-by-Value** takes only item \(I_1 \) for a profit of 2.
- The ratio is \((n - 1)/2 \) that is \(\Omega(n) \).
Greedy-by-Weight is Not Optimal

A counter example
- Three items and maximum weight $W = 10$.
- Weights and values: $I_1 = \langle 6, 13 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
- **Optimal** takes only item I_1 for a profit of 13.
- **Greedy-by-Weight** takes items I_2 and I_3 for a profit of 12.

A very bad counter example
- Two items and maximum weight $W = 2$.
- Weights and values: $I_1 = \langle 1, 1 \rangle$ and $I_2 = \langle 2, x \rangle$.
- **Optimal** takes item I_2 for a profit of x.
- **Greedy-by-Weight** takes item I_1 for a profit of 1.
- The ratio is x that could be very large.
Greedy-by-Ratio is Not Optimal

A counter example
- Three items and maximum weight $W = 10$.
- Weights and values: $I_1 = \langle 6, 10 \rangle$, $I_2 = \langle 5, 6 \rangle$, and $I_3 = \langle 5, 6 \rangle$.
- **Optimal** takes items I_2 and I_3 for a profit of 12.
- **Greedy-by-Ratio** takes only item I_1 for a profit of 10.

A very bad counter example
- Two items and maximum weight W.
- Weights and values: $I_1 = \langle 1, 2 \rangle$ and $I_2 = \langle W, W \rangle$.
- **Optimal** takes item I_2 for a profit of W.
- **Greedy-by-Ratio** takes item I_1 for a profit of 2.
- The ratio is $W/2$ that could be very large.
A Better “Almost Greedy” Algorithm

Algorithm
- Select either the output of Greedy-by-Ratio or the output of Greedy-by-Value,
- In particular, the algorithm guarantees the profit of the most valuable item whose weight is at most W.

The algorithm is almost optimal
- The algorithm is a $1/2$ guaranteed approximation algorithm.
- The profit of the thief is guaranteed to be at least half of the optimal profit.
The Fractional Knapsack Problem

Input
- A thief enters a store and finds $n \geq 1$ items I_1, \ldots, I_n.
- For $1 \leq i \leq n$, item I_i is associated with a positive integer weight w_i and a positive integer value v_i.

Constraints
- The thief can carry at most integer weight $W \geq 1$.
- The thief can take portions of items. If the thief takes a fraction $0 < p_i \leq 1$ of item I_i:
 * Its value is $p_i v_i$.
 * Its weight is $p_i w_i$.

Goal
- Carry portions of items with maximum total value.
The Knapsack Problem

Optimal Greedy Criterion

Theorem

- **Greedy-by-Ratio** is optimal for the fractional Knapsack problem.

Proof Sketch

- Assume that **Greedy-by-Ratio** is not optimal on I_1, \ldots, I_n and W.
- Let the portions taken by **Optimal** be $0 \leq p_1, \ldots, p_n \leq 1$.
- Since **Greedy-by-Ratio** is not optimal, there exist I_i and I_j for which $p_i < 1$ and $p_j > 0$ such that
 \[
 \frac{v_i}{w_i} > \frac{v_j}{w_j}
 \]
- Because each unit of weight of item I_i generates more profit than each unit of weight of item I_j, it is more profitable to take more of item I_i and less of item I_j.
- A **contradiction** to the optimality of **Optimal**.
The 0-1 Knapsack Problem

The exhaustive algorithm
- Check all possible sets of items.
 * Not a polynomial time algorithm because there are 2^n such sets.

Another optimal algorithm
- A dynamic programming based algorithm.
 * Polynomial in both n and W.
 * Not a strongly polynomial time algorithm.

Open problem
- Find an algorithm that is polynomial only in n.
- Probably impossible!?
- There are “good” theoretical and practical solutions based mainly on Greedy-by-Ratio.
The Activity-Selection Problem

Input
- Activities A_1, \ldots, A_n that need the service of a common resource.
- Activity A_i is associated with a time interval $[s_i, f_i)$ for $s_i < f_i$.
 * A_i needs the service from time s_i until just before time f_i.

Mutual Exclusion
- The resource serves at most one activity at any time.

Definition
- A_i and A_j are compatible if either $f_i \leq s_j$ or $f_j \leq s_i$.

Goal
- Find a maximum size set of compatible activities.
Example

Input

- Three activities $A_1 = [1, 4)$, $A_2 = [3, 6)$, $A_3 = [5, 8)$.

A graphical representation:

Optimal solution
Static vs. Dynamic Greedy Strategies

Static greedy approach
- The *greedy* criterion is determined in advance and cannot be changed during the execution of the algorithm.

