Outline

1. Introduction
2. Traversal Trees
3. DFS
4. Directed Acyclic Graphs
5. BFS
6. Strongly Connected Directed Graphs
7. Diameters of Graphs
8. Articulation Points
Graph Traversals

Input
- A simple, undirected, and connected graph $G = (V, E)$ with $|V| = n$ vertices and $|E| = m$ edges.

Objective
- Find a traversal path that
 - visits all the vertices of the graph and
 - traverses all the edges of a graph.

Remark
- Vertices can be visited more than once and edges can be traversed more than once.
Graph Traversals

A general scheme

- **Start** with one of the vertices and traverse one of its incident edges to reach another vertex.
- Using traversed edges, **go** to one of the visited vertices that has an incident untraversed edge.
- **Traverse** this untraversed edge.
- **Continue** until all the edges are traversed.

Correctness

- Connectivity implies that all edges are traversed and that all vertices are visited.
Graph Traversals

Efficiency objectives

- Apply simple rules to find an untraversed edge.
- Implement the traversal procedure with an efficient data structure.
- Finish fast in $\Theta(n + m)$ running time.

Example

- An Euler path is the **shortest** possible traversal path if exists – no edge is traversed more than once.
Models

Directed graphs
- An edge is traversed only from its origin to its destination.

Disconnected graphs
- When stuck, **jump** to an unvisited vertex.
- **Continue** until all vertices are visited and all edges are traversed.
Traversal path: A
Example

Traversal path: AB
Traversals path: ABE
Example

Traversal path: \textbf{ABED}
Example

Traversal path: $ABEDF$
Example

Traversal path: $ABEDFE$
Traversal path: $ABEDFEB$
Example

Traversal path: \textit{ABEDFEBBC}
Example

Traversal path: \textit{ABEDFEBCA}
Example

Graph Traversal

Traversal path: **ABEDFEBCAD**

![Graph Diagram](image)
Traversal path: \textbf{ABEDFEBCADF}
Traversal path: $ABEDFEBCADFC$
Traversals Trees

The tree structure

- The traversal tree is a **rooted**, **ordered**, and **directed**.
 - The first visited vertex is the root of the tree.
 - Vertex u is the parent of v if the first visit to v happened after traversing the edge (u, v).
 - The children of a vertex u are ordered according to the time they were first visited from u.

Edge classification

- **Tree edge**: an edge from a vertex to one of its children.
- **Back edge**: an edge from a vertex to one of its ancestors.
- **Forward edge**: an edge from a vertex to one of its descendants which is not its child.
- **Cross edge**: an edge from a vertex to another vertex that is neither one of its ancestors nor one of its descendants in the traversal tree.
Example

Traversal path: A
Example

Traversal path: \(AB \)
Example

Traversal path: ABE
Example

Traversal path: \textit{ABED}
Traversals Trees

Example

Graph Traversals

Traversals path: $ABEDF$
Traversal path: ABEDFE
Traversal path: **ABEDFEB**
Traversing Trees

Example

Traversal path: \(ABEDFEB \)
Traversal path: \textit{ABEDFEBCA}
Example

Traversal path: \textit{ABEDFEBCAD}
Example

Traversal path: $ABEDFEBCADF$
Traversals Trees

Example

Traversal path: \textit{ABEDFEBCADFC}
DFS – Depth First Search

Input
- An undirected graph $G = (V, E)$.
- A global order on the n vertices.

Output
- A traversal forest that contains a traversal tree for each connected component of the graph.

Traversal rule
- For each connected component, visit a vertex, then recursively visit all of its neighbors in order.

Directed graphs
- In the traversal forest, each tree is a directed tree.
- Each tree has a directed path from its root to any other vertex in the tree.
Example – a DFS traversal Path

