Algorithms: Tours in Graphs

Amotz Bar-Noy

CUNY

Fall 2020
1. Introduction
2. Euler Paths and Euler Cycles
3. De-Bruijn Sequences and Graphs
4. Hamilton Paths and Hamilton Cycles
Special Paths and Cycles in Graphs

Euler Path
- A path that traverses all the edges of the graph exactly once.

Euler Cycle
- A cycle that traverses all the edges of the graph exactly once.

Hamilton Path
- A simple path that visits all the vertices of the graph exactly once.

Hamilton Cycle
- A simple cycle that visits all the vertices of the graph exactly once.
An Euler Path
An Euler Cycle
A Hamilton Path
A Hamilton Cycle
Complexity

Euler paths and cycles
- An Euler Path or a Cycle, if exist, can be found in any graph with \(m \) edges in \(\Theta(m) \)-time.

Hamilton paths and cycles
- Finding a Hamilton Path or a Cycle is a hard to solve problem.
- It is strongly believed that no polynomial time algorithm exists to solve these problems.

The Traveller Salesperson Problem (TSP)
- The TSP is a generalization of the hamilton Cycle problem to weighted graphs.
- There are “good” heursitic and approximation algorithms for weight functions that obey the triangle inequality.
- In particular for graphs that represent distances in the plane.
Euler Paths and Cycles in Undirected Graphs

Edge representation path

- $P = (e_0, e_1, \ldots, e_{m-1})$

Definitions

- P is an Euler Path in an undirected graph with m edges if
 - $e_i \neq e_j$ for all $0 \leq i \neq j < m$.
 - $e_i = (x, y)$ and $e_{i+1} = (y, z)$ for $0 \leq i < m - 1$ and vertices x, y, z.

- An Euler Cycle C in an undirected graph is an Euler Path P for which
 - $e_{m-1} = (x, y)$ and $e_0 = (y, z)$ for vertices x, y, z.
Euler Paths and Cycles in Directed Graphs

Edge representation path

\[P = (e_0, e_1, \ldots, e_{m-1}) \]

Definitions

- \(P \) is an Euler Path in a directed graph with \(m \) edges if
 - \(e_i \neq e_j \) for all \(0 \leq i \neq j < m \).
 - \(e_i = (x \rightarrow y) \) and \(e_{i+1} = (y \rightarrow z) \) for \(0 \leq i < m - 1 \) and vertices \(x, y, z \).

- An Euler Cycle \(C \) in a directed graph is an Euler Path \(P \) for which
 - \(e_{m-1} = (x \rightarrow y) \) and \(e_0 = (y \rightarrow z) \) for vertices \(x, y, z \).
The bridges of Königsberg

No Euler Cycle or Euler Path exist!!!
A Toy Example

- The **left** graph has no Euler Path.
- The **middle** graph has an Euler Path but not an Euler Cycle.
- The **right** graph has an Euler Cycle.
Theorem

An undirected and connected graph has an Euler Cycle iff all the vertices have an even degree.

Remark

A self-loop adds 2 to the degree of the vertex.

Proof: the only-if direction

Let $C = (e_0, e_1, \ldots, e_{m-1})$ be an Euler Cycle.

Let y be a vertex.

If $e_i = (x, y)$ then $e_{i+1} = (y, z)$ ($m - 1 + 1 = 0$).

Therefore the degree of y must be even.
Proof: The If Direction

Outline

- Assume all the degrees are even.
- Construct an $\Theta(m)$-time algorithm producing an Euler Cycle represented by vertices.
- Each edge is examined constant number of times with an appropriate data structure.
- Main idea: Explore unused edges as long as they exist.
Construction

Data structure and variables

- Edges are marked either **used** or **unused**.
 - Initially all the edges are marked **unused**.
 - At the end all the edges are marked **used**.
- An arbitrary starting vertex x.
- A main cycle C.
 - Initially C is empty.
 - At the end C contains all the edges.
- An exploring path $P = (y, \ldots)$.
 - Initially $P = (x)$.
 - At the end P is empty.
- A secondary cycle C'.
 - Initially and at the end C' is empty.
Finding a secondary cycle

- Let \(P = (y, \ldots, z) \) be the exploring path.
- While \(z \) (the last vertex in \(P \)) has **unused** edges:
 - Let \((z, w)\) be an **unused** edge.
 - Mark \((z, w)\) as **used**.
 - Append \(w \) at the end of \(P \): \(P = (y, \ldots, z, w) \).
- Let the secondary cycle \(C' = P = (y, \ldots, y) \).
 - Need to prove: this process terminates **only** at \(y \).
Construction

Combining the main and the secondary cycles

- Let \(C = (x, \ldots, a, y, b, \ldots, x) \) be the main cycle.
- Let \(C' = (y, c, \ldots, d, y) \) be the secondary cycle.
- Then \(C = (x, \ldots, a, y, c, \ldots, d, y, b, \ldots, x) \).
Construction

High level algorithm

1. Start the exploring path with x.
2. Find the first secondary cycle C':
3. Set the first main cycle C to be C'.
4. While there exists an unused edge:
 4.1. Find y in C with an unused edges.
 4.2. Find a secondary cycle C' starting with y.
 4.3. Combine the cycles C and C' into C.
5. Return the cycle C.
Correctness

Observation I
- Since all the edges have an even degree it follows that the finding a secondary cycle procedure can be stuck only at y which is the first vertex of the exploring path.

