Algorithms: Tours in Graphs

Amotz Bar-Noy

CUNY
Outline

1. Introduction
2. Eulerian Paths and Eulerian Cycles
3. De-Bruijn Sequences and Graphs
4. Hamiltonian Paths and Hamiltonian Cycles
Special Paths and Cycles in Graphs

Eulerian Path
- A path that traverses **all** the edges of the graph exactly once.

Eulerian Cycle
- A cycle that traverses **all** the edges of the graph exactly once.

Hamiltonian Path
- A simple path that visits **all** the vertices of the graph exactly once.

Hamiltonian Cycle
- A simple cycle that visits **all** the vertices of the graph exactly once.
An Eulerian Path
An Eulerian Cycle
A Hamiltonian Path
Complexity

Eulerian paths and cycles
- An Eulerian Path or a Cycle, if exist, can be found in any graph with m edges in $\Theta(m)$-time.

Hamiltonian paths and cycles
- Finding a Hamiltonian Path or a Cycle is a hard to solve problem.
- It is strongly believed that no polynomial time algorithm exists to solve these problems.

The Traveller Salesperson Problem (TSP)
- The TSP is a generalization of the Hamiltonian Cycle problem to weighted graphs.
- There are “good” heuristics and approximation algorithms for weight functions that obey the triangle inequality.
- In particular for graphs that represent distances in the plane.
Eulerian Paths and Cycles in Undirected Graphs

Edge representation path

- \(P = (e_0, e_1, \ldots, e_{m-1}) \)

Definitions

- \(P \) is an Eulerian Path in an undirected graph with \(m \) edges if
 - \(e_i \neq e_j \) for all \(0 \leq i \neq j < m \).
 - \(e_i = (x, y) \) and \(e_{i+1} = (y, z) \) for \(0 \leq i < m - 1 \) and vertices \(x, y, z \).

- An Eulerian Cycle \(C \) in an undirected graph is an Eulerian Path \(P \) for which
 - \(e_{m-1} = (x, y) \) and \(e_0 = (y, z) \) for vertices \(x, y, z \).
Eulerian Paths and Cycles in Directed Graphs

Edge representation path

\[P = (e_0, e_1, \ldots, e_{m-1}) \]

Definitions

- \(P \) is an Eulerian Path in a directed graph with \(m \) edges if
 - \(e_i \neq e_j \) for all \(0 \leq i \neq j < m \).
 - \(e_i = (x \rightarrow y) \) and \(e_{i+1} = (y \rightarrow z) \) for \(0 \leq i < m - 1 \) and vertices \(x, y, z \).
- An Eulerian Cycle \(C \) in a directed graph is an Eulerian Path \(P \) for which
 - \(e_{m-1} = (x \rightarrow y) \) and \(e_0 = (y \rightarrow z) \) for vertices \(x, y, z \).
The bridges of Königsberg

No Eulerian Cycle or Eulerian Path exist!!!
A Toy Example

- The **left** graph has no Eulerian Path.
- The **middle** graph has an Eulerian Path but not an Eulerian Cycle.
- The **right** graph has an Eulerian Cycle.
Graphs with Eulerian Cycles

Theorem

An undirected and connected graph has an Eulerian Cycle iff all the vertices have an even degree.

Remark

A self-loop adds 2 to the degree of the vertex.

Proof: the only-if direction

- Let $C = (e_0, e_1, \ldots, e_{m-1})$ be an Eulerian Cycle.
- Let y be a vertex.
- If $e_i = (x, y)$ then $e_{i+1} = (y, z) \ ((m - 1) + 1 = 0)$.
- Therefore, the degree of y must be even.
Outline

- Assume all the degrees are even.
- Construct an $\Theta(m)$-time algorithm producing an Eulerian Cycle represented by vertices.
- Each edge is examined constant number of times with an appropriate data structure.
- **Main idea:** Explore unused edges as long as they exist.
Construction

Data structure and variables

- Edges are marked either **used** or **unused**.
 - Initially all the edges are marked **unused**.
 - At the end all the edges are marked **used**.