Traversal path: A
Example – a DFS traversal Path

Traversal path: AB
Example – a DFS traversal Path

Traversal path: ABC
Example – a DFS traversal Path

Traversal path: \(ABCA\)
Example – a DFS traversal Path

Traversal path: $ABCAC$
Example – a DFS traversal Path

Traversal path: ABCACF
Example – a DFS traversal Path

Traversal path: $ABCACFD$
Example – a DFS traversal Path

Traversal path: \textit{ABCACFDA}
Example – a DFS traversal Path

Traversal path: $ABCACFDAD$
Example – a DFS traversal Path

Traversal path: ABCACFDADE
Example – a DFS traversal Path

Traversal path: ABCACFDADEB
Example – a DFS traversal Path

Traversal path: **ABCACFDADEBE**
Example – a DFS traversal Path

Traversa}l path: ABCACFDADEBEF
Example – a DFS traversal Path

Traversal path: ABCACFDADEBEF – EDFCBA
Example – the DFS traversal Tree

Traversal path: A
Example – the DFS traversal Tree

Traversal path: \(AB \)
Example – the DFS traversal Tree

Traversal path: \textit{ABC}
Example – the DFS traversal Tree

Traversal path: $ABCA$
Example – the DFS traversal Tree

Traversal path: $ABCAC$
Example – the DFS traversal Tree

Traversal path: \textit{ABCACF}
Example – the DFS traversal Tree

Traversal path: **ABCACFD**
Example – the DFS traversal Tree

Traversal path: \textit{ABCACFDA}
Example – the DFS traversal Tree

Traversal path: $ABCACFDAD$
Example – the DFS traversal Tree

Traversal path: $ABCACFDEA$
Example – the DFS traversal Tree

Traversal path: $ABCACFDADEB$
Example – the DFS traversal Tree

Traversal path: $ABCACFDADEBE$
Example – the DFS traversal Tree

Traversal path: \textit{ABCACFDADEBEF}
Data Structure

Vertices

- Each vertex is colored by one of the following colors:
 - *White*: The recursive visit has not started.
 - *Gray*: The recursive visit started but not finished.
 - *Black*: The recursive visit finished.

Time

- A global discrete time variable *time* that is updated when a vertex becomes *Gray* and when a vertex becomes *Black*.
 - *d*(v): The time vertex v becomes *Gray*.
 - *f*(v): The time vertex v becomes *Black*.

Traversal trees

- A parenthood function \(\Pi(v) \) in the traversal forest:
 - \(\Pi(v) = nil \) if v is a root of a tree in the forest.
 - \(\Pi(v) \) is v’s parent in the traversal tree that contains v.
The DFS Procedure

Initial call

DFS\((G) \)

for each vertex \(v \in V \) do

\(\text{Color}(v) = \text{White} \)

\(\Pi(v) = \text{nil} \)

\(\text{time} = 0 \)

for each vertex \(v \in V \) do

if \(\text{Color}(v) = \text{White} \) then

DFS-Visit\((v) \)

Observation

- **DFS** handles all connected components.
The DFS Procedure

Recursive call

DFS-Visit\((v) \)

\[
\text{Color}(v) = \text{Gray} \\
\text{time}++ \\
d(v) = \text{time}
\]

for each neighbor \(u \) of \(v \) do

\[
\text{if Color}(u) = \text{white then} \\
\quad \Pi(u) = v \\
\quad \text{DFS-Visit}(u)
\]

\[
\text{Color}(v) = \text{Black} \\
\text{time}++ \\
f(v) = \text{time}
\]

Observation

- **DFS-Visit** handles one connected component.
Example – Directed DFS

$time = 0$
Example – Directed DFS

$time = 1$
Example – Directed DFS

$time = 2$
Example – Directed DFS

\[\text{time} = 3 \]
Example – Directed DFS

\[time = 4 \]
Example – Directed DFS

(time = 5)
Example – Directed DFS

\[
time = 6
\]
Example – Directed DFS

time = 7
Example – Directed DFS

\[\text{time} = 8 \]
Example – Directed DFS

$time = 9$
Example – Directed DFS

time = 10
Example – Directed DFS

\[time = 11 \]
Example – Directed DFS

\[
\text{time} = 12
\]
DFS – Correctness

Lemma
- DFS visits all the vertices.

Proof
- Each vertex changes colors as follows:
 - **White** → **Gray** → **Black**

Lemma
- DFS traverses all the edges.

Proof
- For each vertex, DFS examines all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.
Visiting vertices

- When visiting an already visited vertex, just traverse the edge and return back.

Undirected graphs

- The traversal path is not explicit. Traversing back the edges is done implicitly due to the recursive calls.

Directed graphs

- The traversal path sometimes uses the wrong direction due to the recursion.
DFS – Time Complexity

Adjacency lists
- $\Theta(m)$: Each edge is examined once in directed graphs and twice in undirected graphs.
- $\Theta(n)$: Each vertex is colored three times.
- $\Theta(n + m)$: Overall complexity.