Observation II
- If the main cycle C does not contain all the edges in the graph, then it must contain a vertex with an unused edge due to connectivity.

Correctness proof
- Followed by the above two observations.
Euler Paths and Euler Cycles

Complexity

Outline

- Each edge is explored only once when it is unused and then it becomes used forever.
- This can be done in $\Theta(m)$-time with adjacency lists.
- Each edge is traversed only once while looking for a vertex with an unused edge in the main cycle.
- This can be done if the main cycle is a linked list and if the algorithm maintains the last starting vertex for the exploring path.
- There are at most $n - 1$ cycle combinations since a new exploring path never reaches again the connecting vertex.
- A combination can be done in $\Theta(1)$-time if the cycles are maintained as double linked lists.
- The overall complexity is $\Theta(m)$ in connected graphs ($n \leq m$).
Definitions

- In a **strongly connected graph** there exists a directed path between any two vertices.
- The **in-degree** of a vertex x is the number of edges terminating at x.
- The **out-degree** of a vertex x is the number of edges originating at x.

Theorem

A directed and strongly connected graph has an Euler Cycle **iff** $d_{in}(x) = d_{out}(x)$ for each vertex x.

Euler Paths and Euler Cycles

Directed Graphs

Definitions

- In a **strongly connected graph** there exists a directed path between any two vertices.
- The **in-degree** of a vertex x is the number of edges terminating at x.
- The **out-degree** of a vertex x is the number of edges originating at x.

Theorem

A directed and strongly connected graph has an Euler Cycle **iff** $d_{in}(x) = d_{out}(x)$ for each vertex x.

Amotz Bar-Noy (CUNY)

Tours in Graphs

Fall 2020
Euler Paths

Theorem: undirected graphs
- An undirected and connected graph has an Euler Path if at most 2 vertices have an odd degree.

Theorem: directed graphs
- A strongly connected directed graph has a directed Euler Path starting with x and ending at y, $x \neq y$, if:
 - $d_{in}(z) = d_{out}(z)$ for any vertex $z \notin \{x, y\}$.
 - $d_{in}(x) = d_{out}(x) - 1$.
 - $d_{in}(y) = d_{out}(y) + 1$.
Lemma

- In an undirected graph the number of vertices with odd degree is even.

Definition

- k disjoint paths **cover** a graph G if each edge of G belongs to one of the k paths.

Theorem

- A connected undirected graph with $2k$ vertices with an odd degree can be **covered** with k disjoint paths.
Covering Paths

Proof outline
- Match the odd-degree $2k$ vertices with k new edges.
- All the vertices in the new graph have now an even degree.
- Find an Euler Cycle in the new graph.
- The new edges are not adjacent in the Euler Cycle since each vertex belongs to at most one new edge.
- Omit the k new edges from the Euler Cycle.
- The cycle is partitioned to k paths that cover all the edges.
De-Bruijn Sequences

Notation

\[\Sigma = \{0, 1, \ldots, \sigma - 1\} \] – an alphabet of \(\sigma \) letters.

Observation

There exists \(\sigma^\ell \) distinct words of length \(\ell \) over \(\Sigma \).

Examples

- \(\sigma = 2 \) and \(\ell = 3 \) \(\Rightarrow \) \{000, 001, 010, 011, 100, 101, 110, 111\}
- \(\sigma = 3 \) and \(\ell = 2 \) \(\Rightarrow \) \{00, 01, 02, 10, 11, 12, 20, 21, 22\}
De-Bruijn Sequences

Definition

A cyclic sequence

\[S_{\sigma, \ell} = a_0, a_1, \ldots, a_{L-1} \]

of length \(L = \sigma^\ell \) is called a De-Bruijn sequence if for any word \(w \)
of length \(\ell \) over \(\Sigma \) there exists a unique index \(0 \leq i < L \) such that

\[w = a_i, a_{i+1}, \ldots, a_{i+\ell-1} \]

where the addition is done mod \(L \).

Examples

- \(\sigma = 2 \) and \(\ell = 3 \) \(\rightarrow \) \((00011101) \)
- \(\sigma = 3 \) and \(\ell = 2 \) \(\rightarrow \) \((001122021) \)
Directed De-Bruijn graphs

Graph
- Denote a De-Bruijn graph by $G_{\sigma, \ell} = (V_{\sigma, \ell}, E_{\sigma, \ell})$.