Dynamic greedy approach
- The *greedy* criterion may be modified during the execution of the algorithm based on prior decisions.

Remark
- A static criterion is by definition also a dynamic criterion but not vice versa.
A General Static Greedy Scheme

Preprocessing
- Order the activities following some greedy criterion.

Data structure
- Maintain a set S of the activities that have been selected so far.
- Initially $S = \emptyset$ and at the end S is the output.

Scheme
- Let A be the current considered activity. If A is compatible with all the activities already in S:
 - Then add A to S.
 - Else ignore A.
- Repeat the above until there are no activities to consider.
A General Dynamic Greedy Scheme

Data structure
- **Maintain** two sets of activities:
 - S: activities that have been selected so far.
 - R: activities not in S that are compatible with all the activities in S.
 - Initially, $S = \emptyset$ and $R = \{A_1, \ldots, A_n\}$.
 - At the end, S is the output and $R = \emptyset$.

Scheme
- **Select** a “good” activity A from R, following some greedy criterion.
- **Add** A to S.
- **Delete** A and the activities that are not compatible with A from R.
- **Repeat** the above until R is empty.
Greedy Criteria

Four possible criteria
- Prefer short activities.
- Prefer activities that intersect few other activities.
- Prefer activities that start earlier.
- Prefer activities that terminate earlier.

Optimality
- Only the fourth criterion is optimal.

Remarks
- All four criteria are static in their nature.
- The second criterion has a dynamic version.
The Activity-Selection Problem

An Optimal Greedy Algorithm

Preprocessing \((A_1, \ldots, A_n)\)

Sort the activities according to their finish time
Let this order be \(A_1, \ldots, A_n\) \((^* i < j \Rightarrow f_i \leq f_j *\)

Greedy-Activity-Selector \((A_1, \ldots, A_n)\)

\[S = \{A_1\} \quad (^* A_1 \text{ terminates the earliest } *) \]
\[j = 1 \quad (^* A_j \text{ is the current selected activity } *) \]

for \(i = 2\) to \(n\) \((^* \text{ scan all the activities } *)\)

if \(s_i \geq f_j\) \((^* \text{ check compatibility } *)\)

then

\[S = S \cup \{A_i\} \quad (^* \text{ select } A_i \text{ that is compatible with } S *) \]
\[j = i \]

else \((^* A_i \text{ is not compatible } *)\)

Return\((S)\)
The Activity-Selection Problem

Example – Input

A_{11} A_{10} A_9 A_8 A_7 A_6 A_5 A_4 A_3 A_2 A_1

activities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time
Example – Output

The Activity-Selection Problem
The Activity-Selection Problem

Example – Output

activities

A_1

A_4

A_8

A_{11}

time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Amotz Bar-Noy (CUNY)
Correctness and Complexity

Correctness

- The selection rule guarantees that a new activity A_i is added to S only if it is compatible with activity A_j that was the last activity added to S.
- Therefore, A_i is compatible with all the activities in S because A_j terminates the latest among these activities.
- As a result, all the activities in the output set are compatible with each other.

Complexity

- The sorting can be done in $\Theta(n \log n)$ time.
- There are $\Theta(1)$ operations per each activity.
- All together: $\Theta(n \log n) + n \cdot \Theta(1) = \Theta(n \log n)$ complexity.
Optimality

Proof setting
- Let A_1, \ldots, A_n be ordered by their finish time.
- Let T be an optimal set of activities. Transform T to S preserving the size of T.
- Let A_i be the first activity that is in T and not in S. All the activities in T that finish before A_i are also in S.

Proof sketch
- $A_i \notin S \Rightarrow \exists A_j \in S$ that is not in T in which $j < i$.
- A_j is compatible with all the activities in T that finish before it since they are all in S.
- A_j is compatible with all the activities in T that finish after A_i since it finishes before A_i.
- Therefore, $T \cup \{A_j\} \setminus \{A_i\}$ is a solution with the same size as T and hence optimal.
- Continue this way until T becomes S.
Another optimal solution with 4 activities.
Example

A third optimal solution: after the first transformation.
The Activity-Selection Problem

Example

The greedy solution: after the second transformation.
Huffman Codes

Input
- An alphabet of \(n \) symbols \(a_1, a_2, \ldots, a_n \).
- A File \(\mathcal{F} \) containing \(L \) symbols from the alphabet.

Notations
- For \(1 \leq i \leq n \), the symbol \(a_i \) appears \(n_i \) times in \(\mathcal{F} \).
- For \(1 \leq i \leq n \), the frequency of \(a_i \) is \(f_i = n_i / L \).