Adjacency matrix
- $\Theta(n)$: For each vertex, for examining all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.
- $\Theta(n^2)$: Overall complexity.
DFS – Time Intervals

Definition
- The DFS interval of vertex \(v \) is \([d(v), f(v)]\).

Lemma
- Assume \(d(u) < d(v) \) for an edge \((u, v)\):
 - Either the intervals of \(u \) and \(v \) are disjoint
 \[d(u) < f(u) < d(v) < f(v). \]
 - Or \(u \)'s interval contains \(v \)'s interval
 \[d(u) < d(v) < f(v) < f(u). \]
Example – Time Intervals

\[
\begin{align*}
\text{time} = 1 & \quad A = \text{Gray} & \quad d(A) = 1 \\
\text{time} = 2 & \quad B = \text{Gray} & \quad d(B) = 2 \\
\text{time} = 3 & \quad C = \text{Gray} & \quad d(C) = 3 \\
\text{time} = 4 & \quad C = \text{Black} & \quad f(C) = 4 \\
\text{time} = 5 & \quad E = \text{Gray} & \quad d(E) = 5 \\
\text{time} = 6 & \quad D = \text{Gray} & \quad d(D) = 6 \\
\text{time} = 7 & \quad D = \text{Black} & \quad f(D) = 7 \\
\text{time} = 8 & \quad E = \text{Black} & \quad f(E) = 8 \\
\text{time} = 9 & \quad B = \text{Black} & \quad f(B) = 9 \\
\text{time} = 10 & \quad A = \text{Black} & \quad f(A) = 10 \\
\text{time} = 11 & \quad F = \text{Gray} & \quad d(F) = 11 \\
\text{time} = 12 & \quad F = \text{Black} & \quad f(F) = 12
\end{align*}
\]
Example – Time Intervals

DFS
DFS – Traversal Tree Edge Classification

Classification

- **A tree edge (T):** An edge from a *Gray* vertex to a *White* vertex.
- **A back edge (B):** An edge from a *Gray* vertex to a *Gray* vertex.
- **A forward edge (F):** An edge from a *Gray* vertex to a *Black* vertex whose interval is nested.
- **A cross edge (C):** An edge from a *Gray* vertex to a *Black* vertex whose interval finished.

Observation

- The above classification covers all the edges.
- Each edge belongs to one class.
Example – Edge Classification

(A,B) \(\text{Gray} \rightarrow \text{White} \) \(\text{T}\)

(B,C) \(\text{Gray} \rightarrow \text{White} \) \(\text{T}\)

(B,E) \(\text{Gray} \rightarrow \text{White} \) \(\text{T}\)

(E,D) \(\text{Gray} \rightarrow \text{White} \) \(\text{T}\)

(D,A) \(\text{Gray} \rightarrow \text{Gray} \) \(\text{B}\)

(A,C) \(\text{Gray} \rightarrow \text{Black}\) (nested) \(\text{F}\)

(F,C) \(\text{Gray} \rightarrow \text{Black}\) (finished) \(\text{C}\)

(F,D) \(\text{Gray} \rightarrow \text{Black}\) (finished) \(\text{C}\)

(F,E) \(\text{Gray} \rightarrow \text{Black}\) (finished) \(\text{C}\)
Lemma

DFS has no **forward** and no **cross** edges.

Proof

There is no edge from a *Gray* vertex to a *Black* vertex.

Otherwise, the *Black* vertex, before becoming black, would examine its incident edge to the *Gray* vertex in the other direction.
Theorem

- An undirected graph has a cycle iff the DFS creates at least one back edge.

Proof \leftarrow

- Suppose (u, v) is a back edge examined at u.
- Then v is an ancestor of u.
- Therefore, there exists a path from v to u.
- Adding (u, v) to the path creates a cycle.
Cycles in Undirected Graphs

Theorem

An undirected graph has a cycle iff the DFS creates at least one back edge.

Proof ⇒

- Suppose C is a cycle in G.
- Let v be the first Gray vertex in C.
- Let (u, v) be the preceding edge in C.
- After time $d(v)$, DFS explores the v to u path.
- When (u, v) is traversed, both v and u are Gray.
- Hence, (u, v) is a back edge.
Forest or not a Forest?

Problem
- Is an undirected graph a forest?
- Does an undirected graph have a cycle?

Algorithm
- Run the DFS algorithm.
- Terminate if a **back** edge is found.