Vertices
- All the $n = \sigma^{\ell-1}$ words of length $\ell - 1$.
 - $V_{2,4} = \{000, 001, \ldots, 111\}$.
 - $V_{3,3} = \{00, 01, \ldots, 22\}$.

Edges
- All the $m = \sigma^\ell$ words of length ℓ.
 - $E_{2,4} = \{0000, 0001, \ldots, 1111\}$.
 - $E_{3,3} = \{000, 001, \ldots, 222\}$.
- The edge (b_1, \ldots, b_ℓ) connects the vertices: $(b_1, b_2 \ldots, b_{\ell-1}) \rightarrow (b_2, \ldots, b_{\ell-1}, b_\ell)$
$G_{2,3}$
$G_{3,2}$
De-Bruign Sequences Always Exist

Lemma

- For all positive integers σ and ℓ there exists a directed Euler Cycle in $G_{\sigma,\ell}$.

Proof

- $G_{\sigma,\ell}$ is strongly connected and $\text{in-degree} = \text{out-degree} = \sigma$ for all vertices.

Lemma

- An Euler Cycle in $G_{\sigma,\ell}$ implies a De-Bruign sequence $S_{\sigma,\ell}$.

Proof

- Follow the Euler Cycle. Initially the sequence is the first vertex on the path. Append only the last letter of the next vertex to the current sequence.
$G_{2,3}$ and $S_{2,3}$

Euler Cycle: 00 → 00 → 01 → 11 → 11 → 10 → 01 → 10 → 00

De-Bruijn sequence: 00011101
$G_{3,2}$ and $S_{3,2}$

Euler Cycle: 0 → 0 → 1 → 1 → 2 → 2 → 0 → 2 → 1 → 0

De-Bruijn sequence: 001122021
Hamilton Paths and Cycles

Undirected graphs

- A path of vertices: \(P = (v_0, v_1, \ldots, v_{n-1}) \).
- \(P \) is a Hamilton Path in a graph with \(n \) vertices if
 - \(v_i \neq v_j \) for all \(0 \leq i \neq j < n \).
 - \((v_i, v_{i+1})\) is an edge for \(0 \leq i < n - 1 \).
- A Hamilton Cycle \(C \) is a Hamilton Path \(P \) for which \((v_{n-1}, v_0)\) is also an edge.

Directed graphs

- A directed path of vertices: \(P = (v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_{n-1}) \).
- \(P \) is a directed Hamilton Path in a graph with \(n \) vertices if
 - \(v_i \neq v_j \) for all \(0 \leq i \neq j < n \).
 - \((v_i \rightarrow v_{i+1})\) is a directed edge for \(0 \leq i < n - 1 \).
- A directed Hamilton Cycle \(C \) is a directed Hamilton Path \(P \) for which \((v_{n-1} \rightarrow v_0)\) is also an edge.
There is no Hamilton Cycle.
The following is a Hamilton Path: $P = (A, B, C, D, E, J, H, F, I, G)$
The Knight-Chess Graph

Definition

- The **Knight-Chess graph** has n^2 vertices; one for each square on the $n \times n$ chess board. Two vertices are adjacent iff a knight can move from one to another in one step.

The 8×8 Knight-Chess graph
The Knight-Chess Problem

Problem

- Is it possible to cover all the squares of the chess board with knight moves?
- An equivalent formulation: Are there Hamilton paths in Knight-Chess graphs?

The 8 × 8 Knight-Chess graph

![Knight-Chess graph](image-url)
Tournaments

Definition
- A tournament is a simple directed graph such that for each pair of vertices u and v, either the directed edge $u \rightarrow v$ exists or the directed edge $v \rightarrow u$ exists but not both and not none.

Observations
- There are exactly $\binom{n}{2}$ directed edges in a tournament with n vertices.
- The underlying graph of a tournament with n vertices is the complete graph K_n.

Theorem
- A tournament always has a Hamilton path.
A Tournament with 6 Vertices
A Hamilton Path in the Tournament
A Hamilton Cycle in the Tournament
Algorithm to find Hamilton Path in a Tournament

High level algorithm

1. **Start** with the path $P_1 = (v_1)$ for an arbitrary vertex v_1.
2. For $1 \leq i \leq n$, let the current path be $P_i = (v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_i)$
3. If $i = n$, **terminate** with the Hamilton Path P_n.
4. Let v be a vertex not in the path.
5. **Insert** v into P_i to get the path P_{i+1}.
6. **Goto** Step (2).
Path Augmentation

Three cases

- If \((v \rightarrow v_1)\) is an edge, then \(P_{i+1} = (v \rightarrow v_1 \rightarrow \cdots \rightarrow v_i)\).
- If \((v_i \rightarrow v)\) is an edge, then \(P_{i+1} = (v_1 \rightarrow \cdots \rightarrow v_i \rightarrow v)\).
- Otherwise, \(\exists 1 \leq j < i\) s.t. \((v_j \rightarrow v)\) and \((v \rightarrow v_{j+1})\) are edges, then

\[
P_{i+1} = (v_1 \rightarrow v_j \rightarrow v \rightarrow v_{j+1} \cdots \rightarrow v_i)
\]
Correctness and Complexity

Correctness
- The path augmentation is always successful.
- Therefore, eventually P_n exists which is a Hamilton Path.