Observation
\[
\sum_{i=1}^{n} n_i = L \quad \Rightarrow \quad \sum_{i=1}^{n} f_i = 1
\]

Output
- For symbol \(a_i, 1 \leq i \leq n \): A binary codeword \(w_i \) of length \(\ell_i \).
- A compressed (encoded) binary file \(\mathcal{F}' \) of \(\mathcal{F} \).
Huffman Codes – Goals

Optimization
- Minimize L' the length of F'.

Efficiency
- Design an efficient algorithm to find the n codewords.
 - An algorithm with a “good” polynomial running time: $O(n \log n)$.
- Efficient **encoding** and **decoding** procedures.
 - Should be done in $O(B)$-time where B is the size of the original file in bits.
Example

Input
- A file with the alphabet a, b, c, d, e, f containing 100 symbols.
- $n_a = 45$, $n_b = 13$, $n_c = 12$, $n_d = 16$, $n_e = 9$, $n_f = 5$.

Code I
- $w_a = 000$, $w_b = 001$, $w_c = 010$, $w_d = 011$, $w_e = 100$, $w_f = 101$.
- Length of encoded file: $300 = 3 \cdot 100$.

Code II
- $w_a = 0$, $w_b = 101$, $w_c = 100$, $w_d = 111$, $w_e = 1101$, $w_f = 1100$.
- Length of encoded file: $224 = 1 \cdot 45 + 3 \cdot 13 + 3 \cdot 12 + 3 \cdot 16 + 4 \cdot 9 + 4 \cdot 5$.

Remark
- Code II is optimal, $\approx 25\%$ better than code I.
Encoding Codes

Encoding

- Straightforward using tables.

Example: Code II

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>111</td>
</tr>
<tr>
<td>e</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>1100</td>
</tr>
</tbody>
</table>

“fedcba” ⇒ 1100|1101|111|100|101|0

“abbfcccde” ⇒ 0|101|101|1100|100|100|100|111|1101
Prefix Free Codes

Definition

- A **prefix free code** is a code in which no codeword is a prefix of another codeword.

Examples

- Both code I and code II are prefix free.

Proposition

- A code in which the lengths of all the codewords is the same is a prefix free code.

Encoding and Decoding

- Simple with one pass of the encoded and decoded files.

Theorem

- An optimal prefix free code always exists.
Prefix Free Codes as Binary Trees

Definition

- A prefix free code can be represented by a rooted and ordered binary tree with \(n \) leaves.
- Each leaf stores a codeword.
- The codeword corresponding to a leaf is defined by the unique path from the root to the leaf:
 - 0 for going left.
 - 1 for going right.

Proposition

- The binary tree represents a prefix free code since a path to a leaf cannot be a prefix of any other path.
Example: Code II

Illustration

- A leaf is represented by the symbol and its frequency.
- An internal node is labelled by the sum of the frequencies of all the leaves in its subtree.
Decoding with Prefix Free Codes

Decoding

- Follow the tree.

Example: Code II

```
110011011111001010  ⇒  1100|1101|111|100|101|0
                         f e d c b a
010110111001001001001111101  ⇒  “abbfcccde”
```
Binary Trees Cost

Notations

- \(T \): a binary tree with \(n \) leaves representing a code for a File \(F \) with an alphabet with \(n \) symbols.
- \(n(x) \): the number of appearances of a leaf \(x \) in \(F \).
- \(f(x) = \frac{n(x)}{L} \): the frequency of a leaf \(x \).
- \(\ell(x) \) the length of the path from the root to a leaf \(x \).

Cost

- The length of the encoded file
 \[
 B(T) = \sum_{\text{a leaf } x} n(x)\ell(x)
 \]
- The average length of a codeword is
 \[
 \sum_{\text{a leaf } x} f(x)\ell(x) = \sum_{\text{a leaf } x} \frac{n(x)}{L}\ell(x) = \frac{B(T)}{L}
 \]
A Structural Claim

Lemma
- Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

Proof outline
- Assume that an internal node z has only one child y.
- Eliminate z to create a tree with a smaller cost.
- In the new tree, $\ell(x)$ of all the leaves in the sub-tree rooted at z is reduced by 1.
- The cost of the tree is improved since, these are the only changes.
- A contradiction to the optimality of the code.

Two cases to complete the proof
- Case I: z is the root.
- Case II: z is not the root.
Lemma

Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

\[
B(T) = (45 + 13 + 12 + 16 + 9 + 5)3 = 300
\]
Lemma

Let T be a tree that represents an optimal code. Then each internal node in the tree has two children.

$$B(T) = (45 + 13 + 12 + 16)3 + (9 + 5)2 = 286$$
A Structural Claim

Case I
- \(z \) is the root: Make \(y \) the new root.

![Diagram showing structural change from \(z \) to \(y \) as the root]
A Structural Claim

Case II

- z is not a root and p is its parent: Bypass z by making y the child of p.