Time complexity: $\Theta(n)$
- If there are no cycles there are $O(n)$ edges. Therefore, the DFS time complexity $\Theta(m + n)$ becomes $\Theta(n)$.
- If there exists a cycle, the algorithm terminates the first time a *Gray* vertex is visited for a second time. This happens after at most $\Theta(n)$ edge traversals.
Theorem

A directed graph G is DAG iff running DFS on G does not produce a back edge.

Proof \Rightarrow

Suppose that $(u \rightarrow v)$ is a back edge.
Then v is an ancestor of u.
Therefore, there exists a directed path from v to u.
Adding $(u \rightarrow v)$ to the path creates a directed cycle.
Theorem

A directed graph G is DAG iff running DFS on G does not produce a back edge.

Proof \Leftarrow

Suppose that \mathcal{C} is a directed cycle in G.
Let v be the first Gray vertex in \mathcal{C}.
Let $(u \rightarrow v)$ be the preceding edge in \mathcal{C}.
After time $d(v)$, DFS explores the v to u directed path.
When $(u \rightarrow v)$ is traversed, both v and u are Gray.
Hence, $(u \rightarrow v)$ is a back edge.
Definition
- A topological sort of a DAG is a linear ordering of its vertices.
- For any directed edge \((u \rightarrow v)\), vertex \(u\) must appear before vertex \(v\) in this ordering.

Problem
- Find one of the topological sorts of a DAG.

Algorithm
- Create an empty linked list.
- Run DFS on the DAG.
- A vertex becomes *Black*: add it to the front of the list.
- Return the linked list as a topological sort.
Correctness and Complexity

Correctness

- Consider examining the edge \((u \rightarrow v)\).
- At this time \(u\) is \textit{Gray}.
- \(v\) is not \textit{Gray} since then \((u \rightarrow v)\) is a \textit{back} edge.
- If \(v\) is \textit{White} then \(f(v) < f(u)\) since \(v\) becomes \textit{Black} before \(u\).
- If \(v\) is \textit{Black} then \(f(v) < f(u)\) since \(u\) is still \textit{Gray}.
- \(f(v) < f(u)\) implies that \(u\) appears before \(v\) in the list.

Complexity

- \(\Theta(n + m)\) running time.
- The same complexity as DFS.
BFS – Breadth First Search

Input
- An undirected graph \(G = (V, E) \).
- A global order on the \(n \) vertices.

Output
- A traversal forest that contains a traversal tree for each connected component of the graph.

Traversal rule
- Visit a vertex, then visit all of its neighbors, then visit all of the neighbors of its neighbors, \(\ldots \)

Directed graphs
- In the traversal forest, each tree is a directed tree.
- Each tree has a directed path from its root to any other vertex in the tree.
Example – a BFS traversal Path

Traversal path: A
Example – a BFS traversal Path

Traversal path: AB
Example – a BFS traversal Path

Traversal path: \textit{ABA}
Example – a BFS traversal Path

Traversal path: **ABAC**
Example – a BFS traversal Path

Traversal path: ABACA
Example – a BFS traversal Path

Traversal path: \textit{ABACAD}
Example – a BFS traversal Path

Traversal path: **ABACADA**
Example – a BFS traversal Path

Traversal path: **ABACADAB**
Example – a BFS traversal Path

Traversal path: \textit{ABACADABC}
Example – a BFS traversal Path

Traversal path: \text{ABACADABCB}
Example – a BFS traversal Path

Traversal path: ABACADABCBCE
Example – a BFS traversal Path

Traversal path: \textbf{ABACADABCBEB}
Example – a BFS traversal Path

Traversal path: $ABACADABCBEBBA$
Example – a BFS traversal Path

Traversal path: ABACADABCBEBAC
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACF}
Example – a BFS traversal Path

Traversal path : \textit{ABACADABCBEBAFC}

Amotz Bar-Noy (CUNY)
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACFCA}
Example – a BFS traversal Path

Traversal path: ABACADABCBEBACFCAD
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACFCADE}
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBAACFCADED}
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBAFCDEDF}
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACFCADEDFD}
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACFCADEDFA}
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBAFCACEDFDAB}
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACFCADEDFDABE}
Example – a BFS traversal Path

Traversal path: ABACADABCBEBACFCADEDFDABEF
Example – a BFS traversal Path

Traversal path: \textit{ABACADABCBEBACFCADEDFDABEF \textendash EBA}
Example – the BFS Traversal Tree

ABACADABCBEBACFCADEDFAEBEF
Data Structure

Vertices

- Maintain a level function $\text{Level}(v)$:
 - $\text{Level}(v) = 0$ if v is a root of a tree in the forest.
 - $\text{Level}(v) = \ell$ if v is at distance ℓ from the root.