- An arbitrary starting vertex \(x \).

- A main cycle \(C \).
 - Initially \(C \) is empty.
 - At the end \(C \) contains all the edges.

- An exploring path \(P = (y, \ldots) \).
 - Initially \(P = (x) \).
 - At the end \(P \) is empty.

- A secondary cycle \(C' \).
 - Initially and at the end \(C' \) is empty.
Finding a secondary cycle

- Let \(P = (y, \ldots, z) \) be the exploring path.
- While \(z \) (the last vertex in \(P \)) has unused edges:
 - Let \((z, w)\) be an unused edge.
 - Mark \((z, w)\) as used.
 - Append \(w \) at the end of \(P \): \(P = (y, \ldots, z, w) \).
- Let the secondary cycle \(C' = P = (y, \ldots, y) \).
 - Need to prove: this process terminates only at \(y \).
Combining the main and the secondary cycles

- Let $C = (x, \ldots, a, y, b, \ldots, x)$ be the main cycle.
- Let $C' = (y, c, \ldots, d, y)$ be the secondary cycle.
- Then $C = (x, \ldots, a, y, c, \ldots, d, y, b, \ldots, x)$.
Construction

High level algorithm

1. Start the exploring path with \(x \).
2. Find the first secondary cycle \(C' \):
3. Set the first main cycle \(C \) to be \(C' \).
4. While there exists an unused edge:
 4.1. Find \(y \) in \(C \) with an unused edges.
 4.2. Find a secondary cycle \(C' \) starting with \(y \).
 4.3. Combine the cycles \(C \) and \(C' \) into \(C \).
5. Return the cycle \(C \).
Correctness

Observation I

Since all the edges have an even degree it follows that the finding a secondary cycle procedure can be stuck only at \(y \) which is the first vertex of the exploring path.

Observation II

If the main cycle \(C \) does not contain all the edges in the graph, then it must contain a vertex with an unused edge due to connectivity.

Correctness proof

Followed by the above two observations.
Complexity

Outline

- Each edge is explored only once when it is \textit{unused} and then it becomes \textit{used} forever.
- This can be done in $\Theta(m)$-time with \textit{adjacency lists}.
- Each edge is traversed only once while looking for a vertex with an \textit{unused} edge in the main cycle.
- This can be done if the main cycle is a \textit{linked list} and if the algorithm \textit{maintains} the last starting vertex for the exploring path.
- There are at most $n - 1$ cycle combinations since a new exploring path never reaches again the connecting vertex.
- A combination can be done in $\Theta(1)$-time if the cycles are maintained as \textit{double linked lists}.
- The overall complexity is $\Theta(m)$ in connected graphs ($n \leq m$).
Directed Graphs

Definitions

- In a **strongly connected graph** there exists a directed path between any two vertices.
- The **in-degree** of a vertex \(x \) is the number of edges terminating at \(x \).
- The **out-degree** of a vertex \(x \) is the number of edges originating at \(x \).

Theorem

- A directed and strongly connected graph has an Eulerian Cycle **iff** \(d_{in}(x) = d_{out}(x) \) for each vertex \(x \).
Eulerian Paths

Theorem: undirected graphs

- An undirected and connected graph has an Eulerian Path if at most two vertices have an odd degree.

Theorem: directed graphs

- A strongly connected directed graph has a directed Eulerian Path starting with x and ending at y, $x \neq y$, if:
 - $d_{in}(z) = d_{out}(z)$ for any vertex $z \notin \{x, y\}$.
 - $d_{in}(x) = d_{out}(x) - 1$.
 - $d_{in}(y) = d_{out}(y) + 1$.

Amotz Bar-Noy (CUNY)
Covering Paths

Lemma
- In an undirected graph the number of vertices with odd degree is even.