Diagram:

Before:

```
    p
   / \  
  z   A
   \ /
    y B
   / \  
  C   
```

After:

```
    p
   / \  
  A   y
   \ /
    B C
```
Huffman Code Algorithm

Goal
- Construct a coding tree bottom-up.

Constructing the tree outline
- Maintain a forest with total of n leaves in all of its trees.
- Initially, there are n singleton trees in the forest. Each tree is a leaf.
- The frequency of a tree is the sum of the frequencies of its leaves.
- In each round reduce the number of trees in the forest by one.
- Terminate when there is only one tree in the forest.

Greedy step
- Combine two trees with the minimum frequencies into one tree.
- The frequency of the new tree is the sum of the frequencies of the two combined trees.
Example

- f:5
- e:9
- c:12
- b:13
- d:16
- a:45

- f:5
- e:9

- c:12
- b:13

- 14

- d:16
- a:45
Example

Huffman Codes

- c:12
- b:13
- 14
- d:16
- a:45
- f:5
- e:9
- 25
- 14
- d:16
- a:45
- f:5
- e:9
- 25
- c:12
- b:13
Example

Huffman Codes

Amotz Bar-Noy (CUNY)
Example
Example

- a: 45
- c: 12
- b: 13
- e: 9
- 30
- 25
- 14
- d: 16
- f: 5
- 55
- 100

Huffman Codes

Greedy Algorithms
Another Example

- A small example with animation:

Correctness and Complexity

Correctness

- Huffman algorithm generates a binary tree with n leaves.
- A binary tree represents a prefix free code.

Complexity

- The Huffman code algorithm can be implemented with complexity $\Theta(n \log(n))$.
Implementation – Data Structure

Forest of trees
- Initially, the forest contains n singleton trees.
- At the end, the forest contains one tree.

Priority queue of frequencies
- The frequencies of the trees in the forest are maintained in a priority queue Q.
- Initially, the queue contains the n original frequencies.
- At the end, the queue contains one frequency which is 1 the sum of all original frequencies.
Huffman Codes

Implementation – Procedure

Huffman\((\langle a_1, f_1 \rangle, \ldots, \langle a_n, f_n \rangle)\)

Build-Queue\((\{f_1, \ldots, f_n\}, Q)\)

for \(i = 1\) to \(n - 1\) (* the combination loop *)

\(z = \text{Allocate-Node}()\) (* creating a new root *)

\(x = \text{left}(z) = \text{Extract-Min}(Q)\)

(* the lightest tree is the left sub-tree *)

\(y = \text{right}(z) = \text{Extract-Min}(Q)\)

(* the second lightest tree is the right sub-tree *)

\(f(z) = f(x) + f(y)\) (* the frequency of the new root *)

Insert\((Q, f(z))\) (* inserting the new root to the queue *)

return Extract-Min\((Q)\) (* the last tree is the Huffman code *)
Complexity

- Implement the priority queue with a **Binary Heap**
- The complexity of **Build-Queue** is $\Theta(n)$.
- The complexity of **Extract-Min** and **Insert** is $\Theta(\log n)$.
- The loop is executed $\Theta(n)$ times.
- The total complexity of all the **Extract-Min** and the **Insert** operations is $\Theta(n \log n)$.
- The overall complexity is: $\Theta(n \log n)$.
Optimality – First Lemma

Lemma I

- Let \mathcal{A} be an alphabet.
- Let x and y be the two symbols in \mathcal{A} with the smallest frequencies.
- Then, there exists an optimal tree in which:
 - x and y are adjacent leaves (differ only in their last bit).
 - x and y are the farthest leaves from the root.
Let z and w be adjacent leaves in an optimal tree that are the farthest from the root.

Exchanging z and w with x and y yields a tree with a smaller or equal cost.
Lemma II

Let T be an optimal tree for the alphabet \mathcal{A}.

Let x, y be adjacent leaves in T and let z be their parent.

Let \mathcal{A}' be \mathcal{A} with a new symbol z replacing x and y with frequency: $f(z) = f(x) + f(y)$.

Let T' be the tree T without the leaves x and y and with z as a new leaf.

Then T' is an optimal tree for the alphabet \mathcal{A}'.
Lemma II – Proof Sketch

Let T'' be an optimal tree with smaller cost than T'. Replacing z in T'' with the two leaves x and y creates a tree with a smaller cost than T. A contradiction to the optimality of T.
Optimality

Theorem

- The Huffman code is an optimal code.

Proof by induction outline

- **Lemma I** implies that the first greedy step is a first step towards an optimal solution.
- **Lemma II** justifies the inductive steps that apply again and again the first lemma.