A FIFO queue Q

- $x = \text{First}(Q)$: Delete x the first element in Q.
- $\text{Last}(Q) = x$: Add x as the last element in Q.
- $\text{Create}(Q)$: Create an empty queue Q.
- $\text{Empty}(Q)$: Check if the queue Q is empty.

Traversal trees

- A parenthood function $\Pi(v)$ in the traversal forest:
 - $\Pi(v) = \text{nil}$ if v is a root of a tree in the forest.
 - $\Pi(v)$ is v’s parent in the traversal tree that contains v.
The BFS Procedure

Initial call

\[\text{BFS}(G) \]
\[
\text{for each vertex } v \in V \text{ do} \\
\quad \text{Level}(v) = \infty \\
\quad \Pi(v) = \text{Nil} \\
\text{for each vertex } r \in V \text{ do} \\
\quad \text{if Level}(r) = \infty \text{ then} \\
\quad \quad \text{BFS-Visit}(r)
\]

Observation

- BFS handles all connected components.
The BFS Procedure

Queue handling

BFS-Visit(r)

- $Level(r) = 0$
- $Create(Q)$
- $Last(Q) = r$

while (not $Empty(Q)$) do

 $v = First(Q)$

 for each neighbor u of v do

 if $Level(u) = \infty$ then

 $\Pi(u) = v$

 $Level(u) = Level(v) + 1$

 $Last(Q) = u$

Observation

- **BFS-Visit** handles one connected component.
BFS – Example

```
<table>
<thead>
<tr>
<th>Initial Queue</th>
<th>A(0)</th>
<th>B(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D(1)</th>
<th>E(2)</th>
<th>F(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empty Queue</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A(0) B(1)
C(1)
D(1)
C(1)
E(2)
D(1)
D(1)
E(2)
F(2)

Amotz Bar-Noy (CUNY)
BFS – Correctness

Lemma
- BFS visits all the vertices.

Proof
- Each vertex changes its level \(\ell \) as follows
 \[
 \ell = \infty \rightarrow 0 \leq \ell < \infty
 \]

Lemma
- BFS traverses all the edges.

Proof
- For each vertex, BFS examines all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs.
BFS – Traversal Path

Undirected graphs
- The traversal path is not explicit. Traversing back the edges is done implicitly due to the queue handling.

Directed graphs
- The traversal path sometimes uses the wrong direction due to the queue handling.
BFS – Time Complexity

Adjacency lists
- $\Theta(m)$: Each edge is examined once in directed graphs and twice in undirected graphs.
- $\Theta(n)$: Each vertex gets a level $\ell < \infty$ exactly once.
- $\Theta(n + m)$: Overall complexity.

Adjacency matrix
- $\Theta(n)$: For each vertex, for examining all of its incident edges in undirected graphs and all of its outgoing edges in directed graphs. of each vertex.
- $\Theta(n^2)$: Overall complexity.
The BFS Traversal Tree

Lemma

- BFS has no **forward** edges in directed graphs and in undirected graphs.

Proof

- A **forward** edge would be a **tree** edge.

Lemma

- BFS has no **back** edges in undirected graphs.

Proof

- A **back** edge would be a **tree** edge while examined in the other direction.
The BFS Traversal Tree

Lemma

- In undirected graphs, \(\text{Level}(u) = \text{Level}(v) \) or \(\text{Level}(u) = \text{Level}(v) - 1 \) for a BFS cross edge \((u, v)\).

Proof

- \(u \) is added to the queue before \(v \).
- Otherwise BFS would examine \((v, u)\) before \((u, v)\).
- Therefore, \(\text{Level}(u) \leq \text{Level}(v) \).
- \(\text{Level}(u) < \text{Level}(v) - 1 \Rightarrow (u, v) \) would be a tree edge.
Shortest Paths

Problem
- Let u and v be 2 vertices in a connected undirected graph G.
- Find one of the shortest paths from u to v and its length.

Algorithm
- Run the BFS algorithm starting with the vertex v.
- Terminate when the vertex u is visited the first time.
- The length of the shortest path from u to v is the level of vertex u in the BFS traversal tree.
- The path $(u, \Pi(u), \Pi(\Pi(u)), \ldots, v)$ is one of the shortest paths from u to v.

Time complexity
- $\Theta(n + m)$: the same as BFS.
Strongly Connected Directed Graphs

Definition
- A directed graph $G = (V, E)$ is **strongly connected** if for any pair of vertices $u, v \in V$ there exists a directed path from u to v.