Definition
- k disjoint paths **cover** a graph G if each edge of G belongs to one of the k paths.

Theorem
- A connected undirected graph with $2k$ vertices with an odd degree can be **covered** with k disjoint paths.
Covering Paths

Proof outline

- Match the odd-degree $2k$ vertices with k new edges.
 - The original and the new graphs do not have to be simple.
- All the vertices in the new graph have now an even degree.
- Find an Eulerian Cycle in the new graph.
- The new edges are not adjacent in the Eulerian Cycle since each vertex belongs to at most one new edge.
- Omit the k new edges from the Eulerian Cycle.
- The cycle is partitioned to k paths that cover all the original edges.
De-Bruijn Sequences

Notation
- $\Sigma = \{0, 1, \ldots, \sigma - 1\}$ – an alpha-bet of σ letters.

Observation
- There exists σ^ℓ distinct words of length ℓ over Σ.

Examples
- $\sigma = 2$ and $\ell = 3 \implies \{000, 001, 010, 011, 100, 101, 110, 111\}$
- $\sigma = 3$ and $\ell = 2 \implies \{00, 01, 02, 10, 11, 12, 20, 21, 22\}$
Definition

A cyclic sequence

\[S_{\sigma, \ell} = a_0, a_1, \ldots, a_{L-1} \]

of length \(L = \sigma^\ell \) is called a **De-Bruijn** sequence if for any word \(w \) of length \(\ell \) over \(\Sigma \) there exists a unique index \(0 \leq i < L \) such that

\[w = a_i, a_{i+1}, \ldots, a_{i+\ell-1} \]

where the addition is done mod \(L \).

Examples

- \(\sigma = 2 \) and \(\ell = 3 \) \(\implies \) (00011101)
- \(\sigma = 3 \) and \(\ell = 2 \) \(\implies \) (001122021)
Directed De-Bruijn graphs

Graph

- Denote a De-Bruijn graph by $G_{\sigma,\ell} = (V_{\sigma,\ell}, E_{\sigma,\ell})$.

Vertices

- All the $n = \sigma^{\ell-1}$ words of length $\ell - 1$.
 - $V_{2,4} = \{000, 001, \ldots, 111\}$.
 - $V_{3,3} = \{00, 01, \ldots, 22\}$.

Edges

- All the $m = \sigma^\ell$ words of length ℓ.
 - $E_{2,4} = \{0000, 0001, \ldots, 1111\}$.
 - $E_{3,3} = \{000, 001, \ldots, 222\}$.

- The edge (b_1, \ldots, b_{ℓ}) connects the vertices:
 $(b_1, b_2 \ldots, b_{\ell-1}) \rightarrow (b_2, \ldots, b_{\ell-1}, b_{\ell})$
De-Bruijn Sequences and Graphs

$G_{2,3}$

Graph $G_{2,3}$ showing tours in graphs.
$G_{3,2}$
De-Bruign Sequences Always Exist

Lemma
- For all positive integers σ and ℓ there exists a directed Eulerian Cycle in $G_{\sigma,\ell}$.

Proof
- $G_{\sigma,\ell}$ is strongly connected and $\text{in-degree} = \text{out-degree} = \sigma$ for all vertices.

Lemma
- An Eulerian Cycle in $G_{\sigma,\ell}$ implies a De-Brujin sequence $S_{\sigma,\ell}$.

Proof
- Follow the Eulerian Cycle. Initially the sequence is the first vertex on the path. Append only the last letter of the next vertex to the current sequence.
$G_{2,3}$ and $S_{2,3}$

- **Eulerian Cycle:** $00 \rightarrow 00 \rightarrow 01 \rightarrow 11 \rightarrow 11 \rightarrow 10 \rightarrow 01 \rightarrow 10 \rightarrow 00$
- **De-Bruijn sequence:** 00011101
$G_{3,2}$ and $S_{3,2}$

Eulerian Cycle: $0 \rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 0 \rightarrow 2 \rightarrow 1 \rightarrow 0$

