7200. Analysis of Algorithms

Midterm Exam

October 17, 2017

• Answer Problems 1, 2, and 3a. The bonus problem, 3b, is extra.
• You have exactly two hours.
• Answer a question only within the given space by using a readable normal size text.
• Except for the bonus problem, you get 20% of the credit if you leave the answer blank. You get no credit for a wrong answer.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Part</th>
<th>Maximum Points</th>
<th>Your Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Final Grade

<table>
<thead>
<tr>
<th>Problem</th>
<th>Part</th>
<th>Maximum Points</th>
<th>Your Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>b</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Good Luck!
1. For the following four procedures find the exact value of c when the procedure terminates. If you cannot determine the exact value use the Θ-notation.

(a) $f(n)$ (* $n \geq 0$ is an integer *)
$$c = 0$$
for $i = 1$ to n
 for $j = i$ to n
 $c := c + 1$

(b) $f(n)$ (* $n \geq 0$ is an integer *)
$$c = 0$$
for $i = 1$ to n
 for $j = 1$ to $2n$
 for $k = 1$ to $3n$
 $c := c + 1$

(c) $f(n)$ (* $n = k^2$ is a positive square integer *)
$$c = 0$$
for $i = 1$ to n
 if i is a square number
 then $c := c + 1$

(d) $f(n)$ (* $n = 2^k$ is a power of 2 integer *)
$$c = 0$$
while $n > 1$
 $n := n/2$
 $c := c + 1$
2. The following *Trinary-Search Procedure* looks for x in the range $\{f, \ldots, \ell\}$ for some positive integers $1 \leq f < \ell \leq n$. Assume that always the size of the range, $\ell - f + 1$, is a power of 3.

- The procedure first checks if $f = \ell$ (not a comparison). If the answer is “YES” then the search terminates.
- Otherwise, let $m = \frac{\ell - f + 1}{3}$ be one third of the size of the range. The procedure partitions the input range into the following 3 equal size ranges: $\{f, \ldots, f + m - 1\}$, $\{f + m, \ldots, \ell - m\}$, and $\{\ell - m + 1, \ldots, \ell\}$. For example the range $\{10, \ldots, 18\}$ is partitioned into the ranges: $\{10, 11, 12\}$, $\{13, 14, 15\}$, and $\{16, 17, 18\}$.
- The first comparison is: $x \leq f + m - 1$ (does x belong to the first range?).
- If the answer is “YES” then the search continues recursively in the first range: $\{f, \ldots, f + m - 1\}$.
- If the answer is “NO” a second comparison is performed: $x \leq \ell - m$ (does x belong to the second range?).
- If the answer is “YES” then the search continues recursively in the second range: $\{f + m, \ldots, \ell - m\}$.
- If the answer is “NO” then the search continues recursively in the third range: $\{\ell - m + 1, \ldots, \ell\}$.

(a) For the range $[1..n]$, what is the exact number of comparisons between x and a number in the range that are performed by Trinary-Search?

- $n = 3$ and $x = 1, 2, 3$.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>#comparisons</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $n = 9$ and $x = 1, \ldots, 9$.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>#comparisons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $x = n$ for any n. Justify your answer.

- $x = 1$ for any n. Justify your answer.
(b) Let $T(n)$ be the worst case complexity (number of comparisons) of Trinary-Search. Write the initial value and the recursive formula for $T(n)$.

What is the solution of this recursion using the Θ-notation. Justify your answer.

What is the exact solution of this recursion? Prove your answer.
3. Let M be an $n \times n$ matrix containing the numbers $1, 2, \ldots, n^2$. The n integers of each row of M are sorted in an increasing order (from left to right) and the n integers of each column of M are sorted in an increasing order (from top to bottom).

Let $1 \leq x \leq n^2$ be an unknown numbers. The goal is to find the position $M[i,j]$ of x in M (x is in row i and column j) using only comparisons between x and integers in the matrix.

(a) Describe an algorithm that always finds the position of x with $O(n)$ comparisons. Explain why your algorithm is correct and justify why it is a linear time algorithm.
If you are not sure about the correctness of your previous algorithm, describe a (possibly not efficient) **correct** algorithm that finds the position of \(x \) in \(M \). Explain why your algorithm is correct.

What is the worst case number of comparisons between \(x \) and integers in \(M \) made by your algorithm as a function of \(n \)? Justify your answer.
(b) **Bonus question:** Prove that any algorithm that solves this problem must use $\Omega(n)$ comparisons.