Problem
- Given a directed graph $G = (V, E)$, determine if G is strongly connected.
A Straightforward Algorithm

Algorithm
- For all vertices $v \in V$, run DFS or BFS starting with the vertex v.
- If there exists a vertex u that is not reachable from v, then return **NO** else return **YES**.

Correctness
- By definition of DFS and BFS.

Complexity
- $\Theta(nm)$ for n times DFS or BFS.
- If $m < n$, then the underlying undirected graph is not connected, and DFS or BFS would return **NO** after the first run.
- The worst case of n runs of DFS or BFS happens only when $m > n - 2$. Therefore, the complexity is $\Theta(nm)$ and not $\Theta(n(n + m))$.

An Efficient Algorithm

Algorithm

- For some vertex w, run DFS or BFS on G starting with w.
- If there exists u that is not reachable from w, then return **NO**.
- Reverse the direction of all edges to get a new directed graph G'.
- Run DFS or BFS on G' starting with w.
- If there exists v that is not reachable from w, then return **NO**.
- Else, return **YES**.

Complexity

- $\Theta(n + m)$ for running twice DFS or BFS.
- $\Theta(n + m)$ for reversing the direction of all edges to generate the graph G' by scanning all the outgoing lists to generate new outgoing lists.
- $\Theta(n + m)$ overall complexity.
Correctness

The algorithm returns **NO**

- The algorithm produces an evidence of two vertices with no directed path between them.
- Either there exists u s.t. there is no directed path from w to u in G.
- Or there exists v s.t there is no directed path from w to v in G' implying having no directed path from v to w in G.

The algorithm returns **YES**

- Let $v, u \in V$ be any pair of vertices in G.
- **YES** in $G \Rightarrow$ there is a directed path from w to u in G.
- **YES** in $G' \Rightarrow$ there is a directed path from w to v in G' implying a directed path from v to w in G.
- Combining the path from v to w with the path from w to u generates the path from v to u.
Diameter of a Graph

Assumption
- Let G be a connected undirected graph.

Notation
- For two vertices u and v, denote by $\text{dist}(u, v)$ the length of the shortest path from u to v in G.

Definition
- The **diameter** of G, denoted by $D(G)$, is the longest shortest path in G:

 $$D(G) = \max_{u,v \in G} \{ \text{dist}(u, v) \} .$$

Problem
- Find the diameter of G.
Algorithm for any Graph G

Algorithm

- For each vertex v, run BFS starting with v.
- Let u be one of the **farthest** vertices from v and let $r(v) = \text{dist}(v, u)$.
- $D(G) = \max_v \{r(v)\}$.

Correctness

- By definition of BFS.

Complexity

- In connected graphs $m \geq n - 1$. Therefore, the complexity of BFS is $\Theta(m)$.
- Overall complexity is $\Theta(nm)$ for running BFS n times.
Diameter of a Tree

Problem
- Find the diameter of a tree T.

An efficient algorithm
- Run BFS starting with an arbitrary vertex v.
- Let u be one of the farthest vertices from v.
- Run BFS starting with the vertex u.
- Let w be one of the farthest vertices from u.
- $D(G) = \text{dist}(u, w)$.

Complexity
- $\Theta(n)$ for running BFS twice on a tree for which $m = n - 1$.
- The complexity of the general algorithm is $\Theta(n^2)$ for running BFS n times on a tree.
Diameters of Graphs

The Algorithm Fails for Non-Trees

Counterexample

- u is the only farthest vertex from v.
- $v = w$ is the only farthest vertex from u.
- $\text{dist}(x, y) > \text{dist}(u, w)$.
Correctness

Setting

- Let \(x \) and \(y \) be two vertices such that \(D(G) = \text{dist}(x, y) \).
- If \(v \) is either \(x \) or \(y \), then \(\text{dist}(v, w) = D(G) \) and therefore \(\text{dist}(u, w) = D(G) \).
- Assume that \(\text{dist}(v, y) \geq \text{dist}(v, x) \).
- Let \(z \) be the vertex that connects \(v \) to the path \(x \) to \(y \) (\(z \) can be \(v \) or \(y \)).
Correctness