De-Bruijn sequence: 001122021
Hamiltonian Paths and Cycles

Undirected graphs

- A path of vertices: \(P = (v_0, v_1, \ldots, v_{n-1}) \).
- \(P \) is a Hamiltonian Path in a graph with \(n \) vertices if
 - \(v_i \neq v_j \) for all \(0 \leq i \neq j < n \).
 - \((v_i, v_{i+1})\) is an edge for \(0 \leq i < n - 1 \).
- A Hamiltonian Cycle \(C \) is a Hamiltonian Path \(P \) for which
 \((v_{n-1}, v_0)\) is also an edge.

Directed graphs

- A directed path of vertices: \(P = (v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_{n-1}) \).
- \(P \) is a directed Hamiltonian Path in a graph with \(n \) vertices if
 - \(v_i \neq v_j \) for all \(0 \leq i \neq j < n \).
 - \((v_i \rightarrow v_{i+1})\) is a directed edge for \(0 \leq i < n - 1 \).
- A directed Hamiltonian Cycle \(C \) is a directed Hamiltonian Path \(P \)
 for which \((v_{n-1} \rightarrow v_0)\) is also an edge.
Hamiltonian Paths and Hamiltonian Cycles

The Petersen Graph

Observations

- There is no Hamiltonian Cycle.
- The following is a Hamiltonian Path:
 \[P = (A, B, C, D, E, J, H, F, I, G) \]
The Knight-Chess Graph

Definition

- The **Knight-Chess graph** has \(n^2 \) vertices; one for each square on the \(n \times n \) chess board. Two vertices are adjacent iff a knight can move from one to another in one step.

The \(8 \times 8 \) Knight-Chess graph
The Knight-Chess Problem

Problem

- Is it possible to cover all the squares of the chess board with knight moves?
- An equivalent formulation: Are there Hamiltonian paths in Knight-Chess graphs?

The 8×8 Knight-Chess graph
Definition

- A **tournament** is a simple directed graph such that for each pair of vertices u and v, either the directed edge $u \rightarrow v$ exists or the directed edge $v \rightarrow u$ exists but not both and not none.

Observations

- There are exactly $\binom{n}{2}$ directed edges in a tournament with n vertices.
- The underlying graph of a tournament with n vertices is the complete graph K_n.

Theorem

- A tournament always has a Hamiltonian path.
A Tournament with 6 Vertices
A Hamiltonian Path in the Tournament
A Hamiltonian Cycle in the Tournament
Finding a Hamiltonian Path in a Tournament

High level algorithm

1. **Start** with the path \(P_1 = (v_1) \) for an arbitrary vertex \(v_1 \).
2. For \(1 \leq i \leq n \), let the current path be
 \[
 P_i = (v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_i)
 \]
3. If \(i = n \), **terminate** with the Hamiltonian Path \(P_n \).
4. Let \(v \) be a vertex not in the path.
5. **Insert** \(v \) into \(P_i \) to get the path \(P_{i+1} \).
6. **Goto** Step (2).
Path Augmentation

Three cases

- If \((v \rightarrow v_1)\) is an edge, then \(P_{i+1} = (v \rightarrow v_1 \rightarrow \cdots \rightarrow v_i)\).
- If \((v_i \rightarrow v)\) is an edge, then \(P_{i+1} = (v_1 \rightarrow \cdots \rightarrow v_i \rightarrow v)\).
- Otherwise, \(\exists 1 \leq j < i\) s.t. \((v_j \rightarrow v)\) and \((v \rightarrow v_{j+1})\) are edges, then
 \[
P_{i+1} = (v_1 \rightarrow v_j \rightarrow v \rightarrow v_{j+1} \cdots \rightarrow v_i)
 \]
Correctness and Complexity

Correctness

- The path augmentation is always successful.
- Therefore, eventually P_n exists which is a Hamiltonian Path.