Complexity
- Inserting a vertex to a path can be done in $\Theta(n)$ time using the adjacency matrix.
- There are n iterations.
- The overall complexity is $\Theta(n^2)$.
- With a binary search for the insertion point, the algorithm probes the adjacency matrix $O(n \log n)$ times. But the overall complexity is still $\Theta(n^2)$.
A Hamilton Cycle Greedy Algorithm

High level algorithm

- As long as possible, **construct** a path by adding vertices to both end-vertices of the path.
- **Close** this path into a cycle by either connecting both end-vertices or by finding a **switch vertex**.
- **Connect** a new vertex to the cycle and **break** it to be a new longer path.
- **Repeat** the above process until either a Hamilton Cycle is found or an operation is impossible.
Converting a Path to a Cycle
Converting a Cycle to a Path
A Hamilton Cycle Greedy Algorithm

Algorithm part I

1. Initially, let \(P = (x) \) be a path with an arbitrary vertex \(x \).
2. Expand the path \(P \) from both ends until impossible. Let
 \[P = (x_0 - x_1 - \cdots - x_h) \]
 where there are no edges from \(x_0 \) and \(x_h \) outside \(P \).
3. If \((x_0, x_h)\) is an edge then construct the cycle
 \[C = (x_0 - x_1 - \cdots - x_h - x_0) \]
 Goto step 6.
4. If for some \(0 < i < h \) the edges \((x_0, x_{i+1})\) and \((x_i, x_h)\) exist, then construct the cycle
 \[C = (x_0 - x_1 - \cdots - x_i - x_h - x_{h-1} - x_{i+1} - x_0) \]
 Goto step 6.
A Hamilton Cycle Greedy Algorithm

Algorithm part II

5. **Terminate Unsuccessfully** with the path P.

6. If $h = n - 1$ then **Terminate Successfully** with the Hamilton Cycle C.

7. If there is no edge from C outside of C, then **Terminate Unsuccessfully** with the cycle C.

8. Let (x_i, x) be an arbitrary edge from C to outside of C, then **construct** the path

 $$P = (x - x_i - x_{i+1} - \cdots - x_h - x_0 - \cdots - x_{i-1})$$

9. **Goto** step 2 with a longer path.
Hamilton Paths and Hamilton Cycles

Sometimes Hamilton Cycles Exist

Theorem
- Let G be a connected graph with n vertices.
- If $d(u) + d(v) \geq n$ for any two vertices $u \neq v$ in G, then G has a Hamilton Cycle.

Corollary
- Let G be a connected graph with n vertices.
- If $d(u) \geq n/2$ for any vertex u in G, then G has a Hamilton Cycle.
Proof of the Theorem

Proof outline

- Step 4, whenever executed, is always successful.
 - Assume that step 4 fails for \(h \leq n - 1 \) with the path \(P = (x_0 - x_1 - \cdots - x_{h-1} - x_h) \).
 - Let \(x_{i_1}, x_{i_2}, \ldots, x_{i_k} \) be the neighbors of \(x_0 \) in \(P \).
 - \(\Rightarrow x_{i_1-1}, x_{i_2-1}, \ldots, x_{i_k-1} \) cannot be neighbors of \(x_h \).
 - \(\Rightarrow d(x_h) \leq h - k \leq n - 1 - k \).
 - \(\Rightarrow d(x_0) + d(x_h) < n \).
 - A contradiction.

Therefore, the algorithm never reaches step 5.

The algorithm never terminates in step 7 since the graph is connected.

The algorithm terminates successfully with a Hamilton Cycle in step 6 since the path is longer in each iteration.
Algorithm Complexity

Outline

- Represent the graph with an adjacency matrix.
- Augmenting a path by one vertex at its end-point can be done in $\Theta(n)$-time for a total of $\Theta(n^2)$-time for all the augmentations.
- Converting a path into a cycle can be done in $\Theta(n)$-time for a total of $\Theta(n^2)$-time for all such conversions.
- All the conversions of cycles into paths can be done in $\Theta(n^2)$-time by scanning the adjacency matrix only once.
- The overall complexity is therefore $\Theta(n^2)$.