Case I: z is on the path from v to u

- By definition, $\text{dist}(v, u) \geq \text{dist}(v, y)$.
- Therefore, $\text{dist}(z, u) \geq \text{dist}(z, y)$.
- Therefore, $D(G) = \text{dist}(x, u)$.
- By definition, $\text{dist}(u, w) \geq \text{dist}(u, x)$.
- Therefore, $D(G) = \text{dist}(u, w)$.
Correctness

Case II: \(z \) is not on the path from \(v \) to \(u \).

\[
\begin{align*}
 &X \\
 &Z \\
 &Y \\
 &P \\
 &V \\
 &U \\
\end{align*}
\]

Let \(p \) be the vertex on the path from \(v \) to \(u \) and the path from \(v \) to \(z \) (\(p \) can be \(v \)).

By definition, \(\text{dist}(v, u) \geq \text{dist}(v, y) \).

Therefore, \(\text{dist}(p, u) \geq \text{dist}(p, y) \).

\(\text{dist}(z, u) > \text{dist}(p, u) \) and \(\text{dist}(z, y) < \text{dist}(p, y) \) by definition.

Therefore, \(\text{dist}(z, u) > \text{dist}(z, y) \).

Therefore, \(\text{dist}(x, u) > \text{dist}(x, y) \).

A contradiction since \(D(G) = \text{dist}(x, y) \).
Articulation Points

Assumption
- Let G be a connected undirected graph.

Notation
- For a vertex $u \in G$, denote by G_u the graph G without the vertex u and all of its incident edges.

Definition
- $v \in G$ is an **articulation point** if G_v is a disconnected graph.

Problem
- Find all the articulation points of G.
A Straightforward Algorithm

Algorithm
- For each vertex v, run BFS or DFS on the graph G_v.
- Output all the vertices v whose traversal forest contains more than one tree.

Correctness
- By definitions of BFS and DFS.

Complexity
- In connected graphs $m \geq n - 1$. Therefore, the complexity of BFS or DFS is $\Theta(m)$.
- Overall complexity is $\Theta(nm)$ for running BFS or DFS n times.
An Efficient Algorithm

Algorithm
- Run DFS on G starting with an arbitrary vertex v.
- If v has more than one child in the traversal tree then v is an articulation point.
- If $u \neq v$ is not a leaf in the DFS traversal tree and u has a child w such that there is no back edge from one of the vertices in the subtree rooted at w to one of its ancestors of u, then u is an articulation point.

Correctness
- Recall that the DFS tree in an undirected graph does not have cross and forward edges.
- The correctness follows by carefully examining the DFS procedure and by the definition of articulation points.
An Efficient Algorithm

Complexity

- In the DFS tree, a back edge \((x, y)\) **bypasses** a non-leaf non-root \(v\), if \(x\) is in the subtree rooted at \(v\) and \(y\) is an ancestor of \(v\).

- With the same complexity \(\Theta(n + m)\), it is possible to modify DFS to maintain the following for each vertex \(u\):
 - Count the number of children of \(u\) in the DFS tree.
 - Detect if \(u\) has a child \(w\) whose rooted subtree has no back edges **bypassing** \(v\).

- Overall complexity is \(\Theta(n + m)\) for running the modified DFS algorithm.
Resources: Books

Text book
 - Depth-first search: Section 22.3 pp. 603–612.
 - Topological sort: Section 22.4 pp. 612–615.
 - Strongly connected components: Section 22.5 pp. 615–621.

Another book
- “Algorithm Design,” Goodrich and Tamassia, Wiley.
 - Traversing a Digraph: Section 13.4.1 pp. 374–377.
 - Directed Acyclic Graphs: Section 13.4.4 pp. 382–385.
Online Resources Theory and Implementation

Directed Graphs

- **Topological sorting**
 - https://www.geeksforgeeks.org/topological-sorting/
 - https://www.interviewcake.com/concept/java/topological-sort

- **Testing if a directed graph is strongly connected**
 - https://www.geeksforgeeks.org/connectivity-in-a-directed-graph/?ref=lbp

- **Finding all the strongly connecting components of a directed graph**
 - https://www.geeksforgeeks.org/strongly-connected-components/?ref=lbp

Undirected graphs

- **Diameter of a tree**
 - https://www.geeksforgeeks.org/diameter-tree-using-dfs/?ref=lbp

- **Articulation points**
 - https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/