Complexity

- Inserting a vertex to a path can be done in $\Theta(n)$ time using the adjacency matrix.
- There are n iterations.
- The overall complexity is $\Theta(n^2)$.
- With a binary search for the insertion point, the algorithm probes the adjacency matrix $O(n \log n)$ times. But the overall complexity is still $\Theta(n^2)$.
A Hamiltonian Cycle Greedy Algorithm

High level algorithm

- As long as possible, **construct** a path by adding vertices to both end-vertices of the path.
- **Close** this path into a cycle by either connecting both end-vertices or by finding a **switch vertex**.
- **Connect** a new vertex to the cycle and **break** it to be a new longer path.
- **Repeat** the above process until either a Hamiltonian Cycle is found or an operation is impossible.
Converting a Path to a Cycle
Converting a Cycle to a Path
A Hamiltonian Cycle Greedy Algorithm

Algorithm part I

1. Initially, let $P = (x)$ be a path with an arbitrary vertex x.
2. **Expand** the path P from both ends until impossible. Let

 $P = (x_0 - x_1 - \cdots - x_h)$

 where there are no edges from x_0 and x_h outside P.
3. If (x_0, x_h) is an edge then **construct** the cycle

 $C = (x_0 - x_1 - \cdots - x_h - x_0)$

 Goto step 6.
4. If for some $0 < i < h$ the edges (x_0, x_{i+1}) and (x_i, x_h) exist, then **construct** the cycle

 $C = (x_0 - x_1 - \cdots - x_i - x_h - x_{h-1} - x_{i+1} - x_0)$

 Goto step 6.
A Hamiltonian Cycle Greedy Algorithm

Algorithm part II

5. **Terminate Unsuccessfully** with the path P.

6. If $h = n - 1$ then **Terminate Successfully** with the Hamiltonian Cycle C.

7. If there is no edge from C outside of C, then **Terminate Unsuccessfully** with the cycle C.

8. Let (x_i, x) be an arbitrary edge from C to outside of C, then **construct** the path

$$P = (x - x_i - x_{i+1} - \cdots - x_h - x_0 - \cdots - x_{i-1})$$

9. **Goto** step 2 with a longer path.
Sometimes Hamiltonian Cycles Exist

Theorem
- Let G be a connected graph with n vertices.
- If $d(u) + d(v) \geq n$ for any two vertices $u \neq v$ in G, then G has a Hamiltonian Cycle.

Corollary
- Let G be a connected graph with n vertices.
- If $d(u) \geq n/2$ for any vertex u in G, then G has a Hamiltonian Cycle.
Proof of the Theorem

Proof outline

- Step 4, whenever executed, is always successful.
 - Assume that step 4 fails for $h \leq n - 1$ with the path $P = (x_0 - x_1 - \cdots x_{h-1} - x_h)$.
 - Let $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ be the neighbors of x_0 in P.
 - $\Rightarrow x_{i_1-1}, x_{i_2-1}, \ldots, x_{i_k-1}$ cannot be neighbors of x_h.
 - $\Rightarrow d(x_h) \leq h - k \leq n - 1 - k$.
 - $\Rightarrow d(x_0) + d(x_h) < n$.
 - A contradiction.

- Therefore, the algorithm never reaches step 5.
- The algorithm never terminates in step 7 since the graph is connected.
- The algorithm terminates successfully with a Hamiltonian Cycle in step 6 since the path is longer in each iteration.
Algorithm Complexity

Outline

- Represent the graph with an adjacency matrix.
- Augmenting a path by one vertex at its end-point can be done in $\Theta(n)$-time for a total of $\Theta(n^2)$-time for all the augmentations.
- Converting a path into a cycle can be done in $\Theta(n)$-time for a total of $\Theta(n^2)$-time for all such conversions.
- All the conversions of cycles into paths can be done in $\Theta(n^2)$-time by scanning the adjacency matrix only once.
- The overall complexity is therefore $\Theta(n^2)$.